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S1 Preparation of Large-scale BNNS/PVA Composite Aerogel 

The preparation of large-size products having horizontal pore alignment is challenging based 

on the ice-templating method due to the conventional bottom-up freezing set-up (Fig. 1b). To 

tackle the technological challenge, the position of the cold source was switched from the bottom 

to the side so as to prepare the aligned aerogels with horizontal channels (Fig. S13a). Compared 

to the bottom cold source, the drying time can be shortened when using the side cold source to 

fabricate the thin sample required for applications. It is worth mentioning that the pore 

alignment in the aerogel fabricated by the unidirectional freezing method with the side cold 

source could only be maintained below a limited distance, beyond which the pores tend to 

become randomly-oriented because of the increasing solidification front temperature. To 

maintain a consistent pore alignment across the whole structure, a novel block-by-block freeze-

casting technique was devised by moving the cold source (Fig. S13b). In this technique, a 

movable stainless-steel reservoir filled with liquid nitrogen was used as the cold source and put 

in a Teflon mold. The initial distance between the cold source and the other side of the Teflon 

mold was set at around 1.5 cm. The precursor dispersion was poured into the mold so that it 

became frozen driven by the temperature gradient between the cold reservoir and the side of 

the Teflon mold. Once freezing was completed, the cold source was moved in the direction 

opposite to freezing by 1.5 cm. A new batch of dispersion was poured into the mold and freeze-

cast to form a new block interconnected with the initial frozen one. After repeating the above 

freeze-casting procedure and freeze-drying, a large-size BNNS/PVA aerogel with a lateral 

dimension of 20×20 cm2 and a thickness of about 8.5 mm was obtained, as shown in Fig. S13c. 

Further optimization of this technique in terms of continuous production, seamless bonds 

between the adjacent blocks, and enhanced and more economical drying process, e.g., using an 

automatic moving cold source and ambient drying technique, is necessary to achieve desired 

optical and thermal properties of large-size aerogels. 
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S2 Supplementary Results 

 

 

Fig. S1 Schematic of the urea-assisted ball-milling method to fabricate few-layer BNNSs with 

an optical image showing a high yield 

 

 

Fig. S2 Morphology, chemical composition and dispersion of BNNSs. a AFM image with b 

corresponding height profile of BNNSs. c Raman and d FITR spectra of bulk BN and 

BNNSs. Optical images showing e the Tyndall effect and f excellent aqueous dispersions with 

different BNNS concentrations 
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Fig. S3 Optical images showing the dispersion of BNNSs in PVA solution with acetone 

 

 

Fig. S4 Thickness distribution of PVA aerogels made a without and b with acetone 

 

 

Fig. S5 SEM images of cellulose aerogels made a without and b with acetone 
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Fig. S6 Optical images showing the sizes of the resultant aerogels prepared with PVA 

solutions containing different acetone concentrations and/or BNNS loadings 

 

 
Fig. S7 a Shrinkage rate, density, and porosity of PVA aerogels with increasing acetone 

concentration. b Specific compressive moduli of aerogels in the axial and transverse 

directions 
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Fig. S8 a Axial thermal conductivity of the BNNS/PVA composite aerogels made with or 

without acetone. b Comparison of thermal conductivities with respect to densities of the current 

BNNS/PVA composite aerogel in the transverse direction and state-of-the-art composite 

aerogels or foams reported in the literature: anisotropic reduced graphene oxide 

(rGO)/polyimide (PI) aerogels [S1, S2], isotropic SiO2/PI aerogel [S3], anisotropic 

GO/sepiolite nanorod (SEP)/cellulose nanofiber (CNF) aerogel [S4], anisotropic metal–organic 

framework (MOF)/CNF aerogel [S5], anisotropic SiO2/Silk fibroin aerogel [S6], anisotropic 

SEP/Silk fibroin aerogel [S6], anisotropic MXene/Silk fibroin aerogel [S6], isotropic 

MoS2/CNF aerogel [S7], anisotropic zirconium phosphate (ZrP)/rGO/CNF aerogel [S8], 

anisotropic organosilica/CNF aerogel [S9], isotropic alolt/sodium silicate/CNF aerogel [S10], 

isotropic sepiolite clay/CNF aerogel [S11], anisotropic GO/phenol-formaldehyde wood [S12], 

anisotropic hydroxyapatite/chitosan aerogel [S13], isotropic attapulgite/gelatin aerogel [S14], 

anisotropic clay/cationic amylopectin aerogel [S15], anisotropic BNNS/CNF aerogel [S16], 

isotropic montmorillonite/cellulose aerogel [S17], isotropic silver nanowires 

(AgNWs)/Fe3O4/melamine-formaldehyde (MF) foam [S18], and isotropic layered double 

hydroxide (LDH)/GO/PI aerogel [S19] 

 

Fig. S9 Brunner−Emmet−Teller (BET) analysis based on a Quantachrome Instruments 

(NOVAtouch, USA) at 77 K, and nitrogen adsorption (unfilled circles) and desorption (filled 

circles) isotherms of the BNNS/PVA composite aerogel. The inset shows the pore size 

distribution larger than 2 nm obtained using the Barrett−Joyner−Halenda (BJH) method 

according to the desorption branch of the isotherm. The BJH analysis reveals mesopores with 

diameters ranging 3−20 nm while the total pore volume is about 0.21 cm3 g−1 
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Fig. S10 a Infrared image and b corresponding temperature profiles of the BNNS/PVA 

composite aerogel in the axial and transverse directions when placed on a hot stage at 108 °C 

for 12 min 

 

Fig. S11 a Photograph and b corresponding top-view infrared image of the BNNS/PVA 

composite aerogel and EPS foam when placed on a hot stage 

 

Fig. S12 Infrared images showing the infrared stealthy performance of a-b the BNNS/PVA 

composite aerogel on cold and hot targets compared to commercial EPS foam and c-d the 

double-layered BNNS/PVA composite aerogel 
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Fig. S13 a Schematic illustration of the preparation of aligned aerogels with horizontal channels 

through a unidirectional freezing method with the side cold source, b set-up of a novel block-

by-block freeze-casting technique, and c photographs of large-size BNNS/PVA composite 

aerogel with a thickness of about 8.5 mm 
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