Supporting Information for

Manipulating Interfacial Stability *via* Absorption-Competition Mechanism for Long-Lifespan Zn Anode

Meijia Qiu^{1, 2}, Liang Ma², Peng Sun^{1, 2}, Zilong Wang², Guofeng Cui^{1, *}, Wenjie Mai²

¹Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People's Republic of China

²Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong 510632, People's Republic of China

*Corresponding author. E-mail: cuigf@mail.sysu.edu.cn (Guofeng Cui)

Supplementary Figures

Fig. S1 Cross-sectional SEM images of Zn sheet surface with (left) and without (right) the veratraldehyde additive

Fig. S2 The high-resolution XPS spectra of O 1s for the Zn sheet after soaked in DI water

Nano-Micro Letters

Fig. S3 Comparison of the high-resolution XPS spectra of Zn 2p between pure Zn sheet and the Zn sheet after soaked in 0.3 g L^{-1} veratraldehyde solution

Fig. S4 Top view of the Zn slab with possible absorbed sites

Fig. S5 (a) EIS and (b) nucleation overpotential comparison of Zn-Zn symmetric cells under electrolyte systems with and without veratraldehyde additive

Fig. S6 Chronoamperometry curves indicating Zn^{2+} diffusion process of Zn electrode under different electrolyte system

Fig. S7 (a) CV curves of Zn plating/stripping at a scan rate of 1 mV s⁻¹ in the pure ZnSO₄ electrolyte and (b) corresponding chronocoulometry curves based on above CV curves

Fig. S8 Reaction formula of reversible redox process between the veratraldehyde and veratryl alcohol molecules

Fig. S9 (**a**) The HER diagrams of pure Zn slab and Zn slab with absorbed veratryl alcohol; (**b**) Tafel plot representing the corrosion behavior under ZnSO4-veratryl alcohol electrolyte

Fig. S10 Models of electric field intensity distribution under (a)-(b) ZnSO₄-veratraldehyde electrolytes at different reaction time

Fig. S11 Rate cycling performance comparison of Zn-Zn symmetric cells under different current densities and areal capacities of 1 mA cm⁻², 1 mAh cm⁻²; 2 mA cm⁻², 2 mAh cm⁻² and 5 mA cm⁻², 5 mAh cm⁻² in (**a**) ZnSO₄-veratraldehyde and (**b**) pure ZnSO₄ electrolytes

Fig. S12 Long-term cycling performance comparison of Zn-Zn symmetric cells under current densities and areal capacities of 5 mA cm⁻², 5 mAh cm⁻² in ZnSO₄ electrolytes with different veratraldehyde concentration

Fig. S13 Long-term cycling performance comparison of Zn-Zn symmetric cells under current densities and areal capacities of 5 mA cm⁻², 5 mAh cm⁻² in ZnSO₄ electrolytes with alcohol additive

Fig. S14 Coulombic efficiency (CE) measurements of Zn//Ti cells and corresponding voltage profiles at various cycles under pure $ZnSO_4$ and $ZnSO_4$ -veratraldehyde electrolytes

Nano-Micro Letters

Fig. S15 GCD curves at a current density of 0.1 A g⁻¹ in different electrolytes

Fig. S16 CV curves of Zn-MnO₂ batteries under different scan rates ranging from 1 mV s⁻¹ to 7 mV s⁻¹

Fig. S17 Long-term cycling performance comparison of Zn-Zn symmetric cells under current densities and areal capacities of 5 mA cm⁻², 5 mAh cm⁻² in ZnSO₄ electrolytes with anisaldehyde and vanillin additives