Supporting Information for

Air-Stable Ultrabright Inverted Organic Light-Emitting

Devices with Metal Ion-Chelated Polymer Injection Layer

Shihao Liu^{1, 2, #}, Chunxiu Zang^{1, #}, Jiaming Zhang¹, Shuang Tian², Yan Wu², Dong Shen², Letian Zhang¹, Wenfa Xie^{1, *}, Chun-Sing Lee^{2, *}

¹State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China

²Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China

[#]S.H. Liu and C.X. Zang have contributed equally to this work.

*Corresponding authors. E-mail: <u>xiewf@jlu.edu.cn</u> (Wenfa Xie), <u>apcslee@cityu.edu.hk</u> (Chun-Sing Lee)

Supplementary Figures and Table

Fig. S1 Molecular structures of the used small molecular materials in the inverted OLEDs

Nano-Micro Letters

Fig. S2 A photograph of the synthesized PEI-Zn powder

Fig. S3 (a) Current density-voltage-brightness and (b) EQE-brightness characteristics of device with PEI interlayer after adding zinc acetate dihydrate with different concentrations

Fig. S4 N 1s XPS spectra of the PEI and the PEI-Zn layers coated on ITO

Nano-Micro Letters

Fig. S5 FTIR spectra of the PEI and the PEI-Zn

Fig. S6 Electrochemical stability of the PEI and the PEI-Zn films

Nano-Micro Letters

Fig. S8 UPS spectra of the PEI-Zn and the PEI coated on the ITO

Fig. S9 Tauc plots of the PEI-Zn and the PEI

Fig. S10 (**a**) Current density-voltage-brightness, (**b**) current efficiency-brightnesspower efficiency, (**c**) EQE-brightness and (d) optical power dissipation characteristics of device PEI-Zn and device ZnO/PEI. The structure of device Zn/PEI is ITO/ZnO (30 nm)/PEI (15 nm)/ DMAC-BPP (10 nm)/CBP: 10wt% Ir(ppy)₃ (20 nm)/TCTA (5 nm)/TAPC (35 nm)/MoO₃ (3 nm)/Ag (120 nm)

Fig. S11 Atom force microscope (AFM) images of PEI and PEI-Zn films

Fig. S12 (**a**) Resistance-voltage characteristic of a conventional OLED with a structure of ITO/MoO₃ (3 nm)/TAPC (30 nm)/TCTA (5 nm)/CBP: 10 wt% Ir(ppy)₃ (30 nm)/TmPyPB (50 nm)/LiF/Mg: 10 wt% Ag (120 nm). (**b**) Resistance-voltage characteristics of PEI-based and PEI-Zn-based single carrier devices with a structure of ITO/PEI or PEI-Zn/DMAC-BP (50 nm)/Mg: 10 wt% Ag (120 nm)

Fig. S13 (a) Energy levels of the PEI or the PEI-Zn used for the simulation of hole accumulations. (b) Simulated hole density of device PEI and device PEI-Zn. The energy levels of the PEI and PEI-Zn is calculated by following the method of Zhou et al (see Fig. S2 of ref. 22). The electron affinity is given by the equation of $E_{\rm F}$ +0.5* $E_{\rm g}$, and the ionization potential energy is provided by the equation of $E_{\rm F}$ -0.5* $E_{\rm g}$. The values of $E_{\rm F}$ and $E_{\rm g}$ are extracted from the Tauc plots (Figure S9) and the UPS spectra (Figure S8). The brown green rectangle and violet circle respectively represent the hole accumulation at the EML/TPBi interface and the DMAC-BPP/EJL interface. The simulation is conducted by the commercial simulation software SimOLED.

Nano-Micro Letters

Fig. S14 Current density-voltage characteristics of (**a**) PEI-based devices and (**b**) PEI-Zn-based devices with an orange probe at different distance from the TPBi/EML interface

Fig. S15 Transient PL decay characteristics (@520 nm) of the CBP:10 wt% Ir(ppy)₃ films (20 nm) on the PEI/DMAC-BP/TPBi and the PEI-Zn/DMAC-BP/TPBI substrates

Material	Mobilities (cm ² V ⁻¹ S ⁻¹)		Energy Level (eV)		Relative dielectric	Thickness
	Electron	Hole	LUMO	НОМО	constants	(1111)
ΙΤΟ	WF=-4.5				3.2	120
PEI	10-8	10-8	-1.2	-6.4	3.0	15
PEI-Zn	10-5	10-5	-2.1	-5.7	3.0	15
DMAC- BPP	8.5×10 ⁻⁵	1.9×10 ⁻⁵	-2.5	-5.4	3.0	10
TPBI	3.3×10 ⁻⁵	10-6	-2.6	-6.2	3.0	5
CBP	3×10 ⁻⁴	10-3	-2.6	-5.9	3.0	20
Ir(ppy) ₃	10-6	2.9×10 ⁻⁵	-3.0	5.6	3.0	20, 10 wt%
ТСТА	10 ⁻⁸	3×10-4	-2.2	-5.6	3.0	5
TAPC	10 ⁻⁶	10-2	-1.8	-5.3	3.0	35
Ag	WF=-5.3				-10.991+0.33i	100

Table S1 Parameters for simulation of hole density