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HIGHLIGHTS

• The 1T-WS2@TiO2@Ti3C2 photocatalyst is highly active for water splitting to produce hydrogen at 3409.8 μmol g−1 h−1.

• The  Ti3C2 MXene and octahedral (1T) phase  WS2 act pathways transferring photogenerated electrons.

ABSTRACT The biggest challenging issue in photocataly-
sis is efficient separation of the photoinduced carriers and 
the aggregation of photoexcited electrons on photocatalyst’s 
surface. In this paper, we report that double metallic co-cat-
alysts  Ti3C2 MXene and metallic octahedral (1T) phase tung-
sten disulfide  (WS2) act pathways transferring photoexcited 
electrons in assisting the photocatalytic  H2 evolution.  TiO2 
nanosheets were in situ grown on highly conductive  Ti3C2 
MXenes and 1T-WS2 nanoparticles were then uniformly dis-
tributed on  TiO2@Ti3C2 composite. Thus, a distinctive 1T-WS2@TiO2@Ti3C2 composite with double metallic co-catalysts was achieved, 
and the content of 1T phase reaches 73%. The photocatalytic  H2 evolution performance of 1T-WS2@TiO2@Ti3C2 composite with an 
optimized 15 wt%  WS2 ratio is nearly 50 times higher than that of  TiO2 nanosheets because of conductive  Ti3C2 MXene and 1T-WS2 
resulting in the increase of electron transfer efficiency. Besides, the 1T-WS2 on the surface of  TiO2@Ti3C2 composite enhances the 
Brunauer–Emmett–Teller surface area and boosts the density of active site.
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1 Introduction

Due to energy consumption and consequent environmental 
pollution, the generation of hydrogen  (H2) from water using 
solar light through semiconductors materials has aroused 
great attention [1–4]. Among these,  TiO2 is widely studied 

owing to nontoxicity and low cost [5, 6]. However, the fast 
photoexcited carrier recombination restricts the  TiO2’s 
application, and thus numerous efforts, such as doping, co-
catalyst loading and heterostructure designing, are made to 
improve photoexcited carrier separation [7, 8]. Among these, 
co-catalysts can gather carriers to improve separation and 
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act as active sites for  H2 production [9]. Noble metals as 
excellent co-catalysts have widely applied to photocataly-
sis. However, extreme scarcity and high price restrict their 
application of photocatalytic water splitting [10, 11]. There-
fore, seeking an inexpensive and highly active co-catalyst is 
of paramount significance for achieving photocatalytic  H2 
production in the future [12].

MXenes, as new 2D materials, have aroused remarkable 
attention because of its excellent electrical conductivity 
[13, 14]. For example, a 2D material with an accordion-like 
structure of layered  Ti3C2 MXene can be prepared by etching 
Al layers from  Ti3AlC2, in HF solution [15–17]. Due to its 
high electrical conductivity and unique layer morphology, 
 Ti3C2 MXene is an appropriate substitute co-catalyst for 
noble metals for photocatalytic  H2 evolution [18].

In recent years, transition metal disulfides (TMDs), such 
as molybdenum disulfide  (MoS2) and tungsten disulfide 
 (WS2), are regarded as promising substitutes for noble met-
als on catalysis [19, 20].  MoS2 and  WS2 mainly include 
semiconductive trigonal (2H) phase and metallic octahe-
dral (1T) phase [21, 22]. Both experimental and theoretical 
research have revealed that the metallic 1T phase possesses 
outstanding conductivity and more active sites, which will 
be suitable co-catalyst for photocatalytic  H2 evolution, com-
pared with 2H phase [23]. As one of the most popular TMDs 
materials, 1T phase  MoS2 has been widely studied on photo-
catalysis [24–26]. However, the report about 1T phase  WS2 
(1T-WS2) on photocatalytic  H2 production is still rare.

In this paper, an innovative 2D heterojunction by utilizing 
the metallic feature of  Ti3C2 MXene and 1T-WS2 is reported. 
A two-step hydrothermal method is used for designing the 
novel 1T-WS2@TiO2@Ti3C2 photocatalyst where  Ti3C2 
MXene and  1TWS2 play important roles as electron accep-
tors. Firstly,  TiO2 nanosheets are in situ grown on the sur-
face of highly conductive  Ti3C2 MXenes to construct  TiO2@
Ti3C2 composites by a facile hydrothermal method. Sec-
ondly, we intentionally employ the 1T-WS2 nanoparticles 
evenly distribute on  TiO2@Ti3C2 composites’ surface using 
a hydrothermal process. This procedure results in the con-
struction of an efficient photocatalytic system with intimate 
contact among metallic  Ti3C2 MXene, 1T-WS2 nanoparti-
cles, and  TiO2 NSs. The newly designed 1T-WS2@TiO2@
Ti3C2 composites exhibit extremely enhanced photocata-
lytic  H2 evolution activity and stability owing to the novel 
structure.

2  Experimental Procedures

2.1  Materials

Ti3AlC2 powder was purchased from 11 Technology. Hydro-
chloric acid (HCl), sodium tetrafluoroborate  (NaBF4), 
hydrofluoric acid (HF, 40 wt%), tungsten chloride  (WCl6), 
thioacetamide (TAA), and dimethylformamide (DMF) were 
provided by Sinopharm.

2.2  Synthesis of  Ti3C2 MXenes

In a typical synthesis, 1 g  Ti3AlC2 powders were dissolved 
in 120 mL HF solution (40 wt%) and were stirred for 72 h. 
Then, the mixed solution was washed with deionized (DI) 
water to neutral. Lastly,  Ti3C2 MXenes were dried at 50 °C 
for overnight in a vacuum oven.

2.3  Synthesis of  TiO2@Ti3C2 Composites

Ti3C2 MXenes (400 mg) and  NaBF4 (660 mg) were dis-
solved in 60 mL HCl (1.0 M) and were stirred for 30 min. 
The mixed solution was hydrothermally treated at 160 °C for 
12 h. The obtained  TiO2@Ti3C2 composites were washed 
with DI water and dried at 60 °C for overnight in a vacuum 
oven.

2.4  Synthesis of 1T‑WS2@TiO2@Ti3C2 Composites

WCl6 (24 mg) and TAA (9 mg) were added into 50 mL 
DMF. Then, 100 mg  TiO2@Ti3C2 composites were dis-
persed in above solution and were stirred for 60 min. The 
mixed solution was hydrothermally treated at 200 °C for 
24 h. The obtained 1T-WS2@TiO2@Ti3C2 composites (15 
wt%  WS2) were washed with DI water and dried at 60 °C for 
overnight in a vacuum oven. By adjusting the adding amount 
of  WCl6 (16, 32, and 40 mg) and TAA (6, 12, and 15 mg), 
1T-WS2@TiO2@Ti3C2 composites with other  WS2 adding 
amounts (10, 20, and 25 wt%) were prepared, respectively.

2.5  Characterizations

The phases of the samples were carried out using D/Max 
2500PC X-ray diffraction (XRD). The surface characteristic 
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and structure of the samples were tested by a FEI Nano 450 
high-resolution scanning electron microscope (FESEM) 
and a JEOL 2100F high transmission electron microscope 
(HRTEM). The chemical states of the products were ana-
lyzed by a Thermo ESCALAB 250XI X-ray photoelectron 
spectrometry (XPS). The specific surface area and pore 
size distribution were tested by a nitrogen adsorption–des-
orption apparatus (Micromeritics ASAP2020) using the 
Brunauer–Emmett–Teller (BET) method. The UV–Vis dif-
fuse reflectance spectra (DRS) of the products were meas-
ured using a Hitachi UH3101 UV–Vis spectrophotom-
eter. The photoluminescence (PL) spectra were tested by a 
FLS920 fluorescence.

2.6  Photoelectrochemical and Photocatalytic Activity 
Test

The photocatalytic activity test was measured using a Pyrex 
glass vessel, with a 300 W Xe arc lamp (CELHXF300) with 
an AM-1.5 filter as the light source. 10 mg of catalysts were 
added into acetone/TEOA solution (15 mL acetone + 5 mL 
TEOA + 80 mL DI water). The amount of generated  H2 was 
tested by a gas chromatograph (Techcomp GC-7920). The 
electrochemical impedance spectroscopy (EIS) and transient 
photocurrent response (PEC) of the catalysts were meas-
ured by an electrochemical workstation (CHI660D) under 

a 300 W Xe arc lamp with an AM-1.5 filter in a three-elec-
trode cell (0.5 M  Na2SO4). Ag/AgCl electrode and Pt wire 
were used as reference and counter electrodes, respectively.

3  Results and Discussion

A typical synthesis route of 1T-WS2@TiO2@Ti3C2 compos-
ites is schematically depicted in Scheme 1.  Ti3C2 MXenes 
are firstly prepared by etching Al layers of  Ti3AlC2 MAX 
phase in HF solution [27]. Then, the layered  Ti3C2 MXene 
provides Ti sources with the help of HCl and  NaBF4 for 
growing  TiO2 NSs across the layered  Ti3C2 MXene. Finally, 
the obtained  TiO2@Ti3C2 composites are added into  WCl6/
TAA solutions at 200 °C for 24 h to introduce 1T-WS2 co-
catalysts. In this process, due to the intercalation of  NH4

+ 
of TAA, the space distance of  WS2 increases and 1T-WS2 is 
generated [19]. The 1T-WS2 is evenly assembled on  TiO2@
Ti3C2 composites’ surface to construct the ternary 1T-WS2@
TiO2@Ti3C2 composites.

After HF etching, the most intense XRD (104) peak of 
 Ti3AlC2 was disappeared, and the (002) peak of  Ti3AlC2 
at 9.52o was moved to lower 2-theta value (8.78o), which 
indicates the successful formation of  Ti3C2 (Fig. S1a) [17]. 
The development of  TiO2 nanosheets across  Ti3C2 MXenes 
by the hydrothermal oxidation of  Ti3C2 is evidenced by the 
emergence of diffraction peaks of anatase  TiO2 (JCPDS No. 
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Scheme 1  Schematic illustration of the preparation of 1T-WS2@TiO2@Ti3C2 composites
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21-1272) as shown in Fig. 1a. The XRD peaks appearing at 
6.66°, 13.40°, and 20.10° are indexed to (002), (004), and 
(006) planes of 1T-WS2 [23]. The co-existence of  Ti3C2, 
 TiO2, and 1T-WS2 indicates the successful preparation of 
1T-WS2@TiO2@Ti3C2 composites. For 1T-WS2@TiO2@
Ti3C2 composites with other  WS2 ratios (Fig. S1b), all 
the XRD peaks are well corresponding to  Ti3C2,  TiO2, or 
1T-WS2.

The full-scale XPS spectrum of 1T-WS2@TiO2@Ti3C2 
composites (Fig. 1b) displays that Ti, C, O, S, and W are 
dominant elements, while F element is ascribed to  F− ions 
physically adsorbed on composites from the HF solution. 
The Ti 2p spectrum is divided into four peaks (Fig. 1c). The 
two peaks at 464.7 (Ti–O 2p1/2) and 459.0 eV (Ti–O 2p3/2) 
are ascribed to lattice Ti–O bonds of  TiO2 [28]. The other 
two peaks at 461.2 (Ti-C 2p1/2) and 455.3 eV (Ti-C 2p3/2) 
are indexed to lattice Ti–C bonds of  Ti3C2 [29]. The high-
resolution Ti 2p XPS spectrum indicates the content of  Ti3C2 
is about 79% in  TiO2@Ti3C2 composites. The W 4f XPS 
spectrum of 1T-WS2@TiO2@Ti3C2 composites (Fig. 1d) can 
confirm the presence and relative content of 1T-WS2. In the 

W 4f region, the two peaks of 2H phase corresponding to W 
4f7/2 and W 4f5/2 at 33.0 and 36.0 eV, respectively. Neverthe-
less, two extra peaks shift to lower binding energies at 32.4 
and 34.6 eV, suggesting the existence of 1T-WS2 [19, 30]. 
The 1T phase content is calculated about 73%, which shows 
that the 1T-WS2@TiO2@Ti3C2 composites are composed of 
lots of metallic 1T phase.

Ti3C2 MXenes are obtained by etching of the aluminum 
layer of the bulk  Ti3AlC2 (Fig. S2a) by using HF. As shown 
in Fig. 2a,  Ti3C2 MXenes present typical accordion-like 
multilayer structure. After hydrothermal oxidation of  Ti3C2 
MXenes, the layered  Ti3C2 MXenes provide Ti sources for 
growing  TiO2 NSs inserting across the layered  Ti3C2 MXene 
to form  TiO2@Ti3C2 composites, and further combine with 
 WS2 through hydrothermal reaction to get 1T-WS2@TiO2@
Ti3C2 composites. Figure 2b shows that 1T-WS2 presents 
nanoflake structures and agglomerate into nanoflowers. 
After combining with  TiO2@Ti3C2 composites, the 1T-WS2 
nanoparticles are evenly distributed on  TiO2@Ti3C2 com-
posites’ surface (Fig. 2c, d). Furthermore, 1T-WS2@TiO2@
Ti3C2 composites with other  WS2 ratios (10, 20, and 25 wt%) 
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and d W 4f XPS spectra in 1T-WS2@TiO2@Ti3C2 composites (15 wt%  WS2)
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are prepared, and corresponding SEM images are displayed 
in Fig. S2.

The phase composition and microscopic structure of 
1T-WS2@TiO2@Ti3C2 composites are characterized by 
TEM (Fig. 3a, b). The lattice with d spaces of 0.35 nm is 
attributed to (101) plane of anatase  TiO2 (Fig. 3b), which are 
same as the description of the literatures [31, 32]. The lattice 
spacings of 0.98 and 0.92 nm are indexed to (002) plane of 

 Ti3C2 MXene and (002) plane of 1T-WS2 [19, 33–35] 
(Fig.  3b). The EDX element mappings of composites 
(Fig. 3c) indicate that the Ti, C, O, W, and S elements are 
accordantly distributed. The as-fabricated photocatalyst with 
superior metallic quality of  Ti3C2 MXene and 1T-WS2 pre-
sent more effective carrier transfer and separation compared 
with  TiO2 NSs, and therefore, the photocatalytic perfor-
mance is enhanced. The 1T-WS2 is further confirmed by 

Fig. 2  SEM images of a  Ti3C2 MXene, b 1T-WS2, and c, d 1T-WS2@TiO2@Ti3C2 composites (15 wt%  WS2)

(a)

(c)

(b)
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0.35 nm
TiO2
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1T-WS210 nm
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Fig. 3  a, b HRTEM and c EDX elemental mapping images of 1T-WS2@TiO2@Ti3C2 composites (15 wt%  WS2)
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Raman spectroscopy (Fig. S3). Remarkably, in contrast to 
2H phase  WS2, there are no scattering peaks between 350 
and 450 cm−1 attributed to E1

2g
 (in-plane) and A1g (out-of-

plane) in 1T-WS2 (Fig. S3). There are also two strong peaks 
at low frequency range for 1T-WS2. One strong Raman band 
at 128 cm−1 (J1) is attributed to W–W stretching vibrations 
in 1T-WS2@TiO2@Ti3C2 composite [21]. Besides, another 
additional peak at 171 cm−1 (J2) is observed, which is asso-
ciated with the phonon modes in the  WS2, suggesting the 
existence of a considerable amount of 1T phase ingredient 
embedded [22]. This result further implies that the as-pre-
pared  WS2 in 1T-WS2@TiO2@Ti3C2 composites is mostly 
1T phase [19, 23].

To further examine the textural properties of 1T-WS2@
TiO2@Ti3C2 composites, the isotherms and the pore size 
distributions are studied by  N2 adsorption–desorption meas-
urement (Figs. 4 and S4). All of samples present type IV 
isotherms with H3 hysteresis loops, suggesting the presence 
of mesopores [36]. And the pore size distribution curves of 

1T-WS2@TiO2@Ti3C2 composites with different  WS2 load-
ing amounts (Fig. 4a–d inset) display that the size of major 
mesopores ranges from 2 to 25 nm. Compared with other 
samples, when the loading amount of  WS2 is 15%, the pore 
size distribution is relatively concentrated at 2 ~ 5 nm. The 
presence of such a small pore size is conducive to migration 
of reactant and product molecules to facilitate photocata-
lytic reactions. Moreover, larger nitrogen adsorption capac-
ity indicates that more reactive sites may be provided during 
the reaction process, which is favorable in the enhancement 
of catalytic activity. The BET surface area of as-prepared 
1T-WS2@TiO2@Ti3C2-15%, as shown in Table S1, reveals 
a higher surface area (23.334 m2  g−1) than those of  Ti3C2 
MXene, pure 1T-WS2, and 1T-WS2@TiO2@Ti3C2 com-
posites with other  WS2 loading amounts. In addition, as 
shown in Figs. 4 and S4, the BET surface area of the sam-
ples increase nonlinearly with increasing  WS2 loading. As 
the  WS2 loading amount increases from 10 to 15 wt%, the 
BET surface area of composites increases. However, further 

35

30

25

20

15

10

5

0

−5

35

30

25

20

15

10

5

0

−5

40

30

20

10

0Q
ua

nt
ity

 a
ds

or
be

d 
(c

m
3  

g−1
)

Q
ua

nt
ity

 a
ds

or
be

d 
(c

m
3  

g−1
)

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.006

0.005

0.004

0.003

0.002

0.001

0.000

dV
(d

) (
cm

3  
g−

1  
nm

−1
)

dV
(d

) (
cm

3  
g−

1  
nm

−1
)

0 5 10
Pore size (nm)

20 2515 0 5 10
Pore size (nm)

20 2515

1T-WS2@TiO2@Ti3C2-10% 1T-WS2@TiO2@Ti3C2-15%

0.0 0.2 0.4
Relative pressure (P/P0)

0.6 0.8 1.0 0.0 0.2 0.4
Relative pressure (P/P0)

0.6 0.8 1.0

30

25

20

15

10

5

0

−5

Q
ua

nt
ity

 a
ds

or
be

d 
(c

m
3  

g−1
)

Q
ua

nt
ity

 a
ds

or
be

d 
(c

m
3  

g−1
)

0.0016

0.0012

0.0008

0.0004

0.0000

0.0015

0.0012

0.0009

0.0006

0.0003

0.0000dV
(d

) (
cm

3  
g−

1  
nm

−1
)

dV
(d

) (
cm

3  
g−

1  
nm

−1
)

0 5 10
Pore size (nm)

20 2515 0 5 10
Pore size (nm)

20 2515

1T-WS2@TiO2@Ti3C2-20% 1T-WS2@TiO2@Ti3C2-25%

0.0 0.2 0.4
Relative pressure (P/P0)

0.6 0.8 1.0 0.0 0.2 0.4
Relative pressure (P/P0)

0.6 0.8 1.0

(a) (b)

(c) (d)
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increasing the loading amount of  WS2 (from 15 to 25 wt% 
 WS2) leads to a gradual decrease of BET surface area, which 
may be caused by the aggregation of  WS2 on the surface of 
the composites. The higher surface areas are beneficial for 
photocatalysis since it could provide more adsorption and 
active sites, thus the photocatalytic activity is improved [37].

To investigate the optical absorptivity, the UV–Vis DRS 
spectra of samples are measured. As shown in Fig. 5,  TiO2 
NSs (curve black) have a noticeable UV light absorption, 
due to the nature of anatase  TiO2 [38].  Ti3C2 MXene 
(curve blue) shows UV and visible absorption as a result 
of the black color nature [39]. Compared with  TiO2 NSs, 
1T-WS2@TiO2@Ti3C2 composites (15 wt%  WS2) display a 
significant absorption edge red shift and enhanced visible 
absorption, which is attributed to the optical absorption of 

 Ti3C2 MXene and 1T-WS2. The increase of light absorp-
tion range of photocatalysts will be more helpful to pro-
mote the progress of photocatalytic reaction. Besides, the 
1T-WS2@TiO2@Ti3C2 composites show stronger light 
absorption with the increase of  WS2 contents from 10 to 
25 wt% (Fig. S5).

The photocatalytic performance of 1T-WS2@TiO2@Ti3C2 
composites was evaluated using  H2 evolution under simu-
lated sunlight irradiation in an aqueous acetone solution at 
room temperature (Fig. 6). Control experiments (Fig. S6) 
show that no noticeable  H2 evolution is discovered without 
either photocatalyst or illumination.  TiO2 NSs (Fig. 6) pre-
sent limited photocatalytic  H2 activity (67.8 μmol g−1  h−1), 
arising from fast carrier recombination [40]. In view of the 
excellent electronic conductivity of  Ti3C2 and 1T-WS2, it is 
combined as a co-catalyst with  TiO2 NSs in order to achieve 
better photogenerated carrier separation and improve pho-
tocatalytic performance [41, 42]. As expected, after assem-
bling of  Ti3C2 and 1T-WS2, the bets photocatalytic activity 
is detected (3409.8 μmol g−1  h−1 for 1T-WS2@TiO2@Ti3C2 
composites (15 wt%  WS2)), which is nearly 50 times higher 
than that of  TiO2 NSs. Moreover, the 1T-WS2@TiO2@
Ti3C2 composites (10 wt%  WS2) present a lower photocata-
lytic activity than 1T-WS2@TiO2@Ti3C2 composites (15 
wt%  WS2), owing to the relatively weaker solar light input. 
Furthermore, with the increase of  WS2 contents from 15 to 
25 wt%, a reduction in the photocatalytic performance of 
1T-WS2@TiO2@Ti3C2 composites is discovered. Because 
excess black 1T-WS2 nanoparticles induced “shielding 
effect” block light to the surface of  TiO2 [43].
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Besides, we evaluate the apparent quantum efficiency 
(AQE) of photocatalysts under the same light source. 
Table S2 displays the comparison of AQE values of  TiO2 
NSs and 1T-WS2@TiO2@Ti3C2 composites with differ-
ent  WS2 ratios (10, 15, 20, and 25 wt%): 0.049%  (TiO2 
NSs) < 1.173% (1T-WS2@TiO2@Ti3C2-25 wt%) < 1.513% 
(1T-WS2@TiO2@Ti3C2-10 wt%) < 1.956% (1T-WS2@
TiO2@Ti3C2-20 wt%) < 2.464% (1T-WS2@TiO2@Ti3C2-
15 wt%), which is in accordance with photocatalytic  H2 
evolution performance. Moreover, we conduct stability of 
1T-WS2@TiO2@Ti3C2 composites (15 wt%  WS2) for 24 h 
(Fig. S7). No noticeable  H2 production decrease is detected 
after 3 cycles (24 h). SEM images (Fig. S8) and XRD pat-
tern (Fig. S9) of 1T-WS2@TiO2@Ti3C2 composites after 3 
cycles display no evident difference compared with fresh 
samples. The results further demonstrate that 1T-WS2@
TiO2@Ti3C2 composites can act as a favorable photocata-
lyst for  H2 production. We also delaminated the multilayered 
 Ti3C2 MXenes to get monolayered  Ti3C2 nanosheets (Fig. 
S10). The XRD pattern of  TiO2@Ti3C2 (monolayer) does 
not detect the diffraction peak of  Ti3C2 (Fig. S10a). Since 
 Ti3C2 monolayer is in full contact with the reaction solu-
tion, all  Ti3C2 may be converted into  TiO2 under the same 
experimental conditions. As shown in Fig. S10b, 1T-WS2@
Ti3C2@Ti3C2 (monolayer) presents worse photocatalytic 
 H2 production activity than that of 1T-WS2@TiO2@Ti3C2 
(multilayer), which demonstrates that the lack of  Ti3C2 by 
oxidation in 1T-WS2@Ti3C2@Ti3C2 (monolayer) greatly 
affects the photocatalytic  H2 production. Furthermore, 
changing the ratio between  Ti3C2 and  TiO2 also affecting 
the photocatalytic performance of 1T-WS2@TiO2@Ti3C2 

composites (Fig. S11). Compared with in situ loading of 
 TiO2 nanosheets (Fig. S12), foreign titanium sources do not 
improve the photocatalytic performance of 1T-WS2@TiO2@
Ti3C2 composites, which may be caused by the non-close 
contact between  TiO2 and  Ti3C2 caused by the foreign tita-
nium sources.

The introduction of  Ti3C2 MXene and 1T-WS2 in 
1T-WS2@TiO2@Ti3C2 composites would be believed to 
influence photoinduced carrier separation, which could be 
characterized by steady and time-resolved PL spectroscopy 
(Fig. 7). As illustrated in Fig. 7a,  TiO2 NSs possess a high 
PL peak, resulting in the quick photoinduced carrier recom-
bination. When  Ti3C2 MXene and 1T-WS2 are incorporated, 
the PL peak is significantly reduced (Fig. 7a). Evidently, the 
photoinduced carrier recombination of  TiO2 is hindered by 
migrating electrons to  Ti3C2 and 1T-WS2 as electron accep-
tors [44]. An increased lifetime of charge carriers is also 
detected by loading  Ti3C2 MXene and 1T-WS2 (Fig. 7b). The 
intensity-average lifetimes (τ) of  TiO2 NSs are 0.1138 ns, 
much shorter than that of 1T-WS2@TiO2@Ti3C2 compos-
ites (1.2750 ns). The increased carrier lifetime of 1T-WS2@
TiO2@Ti3C2 composites is beneficial for enhanced carrier 
separation efficiency.

The photocurrent responses of photocatalysts were 
prompt by some on–off cycles under light illumination 
(Fig. 8a). All of samples present reversible photocurrent 
responses on each irradiation. The photocurrent intensity 
of 1T-WS2@TiO2@Ti3C2 composites is much higher than 
that of pure  TiO2 NSs, which is due to  Ti3C2 and 1T-WS2 
as co-catalysts more effectively receiving photoexcited 
electrons of  TiO2. The 1T-WS2@TiO2@Ti3C2 composites 
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Fig. 7  a Steady and b time-resolved PL spectra of  TiO2 NSs and 1T-WS2@TiO2@Ti3C2 composites (15 wt%  WS2), λex = 325 nm
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(Fig. 8b) exhibit a smaller arc radius compared with  TiO2 
NSs under light irradiation, suggesting that the 1T-WS2@
TiO2@Ti3C2 composite presents smaller charge transfer 
resistance, finally causing higher photoexcited carrier 
transfer and separation efficiency [45].

As shown in Scheme 2, under light irradiation,  TiO2 
NSs can be excited to produce electrons and holes. The 
majority of photoexcited electrons in conduction band 
(CB) of  TiO2 could instantly migrate to metallic  Ti3C2 
MXene and 1T-WS2 through the interface. As the photo-
electron receivers,  Ti3C2 MXene and 1T-WS2 serves as 
active sites for  H2 production [46, 47]. Meanwhile, the 
holes in the valence band (VB) of  TiO2 are consumed by 
the sacrificial reagents. Consequently, the photoexcited 
carriers are efficiently transferred and separated with the 
assistance of double co-catalysts  Ti3C2 and 1T-WS2.

4  Conclusions

In conclusion, an effective 1T-WS2@TiO2@Ti3C2 composite 
photocatalyst is successfully prepared. The development of 
 TiO2 NSs on  Ti3C2 MXenes and 1T-WS2 nanoparticles uni-
formly distributing on  TiO2@Ti3C2 composite is the design 
concept. The obtained 1T-WS2@TiO2@Ti3C2 composite 
with 15 wt%  WS2 loading displays excellent photocatalytic 
 H2 production performance (3409.8 μmol g−1  h−1), nearly 
50 times higher than that of pure  TiO2 NSs. The excellent  H2 
evolution performance of 1T-WS2@TiO2@Ti3C2 composites 
is ascribed to the following reasons: (1) The introduction of 
1T-WS2 nanoparticles induces enhanced BET surface area 
and more active sites; (2) Both  Ti3C2 MXene and 1T-WS2 
possess extraordinary conductivity, which greatly enhance 
the electron transfer ability and thus achieve highly efficient 
spatial charge separation.
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