Supporting Information for

Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors

Zirui Song¹, Guiyu Zhang¹, Xinglan Deng¹, Kangyu Zou¹, Xuhuan Xiao¹, Roya Momen¹, Abouzar Massoudi², Wentao Deng¹, Jiugang Hu¹, Hongshuai Hou¹, Guoqiang Zou^{1, *}, and Xiaobo Ji^{1, 3}

¹College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China

²Department of Semiconductors Materials and Energy Research Center P.O. Box 14155/4777, Tehran, Iran

³College of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

*Corresponding author. E-mail: <u>gq-zou@csu.edu.cn</u> (Guoqiang Zou)

Supplementary Figures and Tables

Fig. S1 Electrochemical decomposition performance of NCO-SP electrode investigated by (**a**) CV curves at 0.25 mV s⁻¹. (**b**) GCD curves of NCO-SP at the current density of 0.1C within the potential range of 4.6-2 V. (**c**) CV curves of Na₂H₂C₃O₄-SP at 0.25 mV s⁻¹

Nano-Micro Letters

Fig. S2 Status of sodium oxalate after being exposed in ambient environment for certain days. (a) Optical photos. (b) XRD patterns

Fig. S3 CV curves of $Na_2C_2O_4$ in various conductive additive systems at 0.25 mV s⁻¹. (a) graphene system. (b) graphite system. (c) carbon nanotube system. (d) 3D conductive network system

Nano-Micro Letters

Fig. S4 TEM image of NCO-S-3D and corresponding EDS elemental mapping

Fig. S5 SEM images of (**a**) pristine sodium oxalate and (**b-d**) after being ball milled with 3D conductive network

Fig. S6 Charge and discharge profiles of (a) activated carbon and (b) TiO_2 at the current density of 100 mA g⁻¹

Fig. S7 Cycling performance and CE of $TiO_2//AC-NCO-15\%$ with traditional slurry method under 1C at 4-0 V after presodiation

Fig. S8 Optical photos of electrodes in disassembled SIC system after cycling for 100 cycles

Nano-Micro Letters

Fig. S9 Optical photos of separators disassembled SIC system after cycling for 100 cycles

Fig. S10 Cycling stability of $TiO_2//AC-NCO-S-3D-20\%$ and $TiO_2//AC-NCO-S-3D-30\%$ SICs at 1C within 4-0 V after presodiation

Fig. S11 Charge and discharge profiles of hard carbon at the current density of 100 mA g^{-1} S5 /S7

Fig. S12 Cycling performance and CE of HC//AC-NCO-30% under 1C at 4-0 V after presodiation

Fig. S13 Cycling performance of (a) $TiO_2//AC-Li_2C_2O_4-15\%$ and (b) $TiO_2//AC-K_2C_2O_4-15\%$ under 1C at 4-0 V after premetallation

Fig. S14 Observation of coin-type SIC before and after cycling

S6 /S7

Fig. S15 Surface images of TiO₂ anode before (a, b) and after (c, d) cycles

Sacrificial additives	Decomposition product	Theoretical capacity (mA h g ⁻¹)	Dosage (compared to active cathode)	Cost (CNY kg ⁻¹)	Purity
Na ₂ S	S	687	100%	50000	95%
Na ₂ C ₄ O ₄	CO ₂ /C	339	80%	Lab-synthesis	Lab- synthesis
Na ₂ C ₄ O ₄	CO ₂ /CO/C	339	58%/220%	Lab-synthesis	Lab- synthesis
Na ₂ C ₆ O ₆	C_6O_6	250	60%/100%/167%	4400	Analytical Reagent
NaNH ₂	NH2NH2/N2/H2	686	45%	328	95%
Na ₂ C ₂ O ₄ (our work)	CO ₂	400	15%/20%/30%	5	99.8%

Table S1 Properties of sacrificial cathode additives currently applied in sodium ion capacitors

Table S2 Summary of decomposition voltages of sacrificial cathode additives related to various amelioration methods

	NCO- SP	Na ₂ H ₂ C ₃ O ₄ - SP	NCO- graphene	NCO- graphite	NCO- carbon nanotube	NCO- 3D	NCO-S- 3D
Decomposition potential (V)	4.50	4.30	4.36	4.38	4.40	4.30	3.95

Abbreviations:

NCO: Na₂C₂O₄;

NCO-SP: $Na_2C_2O_4$ with super p;

3D: Three dimension conductivenetwork;

; NCO-S-3D: size-reduced $Na_2C_2O_4$ with 3D network.