## Supporting Information for

# Stable Zn Metal Anodes with Limited Zn-Doping in MgF<sub>2</sub> Interphase for Fast and Uniformly Ionic Flux

Ji Young Kim<sup>1, 2</sup>, Guicheng Liu<sup>1, 3, \*</sup>, Ryanda Enggar Anugrah Ardhi<sup>1</sup>, Jihun Park<sup>4</sup>, Hansung Kim<sup>2</sup>, Joong Kee Lee<sup>1, 5, \*</sup>

<sup>1</sup>Energy Storage Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea

<sup>2</sup>Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

<sup>3</sup>Department of Physics, Dongguk University, Seoul 04620, Republic of Korea

<sup>4</sup>APC Technology, 108 68 Gangbyeonyeok-ro-4-gil, Gwangjin-gu, Seoul 05116, Republic of Korea

<sup>5</sup>Department of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea

\*Corresponding authors. E-mail: <u>log67@163.com</u> or <u>liuguicheng@dongguk.edu</u> (G. Liu); <u>leejk@kist.re.kr</u> (J. K. Lee)

# **Supplementary Figures and Tables**



Fig. S1 Top-view and cross-sectional SEM images of  $MgF_2$ -coated Zn metal with sputtering times of (a) 5 min (Zn@L-ZMF-13) and (b) 20 min (Zn@L-ZMF-40)



Fig. S2 Schematic illustration of (a) radio frequency sputtering system and (b) interdiffusion mechanism of Zn doping into deposited  $MgF_2$  layer



**Fig. S3** X-ray photoelectron spectroscopy (XPS) spectra of (**a**) Zn 2p, (**b**) Mg 1s, and (**c**) F 1s of Zn@L-ZMF-25 at depths of 2, 15, 25, and 32 nm. (**d**) Schematic of the respective depths



Fig. S4 Depth profiles of MgF<sub>2</sub>-coated Zn metals with sputtering times of (a) 5 min (Zn@L-ZMF-13) and (b) 20 min (Zn@L-ZMF-40)



**Fig. S5** Nyquist plots of symmetric cells with (**a**) pristine Zn, (**b**) Zn@L-ZMF-13, (**c**) Zn@L-ZMF-25, and (**d**) Zn@L-ZMF-40 electrodes before and after polarization

Note for Fig. S5: The Zn ion transference number  $(t_{Zn^{2+}})$  was calculated via the Bruce–Vincent equation (Eq. S1).

$$t_{Zn^{2+}} = \frac{I_S(\Delta V - I_0 R_0)}{I_0(\Delta V - I_S R_S)}$$
(S1)

where  $I_0$  and  $I_s$  are the initial and steady-state currents, respectively.  $\Delta V$  is the applied voltage of 25 mV.  $R_0$  and  $R_s$  are the initial and steady-state resistances, respectively. The transference number is employed to compare the kinetics of Zn ion transfer at the interface between an aqueous electrolyte and a Zn metal electrode.



**Fig. S6** (a) Galvanostatic cycling of symmetric cells at a current density of 1.0 mA cm<sup>-2</sup> with an areal capacity of 1.0 mAh cm<sup>-2</sup>. (b) Top-view SEM images of pristine Zn, Zn@L-ZMF-13, Zn@L-ZMF-25, and Zn@L-ZMF-40 electrodes after 25 galvanostatic cycles at a current density of 1.0 mA cm<sup>-2</sup> with an areal capacity of 1.0 mAh cm<sup>-2</sup>



**Fig. S7** Thicknesses of (**a**) newly assembled cell and symmetric cells with (**b**) pristine Zn and (**c**) Zn@L-ZMF-25 electrodes after 250 galvanostatic cycles at a current density of 1.0 mA  $\text{cm}^{-2}$  with an areal capacity of 1.0 mAh cm<sup>-2</sup>



**Fig. S8** (a) Photographs and (b) X-ray diffraction (XRD) patterns of the used glass fiber filter separators in the symmetric cells with (left) pristine Zn and (right) Zn@L-ZMF-25 electrodes after 250 galvanostatic cycles at 1.0 mA cm<sup>-2</sup> with an areal capacity of 1.0 mAh cm<sup>-2</sup>



**Fig. S9** Nyquist plots and equivalent circuit model for symmetric cells with the pristine Zn and Zn@L-ZMF-25 electrodes before the cycling test



**Fig. S10** Nyquist plots of symmetric cells with (**a**) pristine Zn and (**b**) Zn@L-ZMF-25 electrodes under various temperatures



**Fig. S11** Gaussian fitting of XPS spectra at the surface of pristine Zn metal electrodes after 250 galvanostatic cycles at a current density of 1.0 mA cm<sup>-2</sup> with an areal capacity of 1.0 mAh cm<sup>-2</sup>



**Fig. S12** Top-view SEM images of (**a**, **b**) pristine Zn and (**c**, **d**) Zn@L-ZMF-25 electrodes before and after 250 galvanostatic cycles at a current density of 1.0 mA cm<sup>-2</sup> with an areal capacity of 1.0 mAh cm<sup>-2</sup> (insets: photographs of the pristine Zn and Zn@L-ZMF-25 electrodes before and after galvanostatic cycling)



**Fig. S13** Expanded cross-sectional TEM images of Zn@L-ZMF-25 electrodes (**a**) after Zn plating and (**b**) after stripping of plated Zn



**Fig. S14** Coulombic efficiency (CE) of Zn plating and stripping on pristine Ti and Ti@L-TMF-25 electrodes at a current density of 1.0 mA cm<sup>-2</sup>





**Fig. S15 (a)** Voltage profiles of the galvanostatic cycling of symmetric cells with pristine Zn and Zn@L-ZMF-25 electrodes at various current densities with a constant areal capacity of 1.0 mAh cm<sup>-2</sup>. Expanded voltage profile at a current density of (**b**) 3.0 and (**c**) 5.0 mA cm<sup>-2</sup>. (**d**) Long-term Zn plating and stripping performance of symmetric cells with pristine Zn and Zn@L-ZMF-25 electrodes at a current density of 10.0 mA cm<sup>-2</sup> with an areal capacity of 1.0 mAh cm<sup>-2</sup>.



**Fig. S16** Long-term Zn plating and stripping performance of symmetric cells with pristine Zn and Zn@L-ZMF-25 electrodes in 1 mol  $L^{-1}$  ZnSO<sub>4</sub> electrolyte at a current density of 1.0 mA cm<sup>-2</sup> with an areal capacity of 1.0 mAh cm<sup>-2</sup>



Fig. S17 (a) XRD pattern, (b, c) TEM images, and (d) fast Fourier transform (FFT) pattern of the synthesized  $\alpha$ -MnO<sub>2</sub>



Fig. S18 Cyclic voltammetry curves of  $Zn/MnO_2$  cells with (a) pristine Zn and (b) Zn@L-ZMF-25 anodes at various scan rates



Fig. S19 Capacitive and diffusion-controlled behaviors of the pristine  $Zn/MnO_2$  cell at different scan rates



**Fig. S20** Capacitive and diffusion-controlled behaviors of the Zn@L-ZMF-25/MnO<sub>2</sub> cell at different scan rates



**Fig. S21** Galvanostatic intermittent titration technique (GITT) and diffusion coefficient curves of  $Zn/MnO_2$  cells with (**a**) pristine Zn and (**b**) Zn@L-ZMF-25 anodes at a constant current of 50 mA g<sup>-1</sup> for an interval time of 10 min and suspended time of 10 min in open-circuit state

**Note for Fig. S21:** The diffusion coefficient was calculated using the GITT based on Eq. S2 [S1].

$$D = \frac{4L^2}{\pi t} \times \left(\frac{\Delta E_s}{\Delta E_t}\right)^2$$
(S2)

where L is the ion diffusion length (cm), which is generally identical to the thickness of the electrode, and *t* is the duration of the current pulse (s).  $\Delta E_t$  is the voltage change for the applied constant current excluding the *iR* drop, and  $\Delta E_s$  is the *iR* voltage drop due to the current pulse.



**Fig. S22** Bright/dark field TEM images with the corresponding elemental maps of the  $\alpha$ -MnO<sub>2</sub> cathodes of Zn/MnO<sub>2</sub> cells with (**a**) pristine Zn and (**b**) Zn@L-ZMF-25 anodes after 3000 galvanostatic cycles



**Fig. S23** High-resolution TEM images with the corresponding FFT patterns of the  $\alpha$ -MnO<sub>2</sub> cathode of Zn/MnO<sub>2</sub> cells with (**a**, **b**) pristine Zn and (**c**, **d**) Zn@L-ZMF-25 anodes after 3000 galvanostatic cycles

|                        | Pristine Zn | Zn@L-ZMF-13 | Zn@L-ZMF-25 | Zn@L-ZMF-40 |
|------------------------|-------------|-------------|-------------|-------------|
| E <sub>corr</sub> (V)  | -1.660      | -1.655      | -1.647      | -1.647      |
| i <sub>corr</sub> (mA) | 0.093       | 0.081       | 0.050       | 0.049       |

**Table S1** Corrosion potential ( $E_{corr}$ ) and current ( $i_{corr}$ ) of the pristine Zn, Zn@L-ZMF-13, Zn@L-ZMF-25, and Zn@L-ZMF-40 cells

**Table S2** Charge transfer resistance ( $R_{ct}$ ) and transference number ( $t_{Zn^{2+}}$ ) of the pristine Zn, Zn@L-ZMF-13, Zn@L-ZMF-25, and Zn@L-ZMF-40 electrodes

|                                                                           | Pristine Zn | Zn@L-ZMF-<br>13 | Zn@L-ZMF-25 | Zn@L-ZMF-40 |
|---------------------------------------------------------------------------|-------------|-----------------|-------------|-------------|
| <b>R</b> <sub>ct</sub> (Before polarization)                              | 1903        | 1459            | 1678        | 1927        |
| <b>R</b> <sub>ct</sub><br>(After polarization<br>of 50 <sup>th</sup> sec) | 1933        | 1470            | 1673        | 1911        |
| R <sub>ct</sub><br>(After polarization<br>of 4000 <sup>th</sup> sec)      | 2100        | 1706            | 1492        | 1635        |
| $t_{Zn^{2+}}$ (50 <sup>th</sup> sec)                                      | 0.406       | 0.537           | 0.488       | 0.410       |
| $t_{Zn^{2+}}$<br>(4000 <sup>th</sup> sec)                                 | 0.295       | 0.380           | 0.454       | 0.385       |

**Table S3** Anodic resistances for interface  $(R_{sf})$  and charge transfer  $(R_{ct})$  of symmetric cells with the pristine Zn and Zn@L-ZMF-25 electrodes at various temperatures

| Tommentume (OC)    | Pristi                 | ne Zn                  | Zn@L-Z                 | Zn@L-ZMF-25            |  |  |
|--------------------|------------------------|------------------------|------------------------|------------------------|--|--|
| Temperature (°C) - | <b>R</b> <sub>sf</sub> | <b>R</b> <sub>ct</sub> | <b>R</b> <sub>sf</sub> | <b>R</b> <sub>ct</sub> |  |  |
| 20                 | 20.6                   | 756.9                  | 12.2                   | 376.3                  |  |  |
| 30                 | 5.48                   | 353.6                  | 2.36                   | 190.0                  |  |  |
| 40                 | 1.40                   | 195.3                  | 0.59                   | 151.0                  |  |  |
| 50                 | 0.29                   | 114.7                  | 0.22                   | 93.1                   |  |  |
| 60                 | 0.23                   | 77.8                   | 0.15                   | 52.3                   |  |  |
| 70                 | 0.15                   | 40.2                   | 0.12                   | 36.4                   |  |  |

| Table S4 Comparison of  | of the reversibility  | of Zn plating | and stripping | in the Zn-based |
|-------------------------|-----------------------|---------------|---------------|-----------------|
| symmetric cell with tho | se in recent literati | ure           |               |                 |

| Coating<br>material                     | Electrolyte                                         | Current<br>density<br>(mA cm <sup>-2</sup> ) | Areal<br>capacity<br>(mAh cm <sup>-2</sup> ) | Overpotential<br>(mV) | Cycling lifetime                                                                    | Refs. |
|-----------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------|-------------------------------------------------------------------------------------|-------|
| Porous ZnO                              | 2M ZnSO <sub>4</sub> /<br>0.1M<br>MnSO <sub>4</sub> | 1.0<br>5.0                                   | 0.25<br>1.25                                 | 42<br>43              | 1000 cycles<br>(5.0 mA cm <sup>-</sup><br><sup>2</sup> /1.25 mAh cm <sup>-2</sup> ) | [S1]  |
| Glass fiber@<br>Collagen<br>hydrolysate | 1M ZnSO4                                            | 1.0                                          | 1.0                                          | 180                   | 29 cycles<br>(1.0 mA cm <sup>-2</sup> /1.0<br>mAh cm <sup>-2</sup> )                | [S2]  |

| doping<br>(Zn@L-ZMF-<br>25)                                                       | loping<br>@L-ZMF-<br>25) 1M<br>Zn(SO <sub>3</sub> CF <sub>3</sub><br>)2 |             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |            | - 1.0                                                                                                | 24.9<br>27.2<br>55.5<br>69.3 | 8000 cycles<br>(10.0 mA cm <sup>-</sup><br><sup>2</sup> /1.0 mAh cm <sup>-2</sup> ) | work |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|-------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------|------|
| MgF <sub>2</sub> thin film<br>with gradual Zn                                     | 1M ZnSO4                                                                | 1.0         | 1.0                                                   | 17.2       | 500 cycles<br>(1.0 mA cm <sup>-2</sup> /1.0<br>mAh cm <sup>-2</sup> )                                | This                         |                                                                                     |      |
| ZnS                                                                               | 1M ZnSO <sub>4</sub>                                                    | 2.0         | 2.0                                                   | 49         | 250 cycles<br>(2.0 mA cm <sup>-2</sup> /2.0<br>mAh cm <sup>-2</sup> )                                | [S10]                        |                                                                                     |      |
| ZrO <sub>2</sub>                                                                  | 2M ZnSO <sub>4</sub>                                                    | 1.0         | 1.0                                                   | 70         | 3600 cycles<br>(0.25 mA cm <sup>-</sup><br><sup>2</sup> /0.125 mAh cm <sup>-</sup><br><sup>2</sup> ) | [89]                         |                                                                                     |      |
| Mxene<br>(Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> )                         | 2M ZnSO4                                                                | 0.2<br>5.0  | 0.2<br>1.0                                            | 47<br>112  | 400 cycles<br>(0.2 mA cm <sup>-2</sup> /0.2<br>mAh cm <sup>-2</sup> )                                | [S8]                         |                                                                                     |      |
| Porous kaolin<br>Al <sub>2</sub> Si <sub>2</sub> O <sub>5</sub> (OH) <sub>4</sub> | 2M ZnSO4/<br>0.1M<br>MnSO4                                              | 4.4         | 1.1                                                   | 70         | 1600 cycles<br>(4.4 mA cm <sup>-2</sup> /1.1<br>mAh cm <sup>-2</sup> )                               | [S7]                         |                                                                                     |      |
| H substituted graphdiyne                                                          | 2M ZnSO <sub>4</sub>                                                    | 1.0<br>2.0  | 0.1                                                   | 40<br>60   | 6000 cycles<br>(0.5 mA cm <sup>-2</sup> /0.1<br>mAh cm <sup>-2</sup> )                               | [S6]                         |                                                                                     |      |
| Indium                                                                            | 2M ZnSO <sub>4</sub>                                                    | 4.0         | 1.0                                                   | 40         | 800 cycles<br>(4.0 mA cm <sup>-2</sup> /1.0<br>mAh cm <sup>-2</sup> )                                | [85]                         |                                                                                     |      |
| ZIF-8                                                                             | 2M ZnSO <sub>4</sub>                                                    | 0.25        | 0.05                                                  | 60         | 425 cycles<br>(0.25 mA cm <sup>-</sup><br><sup>2</sup> /0.05 mAh cm <sup>-2</sup> )                  | [S4]                         |                                                                                     |      |
| Polyamide/<br>Zn(SO <sub>3</sub> CF <sub>3</sub> ) <sub>2</sub>                   | 2M ZnSO4                                                                | 0.5<br>10.0 | 0.25<br>10.0                                          | 100<br>100 | 8000 cycles<br>(0.5 mA cm <sup>-</sup><br><sup>2</sup> /0.25 mAh cm <sup>-2</sup> )                  | [83]                         |                                                                                     |      |

Table S5 Comparison of capacity retention of the  $Zn/MnO_2$  cell with those in recently published papers

| Anode  | Cathode                  | Electrolyte | Workin<br>g<br>voltage<br>(V) | Current<br>density<br>(A g <sup>-1</sup> ) | Initial<br>specific<br>capacity<br>(mAh g <sup>-1</sup> ) | Capacity<br>retention<br>(Cycle<br>number) | Refs. |
|--------|--------------------------|-------------|-------------------------------|--------------------------------------------|-----------------------------------------------------------|--------------------------------------------|-------|
| Zn@CNT | CNT-<br>MnO <sub>2</sub> | 2M ZnSO4/   | 1.0–1.8                       | 2.3                                        | 187.0                                                     | 88.7%                                      | [S11] |

| Zn@L-ZMF-<br>25                                                                |                                 | /0.1M<br>MnSO4                                    |         |      |       | 84.0%<br>(3000) | WUIK         |
|--------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|---------|------|-------|-----------------|--------------|
|                                                                                | α-MnO <sub>2</sub>              | Zn(SO <sub>3</sub> CF <sub>3</sub> ) <sub>2</sub> | 1.0–1.8 | 2.0  | 98.8  | (1000)          | This<br>work |
|                                                                                |                                 | 1M                                                |         |      |       | 97.5%           |              |
| Zn@Kaolin<br>(Al <sub>2</sub> Si <sub>2</sub> O <sub>5</sub> (OH) <sub>4</sub> | α-MnO <sub>2</sub>              | 2M ZnSO <sub>4</sub> /                            | 0.8–1.8 | 0.5  | 217.1 | 87.5%           | [S7]         |
| Zn@ZnS                                                                         | Carbon<br>cloth                 | 1M ZnSO <sub>4</sub> /                            | 1.1–1.8 | 1.54 | 125.8 | 87.6%           | [S10]        |
| Zn foil                                                                        | α-MnO <sub>2</sub> -<br>TiN/TiO | 1M<br>Zn(CH <sub>3</sub> CO <sub>2</sub>          | 0.8–2.0 | 0.1  | 304.6 | 79.7%           | [813]        |
| Zn@ZnO                                                                         | α-MnO <sub>2</sub>              | 2M ZnSO <sub>4</sub> /                            | 0.8–1.8 | 1.0  | 100.0 | 88.2%           | [S1]         |
| Zn foil                                                                        | Zn <sup>2+</sup><br>installed   | 2M ZnSO <sub>4</sub> /                            | 1.0–1.9 | 3.0  | 115.8 | 72.8%           | [S12]        |
| Zn@PA-<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                    | a-MnO2                          | 2M ZnSO <sub>4</sub> /                            | 0.8–1.8 | 2.0  | 141.0 | 88.0%           | [S3]         |

### **Supplementary References**

- [S1] X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Envivon. Sci. 13(2), 503-510 (2020). <u>http://doi.org/10.1039/C9EE03545A</u>
- [S2] J. Zhi, S. Li, M. Han, P. Chen, Biomolecule-guided cation regulation for dendrite-free metal anodes. Sci. Adv. 6(32), abb1342 (2020). <u>http://doi.org/10.1126/sciadv.abb1342</u>
- [S3] Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938-1949 (2019). <u>http://doi.org/10.1039/C9EE00596J</u>
- [S4] X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12, 152 (2020). <u>http://doi.org/10.1007/s40820-020-00487-1</u>
- [S5] K. Hu, X. Guan, R. Lv, G. Li, Z. Hu et al., Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chem. Eng. J. 396, 125363 (2020). <u>http://doi.org/10.1016/j.cej.2020.125363</u>
- [S6] Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu et al., Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-Free zinc anodes. Adv. Mater. 32(25), 2001755 (2020). <u>http://doi.org/10.1002/adma.202001755</u>
- [S7] C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). <u>http://doi.org/10.1002/adfm.202000599</u>

- [S8] N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861-2865 (2021). <u>http://doi.org/10.1002/anie.202012322</u>
- [S9] P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). <u>http://doi.org/10.1002/adfm.201908528</u>
- [S10] J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). <u>http://doi.org/10.1002/adma.202003021</u>
- [S11] Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), 1903675 (2019). <u>http://doi.org/10.1002/adma.201903675</u>
- [S12] J. Wang, J. Wang, H. Liu, C. Wei, F. Kang, Zinc ion stabilized MnO<sub>2</sub> nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7(22), 13727-13735 (2019). <u>http://doi.org/10.1039/C9TA03541A</u>
- [S13] S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn-MnO<sub>2</sub> battery. Energy Storage Mater. 28, 205-215 (2020). <u>http://doi.org/10.1016/j.ensm.2020.03.011</u>