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HIGHLIGHTS

• The study reveals the great potential of metal–organic framework (MOF)‑based nanocomposites in thermal insulation and fire retar‑
dancy applications.

• A nanoengineering approach was developed to process MOFs into freestanding, mechanically strong, and elastic aerogels, which may 
boost the fundamental research and practical applications of MOFs in these areas.

ABSTRACT Metal–organic frameworks (MOFs) with high microporos‑
ity and relatively high thermal stability are potential thermal insulation 
and flame‑retardant materials. However, the difficulties in processing and 
shaping MOFs have largely hampered their applications in these areas. 
This study outlines the fabrication of hybrid CNF@MOF aerogels by a 
stepwise assembly approach involving the coating and cross‑linking of 
cellulose nanofibers (CNFs) with continuous nanolayers of MOFs. The 
cross‑linking gives the aerogels high mechanical strength but superelas‑
ticity (80% maximum recoverable strain, high specific compression mod‑
ulus of ~ 200 MPa cm3 g−1, and specific stress of ~ 100 MPa cm3 g−1). 
The resultant lightweight aerogels have a cellular network structure and 
hierarchical porosity, which render the aerogels with relatively low ther‑
mal conductivity of ~ 40 mW m−1 K−1. The hydrophobic, thermally sta‑
ble MOF nanolayers wrapped around the CNFs result in good moisture 
resistance and fire retardancy. This study demonstrates that MOFs can 
be used as efficient thermal insulation and flame‑retardant materials. It 
presents a pathway for the design of thermally insulating, superelastic 
fire‑retardant nanocomposites based on MOFs and nanocellulose.
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1 Introduction

Metal–organic frameworks (MOFs) are an emerging class 
of porous materials linked by metal‑containing nodes 
and organic ligands via coordination bonds [1, 2]. Taking 
advantages of their high porosity and diverse structures, 
MOFs have been received extensive attention on gas stor‑
age and separation [3], air purification [4], energy storage 
[5], drug delivery [6], etc. Meanwhile, there remains great 
potential to extend their applications. For example, MOFs 
are theoretically promising thermal insulation materials 
because of their rich microporosity and hybrid structures 
[7, 8]. The abundant micropores could suppress gas move‑
ment and reduce the mean free path to a few nanometers 
(versus 75 nm in free space) [9], while the hybrid struc‑
tures could scatter phonons, thus reducing the thermal 
conductivity (λ) [10]. However, the thermal insulation 
applications of pure MOFs have rarely been exploited, 
probably because of the difficulty in shaping and process‑
ing of the brittle and insoluble MOF crystals [4, 11].

Apart from their low thermal conductivity, thermal 
insulation materials are required to be fire‑retardant, 
lightweight, and mechanically resilient or flexible from 
an application perspective [12–15]. Inorganic thermal 
insulation materials such as silica aerogels are usually 
mechanically brittle and difficult to prepare in larger 
sizes, making them challenging to use in, for example, 
building or packaging materials [16, 17]. In comparison, 
polymer‑based materials are often flexible and lightweight 
but suffer from the drawbacks of flammability and poor 
thermal stability [18]. Organic–inorganic hybridization, a 
general strategy for the design of functional hybrid mate‑
rials, provides a feasible design route for hybrid nano‑
composites with the potential to merge the advantages 
of the inorganic and organic components and eliminate 
their drawbacks [19–23]. For example, Zhao et al. [24] 
prepared a type of silica‑biopolymer aerogels exhibiting 
significantly improved mechanical properties compared 
to pure silica aerogels while remaining excellent ther‑
mal insulation properties; Kashiwagi et al. [25] reported 
reduced flammability for poly(methyl methacrylate) after 
introducing carbon nanotubes. However, the poor compat‑
ibility between the organic and inorganic components and 

their phase separation usually results in uneven disper‑
sion of the components in the composites, which could 
weaken their thermal insulation performance and simul‑
taneously affect their mechanical properties and lightness 
[26]. In addition, there remain challenges in the control of 
the nanostructures and morphology of the composites for 
optimizing their relevant properties and performances. In 
this context, we envisioned that nanofabrication of MOFs 
with appropriate polymer substrates in a controlled man‑
ner would offer a feasible approach to process MOFs into 
functional forms so as to develop the next generation of 
insulation materials with the integrated properties of good 
thermal insulation, efficient fire retardancy, low weight, 
and mechanical resilience.

Cellulose nanofibers (CNFs) have been recently used 
as building blocks to fabricate nanofibrous composites, 
which have demonstrated promising properties for vari‑
ous applications [27–33]. There are several advantages in 
developing CNF‑based composites as thermal insulation 
materials: (1) The naturally abundant and biodegradable 
CNFs offer a low‑cost, sustainable source of materials for 
manufacturing; (2) CNFs exhibit intrinsically low thermal 
conductivity; (3) the nanofibrous structure of CNFs results 
in large interfacial surface areas which act as phonon bar‑
riers with potential to hamper heat conduction; (4) CNFs 
containing organic functional groups on the surface are 
ideal substrates for modification or hybridization through 
surface nanoengineering, offering opportunities to over‑
come the longstanding problems of moisture sensitivity, 
flammability, and poor mechanical properties associated 
with CNF‑based materials. We have recently developed a 
range of hybrid nanocomposites based on CNFs for use 
in energy and environmental applications [12, 34–39]. In 
this study, we describe the interfacial synthesis and step‑
wise assembly approach for the design of a hybrid aero‑
gel based on CNFs and an aluminum‑based MOF (CNF@
Al‑MIL‑53; CAM). Individual CNFs are coated and fur‑
ther cross‑linked with continuously nucleated Al‑MIL‑53 
nanolayers. Because of their special nanostructure, the 
cross‑linked CAM aerogels performed well in thermal 
insulation and moisture resistance tests, as well as dem‑
onstrating superelasticity, high mechanical strength, and 
fire retardancy.
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2  Experimental

2.1  Materials

Cladophora cellulose powder was ordered from FMC 
Biopolymer, USA. Aluminum nitrite nonahydrate 
(Al(NO3)3·9H2O), terephthalic acid, sodium hydroxide 
(NaOH), and polyvinylpyrrolidone (Mw = 3.6 × 104 g mol−1) 
were purchased from Sigma‑Aldrich without further 
purification.

2.2  Preparation of CAM Aerogels

CNF@Al‑MIL‑53 nanofibers were prepared as previously 
reported, and the details have been provided in Support‑
ing Information [39]. The aqueous suspensions of these 
CNF@Al‑MIL‑53 nanofibers (in concentrations of 0.2, 
0.5, 1.0, and 2.0 mg mL−1) were sealed in homemade cop‑
per vessels after ultrasonic treatment in a water bath to 
remove air bubbles (Fig. S1). The vessels were immersed 
in liquid nitrogen for 60 min until thermal equilibrium, 
and the contents were then freeze‑dried for 48 h to obtain 
freestanding aerogels. The aerogels were then infiltrated in 
a solution of  Na2BDC (prepared by reacting terephthalic 
acid with double molar amounts of NaOH in water), and 
an Al(NO3)3·9H2O solution was added drop‑wise. The 
mixture was gently shaken for 10 h to allow extended 
growth of Al‑MIL‑53. The treated aerogels were washed 
with deionized water several times and then freeze‑dried 
to obtain the cross‑linked CAM aerogel.

2.3  Characterizations

Scanning electron microscopy (SEM) images were 
recorded in a FEG SEM instrument (Zeiss, Leo Gemini 
1530) at an accelerating voltage of 3 kV. Transmission 
electron microscopy (TEM) images were obtained in a 
TEM instrument (Tecnai, AT02) at an accelerating voltage 
of 200 kV. X‑ray diffraction (XRD) patterns were recorded 
in a Bruker Focus D8 diffractometer with a Cu‑Kα X‑ray 
radiation source (wavelength = 0.154 nm). Fourier‑trans‑
form infrared spectra were recorded on a Bruker Tensor 27 
spectrometer in attenuated total reflection mode.  N2 sorp‑
tion isotherms were recorded on a Micromeritics ASAP 

2020 surface area and pore size analyzer at 77 K. The 
samples were degassed at 100 °C under a kinetic vacuum 
(< 10−5 mmHg) for 10 h before the  N2 sorption measure‑
ment. Pore size distributions were calculated from the 
adsorption isotherms using the density functional theory 
model. Thermal conductivities were measured using a 
thermal conductivity testing instrument (Hot Disk 2500S) 
at room temperature under different humidities. An infra‑
red thermal imaging camera (FLIR, TG165) was used to 
record the infrared images and the temperature of the aero‑
gels during the high‑temperature thermal insulation test. 
Mechanical properties were measured at room temperature 
using a Shimadzu Instrument (AGS‑X). Heat release rate 
curves were collected by a cone calorimeter (FTT iCone 
Mini). Thermogravimetric analysis curves were recorded 
on a thermogravimetric analyzer (Mettler Toledo, TGA/
SDTA851e) under air or  N2 flow (60 mL min−1) between 
25 and 800 °C with a heating rate of 10 °C  min−1.

3  Results and Discussions

3.1  Synthesis and Structures of CAM Aerogels

Cladophora cellulose, a type of natural CNFs extracted from 
green algae, and Al‑MIL‑53, an aluminum‑based MOF, 
were used to fabricate CAM nanofibers and aerogels. The 
extensive mesoporosity and mechanical strength of Clad-
ophora cellulose were expected to result in aerogels with 
low thermal conductivity and good mechanical properties 
(e.g., superelasticity, high compressive modulus), respec‑
tively [34]. Similarly, the thermal stability and hydrophobic‑
ity of Al‑MIL‑53 were expected to give the aerogels good 
fire retardancy and moisture resistance, respectively [40–42]. 
In addition, the easy synthesis of Al‑MIL‑53 and the abun‑
dance of CNFs offer advantages for large‑scale preparation 
of the hybrid aerogels in a cost‑effective manner. Figure 1 
provides a schematic summary of the preparation of the 
CAM aerogel, including (1) interfacial synthesis of CAM 
hybrid nanofibers, (2) freeze‑drying of the CAM nanofibers 
into the freestanding aerogel, and (3) cross‑linking of the 
aerogel. The original Cladophora cellulose was oxidized 
with TEMPO (2, 2, 6, 6‑tetramethylpiperidin‑1‑yloxyl) to 
introduce carboxyls on the surface of the CNFs. Next, the 
carboxylated CNFs underwent ion exchange with  Al3+ to 
form the intermediate complex of CNF–COO−–Al3+. The 
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interfacial synthesis of Al‑MIL‑53 nanolayers on the CNFs 
to form the hybrid CAM nanofibers was induced by coordi‑
nation between the  Al3+ bonded onto the CNFs and the diso‑
dium terephthalate  (Na2BDC) linker in the presence of poly‑
vinylpyrrolidone as the surfactant and crystallization agent. 
Freeze‑drying the suspension of CAM nanofibers resulted 
in the corresponding aerogels (Fig. S1). The freestanding 
aerogel was then immersed into an aqueous solution of 
Al(NO3)3∙9H2O and  Na2BDC for the extended nucleation 
of Al‑MIL‑53 onto the CAM nanofibers [43–45]. Further 
freeze‑drying of the treated aerogel ultimately formed the 
target CAM aerogel. It was possible to finely control the 
density of the CAM aerogels (~ 0.2–3.0 mg cm−3) by adjust‑
ing the concentration of the suspension of CAM nanofibers 
(Fig. S2).

The composition of the CAM aerogel was analyzed using 
powder XRD (Figs. 2a and S3a). The diffraction peaks at 
2θ = 8.9°, 10.3°, 21.4°, and 26.9° corresponded to the 
(101), (200), (302), and (020) reflections, respectively, of 
Al‑MIL‑53, thus confirming the successful synthesis of Al‑
MIL‑53 [46]. The peaks at 2θ = 13.1°, 15.2°, 20.2° corre‑
sponded to the (100), (010), (110) reflections, respectively, 

of the CNFs [38, 39]. Figure 2b compares the Fourier‑trans‑
form infrared spectra of the carboxylated CNFs, Al‑MIL‑53, 
and the CAM aerogel. The IR band at 1615 cm−1 for the 
asymmetric stretching vibration of  COO− on the carboxy‑
lated CNFs [47] was shifted to 1570 cm−1 in the CAM aero‑
gel spectrum, indicating that the carboxyls on the surface of 
the carboxylated CNFs coordinated with the  Al3+ to grow 
the Al‑MIL‑53 nanolayers. Such shifts were also observed 
in other metal–carboxylate complexes upon binding to metal 
ions with higher oxidation states [48]. Likewise, X‑ray pho‑
toelectron spectroscopy (XPS) studies showed that the bind‑
ing energies of C 1s and O 1s in the CAM aerogel were 
both shifted positively by~ 0.4 eV compared to the values 
observed in pure CNF (Fig. S4), indicating the change of the 
coordination environment of  COO− in the CNF upon growth 
of Al‑MIL‑53 nanolayers. These observations strongly 
indicated that the Al‑MIL‑53 nanolayers were chemically 
grown on the CNFs, rather than being physically bound. 
The porosity of the CAM aerogel was analyzed by  N2 sorp‑
tion measurement (Figs. 2c and S3b). With formation of 
the microporous Al‑MIL‑53, the Brunauer–Emmett–Teller 
(BET) surface area of the CAM (227 m2 g−1) was much 

Ion
exchange

Interfacial
synthesis Freeze-drying Crosslinking

Al-MIL-53 nanolayers on CNFs

CNF@Al-MIL-53 aerogel

Green algae Extraction + Interfacial synthesis Assembly + Crosslinking
2 cm

Fig. 1  Schematic illustration of the preparation of CNF@Al‑MIL‑53 (CAM) aerogels through an interfacial synthesis and stepwise assembly 
approach. Cellulose nanofibers (CNFs) extracted from algae were coated and cross‑linked with continuous Al‑MIL‑53 nanolayers. The resulting 
freestanding CAM aerogel is ultralight and can stand on the tip of a feather (ρ = 0.2 mg cm−3)
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larger than that of the pure CNF aerogel (103 m2 g−1). Fur‑
thermore, pore size distribution analysis revealed the hierar‑
chical porous structure of the CAM aerogel, which contained 
micropores (~ 1.5 nm) and mesopores (~ 40 nm) originating 
from the structure of Al‑MIL‑53 and the inter‑fiber stack‑
ing, respectively. The mesopores observed in the CAM 
aerogel were larger than the mesopores in the pure CNF 
aerogel (~ 20 nm) because assembly of the CAM nanofibers 
with thicker diameter could form larger inter‑fiber voids. 
Importantly, the content of Al‑MIL‑53 in the aerogel was 
increased after the extended nucleation for cross‑linking, 

as confirmed by XRD,  N2 sorption, and thermogravimetric 
analysis (TGA) (Figs. S3 and S4c).

The morphology of the CAM nanofibers was analyzed 
by TEM and SEM. When the CNFs were coated with 
Al‑MIL‑53 nanolayers, the hybrid CAM nanofibers, as 
expected, were larger in diameter (~ 35 nm) than the pure 
CNFs (~ 20 nm) (Figs. 2d–f and S5a–b). Figure 2d shows 
the typical core–shell structure of a single CAM nanofiber: 
An Al‑MIL‑53 nanolayer is compactly wrapped around the 
CNF. The high‑resolution SEM image of the CAM nanofib‑
ers clearly shows their smooth surface, confirming the 
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continuous nucleation of Al‑MIL‑53 nanolayers onto the 
CNFs (Fig. 2f). Figures 2g–i show SEM images of the CAM 
aerogel at different magnifications. Interconnected cellular 
networks with a pore diameter of ~ 10 μm make up the skele‑
ton of the aerogel (Fig. 2g). This typical cellular architecture 
is developed during the phase separation of interconnected 
CAM nanofibers and water in the freeze‑drying process [49]. 
SEM images taken from different directions show similar 
cellular networks, suggesting the isotropic structure of the 
aerogel (Fig. S6). The walls of the network are constructed 
by entangling and weaving of the CAM nanofibers (Fig. 2h). 
The high‑resolution SEM image (Fig. 2i) shows the welded 
joints between the nanofibers, which indicate the formation 
of a cross‑linked structure in the aerogel. In contrast, this 
welded nanostructure was not observed in the CAM aerogel 

before cross‑linking and nor was it seen in the pure CNF 
aerogel (Fig. S7).

3.2  Thermal Insulation and Moisture Resistance 
Applications

Given the high porosity and the nanofibrous structure of 
the CAM aerogel, we expected that it would have relatively 
low thermal conductivity. Figure 3a compares the thermal 
conductivity of the pure CNF aerogel, the pure Al‑MIL‑53 
pellet, and the CAM aerogel, measured at 5% relative 
humidity (RH) and 298 K. As expected, the CNF aerogel 
with a density of 4.5 mg cm−3 had low thermal conductiv‑
ity (43 mW m−1 K−1), comparable to values for previously 
reported cellulose and other polymer‑based aerogels [16]. 
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Al‑MIL‑53 powder samples were pressed into pellets with 
a density of 1.33 g cm−3 for thermal conductivity measure‑
ments (Fig. S8). Previous studies suggested that the abun‑
dant micropores and the hybrid structures in MOFs could 
reflect and scatter phonons, thus reducing the lattice ther‑
mal conductivity [10]. The thermal conductivity of the Al‑
MIL‑53 pellets was 485 mW m−1 K−1, which is much lower 
than the values for bulk inorganic crystalline materials, but 
higher than those for polymer‑based thermal insulators [50, 
51]. Remarkably, growing Al‑MIL‑53 nanolayers on CNFs 
to form the CAM aerogel (density ≈ 2.6 mg cm−3; mass frac‑
tion of Al‑MIL‑53 ≈ 30 wt%) did not increase the thermal 
conductivity. Instead, the thermal conductivity of the CAM 
aerogel remained low at 41 mW m−1 K−1, which is slightly 
lower than that of the pure CNF aerogel and significantly 
lower than that of bulk Al‑MIL‑53.

In general, conduction, radiation, and convection contrib‑
ute to the thermal conductivity of an aerogel, with the latter 
two being negligible for isotropic porous materials at room 
temperature [12, 26, 31, 52, 53]. Hence, conduction, includ‑
ing gas conduction and solid conduction, is the main con‑
tributor to the overall thermal conductivity. The gas conduc‑
tivity λgas of the aerogel can be estimated from Eq. 1 [52]:

where �g0 is the thermal conductivity of air (~ 25 mW  m−1 
 K−1), Π is the porosity, β ≈ 2 for air in aerogels, lm is the 
mean free path of air in specific pores, and δ is the aver‑
age diameter of the pores. The abundant micropores and 
mesopores in the walls of the CAM aerogel suppress gas 
movement and reduce the mean free path to a few nanom‑
eters (versus 75 nm in free space), thus significantly reduc‑
ing the gas conductivity within the wall. Meanwhile, the 
low density of the aerogel results in high porosity (> 99%), 
which diminishes the contribution of the solid conductivity 
λsolid to the overall thermal conductivity. In addition, the 
nanofibrous structure and the interfaces between the CNFs 
and the Al‑MIL‑53 nanolayers in the CAM aerogel may 
cause phonon scattering and increase interfacial thermal 
resistance, which could further reduce the solid conductivity. 
Therefore, the low thermal conductivity of the CAM aerogel 
can be attributed to its low density, cellular networks, rich 
micro‑mesoporosity, and hybrid nanofibrous structures.

It is well known that the thermal conductivity of cellu‑
lose‑based aerogels is highly dependent on the moisture 
content because of their hygroscopicity, which is one of 

(1)�gas =
�g0�

1 +
2�lm

�

the drawbacks for their practical application [54]. Fig‑
ure 3b shows that the thermal conductivity of the pure 
CNF aerogel significantly increased from 44 at 5% RH to 
~ 76 mW m−1 K−1 (72% increase) at 80% RH. In contrast, 
the thermal conductivity of the CAM aerogel only increased 
from 41 at 5% RH to 55 mW m−1 K−1 (34% increase) at 80% 
RH, which indicates a significantly lower moisture sensitiv‑
ity than that of the pure CNF aerogel and of many other 
CNF‑based aerogels [12, 29, 34, 54]. The improved moisture 
resistance of the CAM aerogel may be associated with the 
distinct core–shell structure of the hybrid nanofibers, with 
the hydrophobic Al‑MIL‑53 nanolayers blocking moisture 
transportation and reducing moisture uptake by the hydro‑
philic CNFs at high RH (Figs. S9 and S10).

Furthermore, we developed a proof‑of‑concept method 
showing the thermal insulation performance of the CAM 
aerogel at high temperatures. As shown in Fig. 3c, a 1‑cm‑
thick section of the CAM aerogel was placed on a 300 °C 
heating stage. The dynamic temperature variation on the top 
surface of the aerogel during heating was monitored by an 
infrared thermometer. An Al‑MIL‑53 pellet and a pure CNF 
aerogel of the same thickness were similarly tested for com‑
parison. Because of the relatively high thermal conductivity 
of Al‑MIL‑53, the temperature on the top surface of the pel‑
let increased rapidly to over 200 °C within 20 min. Although 
the pure CNF aerogel has low thermal conductivity, it dis‑
played similarly poor thermal insulation performance as the 
temperature on the top surface reached 200 °C after 50 min. 
Remarkably, the temperature on the top surface of the CAM 
aerogel only slightly increased to 50 °C after 30 min and that 
temperature remained nearly constant after 60 min. After 
remaining on the heating stage for 100 min, a distinct tem‑
perature gradient in a vertical direction through the CAM 
aerogel was observed from the infrared image (Fig. 3d). 
Compared to the high temperature of ~ 300 °C for the bot‑
tom of the aerogel, the top had a relatively low temperature 
of 58.2 °C. In contrast, the temperature distributions in both 
the Al‑MIL‑53 pellet and the pure CNF aerogel were very 
homogeneous: The temperature at the top surface finally 
reached 207.1 and 213.6 °C, respectively. In addition, the 
bottom of the pure CNF aerogel sample, touching the heat‑
ing stage, was black after the heat conduction experiment, 
indicating that the CNF aerogel was partially carbonized 
(Fig. S11). In comparison, no carbonization was observed 
for the CAM aerogel. Therefore, the superior thermal insula‑
tion performance of the CAM aerogel at high temperatures 
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might also be attributed to its better thermal stability than 
pure CNFs (Fig. S5c).

3.3  Mechanical Properties of the CAM Aerogel

The mechanical properties of the CAM aerogel were 
assessed using standard compression tests. Unlike the aero‑
gel before cross‑linking and the pure CNF aerogel, which 
were not elastic (Fig. S12), the CAM aerogel with its cross‑
linked nanostructure had superelastic properties: It recovered 
its original shape rapidly after releasing the stress (σ; Video 
S1). The compressive stress–strain curves consistently dem‑
onstrated that the recoverable compressive strain (ε) could 
reach 80% (Fig. 4a). The strain gradually decreased to zero 
during the release of the stress, and the hysteresis loop area 

was relatively small (Figs. 4a and S13b–d). In addition, the 
stress–strain loops were almost identical when the compres‑
sion rate was increased from 20 to 800 mm min−1. The fast 
recovery rate of the CAM aerogel indicates its suitability 
for application in stress sensors, shape‑memory materials, 
etc (Fig. S13).

The stress–strain curves of the CAM aerogel showed 
three distinct deformation stages, which is a characteristic 
of aerogels with open cellular networks [55–58]: (1) The 
stress increased linearly at low strains (ε < 10%), suggesting 
the elastic deformation of the aerogel caused by cell walls 
bending; (2) a stress plateau was observed at 10% < ε < 60%, 
reflecting the deformation of the cellular macropores; and 
(3) the stress increased steeply in the densification region 
for ε > 60%, resulting from close contact with and further 
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compression of the cell walls. The mechanical strength of 
the CAM aerogel was significantly improved over that of 
the pure CNF aerogel. The compressive modulus, yield 
strength, and ultimate stress of the CAM aerogel were 430, 
22, and 180 kPa, respectively; these are much higher than 
the corresponding values for the pure CNF aerogel and com‑
parable with those of carbon, ceramic, and polymer aerogels 
(Table S1). More significantly, given the low density of the 
CAM aerogel, the specific modulus (E/ρ) and ultimate stress 
(σ/ρ) reached ~ 200 MPa cm3  g−1 and ~ 100 MPa cm3 g−1, 
respectively; these are significantly higher than the corre‑
sponding values of previously reported CNF‑based aerogels 
[14, 27, 30] and even of some inorganic aerogels based on 
boron nitride nanosheets, carbon nanofibers, SiC nanofib‑
ers, and  SiO2 nanofibers (Fig. 4b) [59–62]. Another impor‑
tant finding was that the relative compressive modulus (E/
Es) displayed a roughly linear dependence on the relative 
density (ρ/ρs) for the CAM aerogels (E/Es~(ρ/ρs)α, α ≈ 1) 
(Fig. S14), which implies that the aerogels can effectively 
spread and equilibrate the external stress through the overall 
framework, thanks to their homogeneous and cross‑linked 
network structures [27]. In contrast, the dependence of the 
modulus on the density of the pure CNF aerogels and tradi‑
tional inorganic aerogels meant that the values for α in the 
equation E/Es~(ρ/ρs)α were higher (α ≈ 2 and 3, respectively) 
[63]. Obviously, the high specific modulus and the cross‑
linked network structure of the CAM aerogels are of great 
importance for their use as high performance, lightweight 
structural materials with mechanical strength and stability.

The compression stability of the CAM aerogel was evalu‑
ated in cyclic compression tests under high levels of strain 
(60%) and a loading rate of 100 mm min−1 (Fig. 4c). The 
stress–strain loops almost overlapped during the 100 cycles 
tested. Of note, the aerogel shrank only 8.3% in volume 
(plastic deformation) and retained over 70% of the origi‑
nal modulus after 800 loading–unloading cycles, indicating 
its high mechanical stability. Moreover, we compared the 
SEM images of the aerogel before and after 800 cycles of 
compression (Fig. 4d). Surprisingly, the cellular networks 
and cross‑linked nanostructure were almost unchanged 
after compression, indicating the high structural stability 
of the aerogel. The superelasticity and the high mechanical 
strength of the CAM aerogel can thus be explained by the 
stable cellular network and the highly cross‑linked nano‑
structure effectively preventing collapse of the walls during 
compressive deformation.

3.4  Fire Retardancy Applications

The use of organic thermal insulators has been limited by 
their flammability. As expected, the pure CNF aerogel can 
be easily ignited and burned within 3 s in the flame of an 
alcohol lamp (~ 500 °C) (Fig. 5a). Although the pure Al‑
MIL‑53 pellet was nonflammable, the blended CNF‑Al‑
MIL‑53 aerogel composed of CNFs and Al‑MIL‑53 nano‑
particles shrank rapidly upon exposure to the flame before 
transforming to black ash (Fig. S15). This can be explained 
by the dispersed Al‑MIL‑53 nanoparticles not forming 
interconnected networks with the CNFs and thus not pro‑
tecting them. In obvious contrast to the highly flammable 
CNF and CNF‑Al‑MIL‑53 aerogels, the CAM aerogel did 
not ignite and the flame did not self‑propagate (Figs. 5c and 
S16, Video S2). There was only slight volume contraction 
after exposing the aerogel to the flame of the alcohol lamp 
for 30 s. More significantly, the CAM aerogel displayed 
excellent fire retardancy and remained intact even under the 
flame of a butane blowtorch (~ 1300 °C), while the pure 
CNF aerogel quickly burned, leaving no residue (Fig. 5b, 
d, and Video S3). In addition, the fire‑retardant properties 
of the aerogels were quantitatively evaluated in a cone calo‑
rimetry study. The heat release rate (HRR) curves are pre‑
sented in Figs. 5e and S14b. Consistent with the results of 
the combustion experiments, the flammable pure CNF and 
CNF‑Al‑MIL‑53 aerogels released substantial heat over a 
short period (~ 10 s) with peak HRR (pkHRR) values of 
~ 60 and 52 kW m−2, respectively. In contrast, the combus‑
tion behavior of the CAM aerogel was significantly differ‑
ent, with a much lower pkHRR value of ~ 19 kW m−2 at a 
delayed peak time of 65 s.

To better understand the good fire retardancy of the CAM 
aerogel, we studied its thermal stability in air using TGA 
(Fig. 5f). Compared to the decomposition temperatures (Td) 
of the pure CNF aerogel at ~ 275 °C, the first Td observed in 
the CAM aerogel arising from the thermal degradation of 
CNFs was significantly increased to ~ 375 °C. This result 
evidences the thermal protective effect of the Al‑MIL‑53 
nanolayers on the CNFs. The second Td at ~ 640 °C indi‑
cates the thermal decomposition of Al‑MIL‑53 to form alu‑
minum oxide, as confirmed by the XRD studies (Fig. S17). 
The microstructure of the CAM aerogel after combustion 
(under the flame of a butane blowtorch for 30 s) was ana‑
lyzed by SEM. It was apparent that the aerogel maintained 
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the cellular network and cross‑linked nanofibrous structures 
(Figs. 5g and S17). In contrast, no nanofibrous structure was 
observed in the residues of the CNF‑Al‑MIL‑53 aerogel 
(Fig. S15), confirming that the CNFs were totally burned. 
These findings strongly support the notion that the special 
core–shell structure of the CAM nanofibers plays a key role 
in the fire retardancy of the aerogel. It is suggested that 
the Al‑MIL‑53 nanolayers and the thermally decomposed 
aluminum oxide efficiently protected the wrapped CNFs 
from ignition upon exposure to flames (Fig. S17) [64–66]. 
In addition, the stable cellular network structures and the 
abundant hierarchical pores in the thermally insulating 
CAM aerogel could serve as intrinsic barriers to prevent 
heat transfer from the flame to the interior, which could also 
explain the good fire retardancy of the aerogel.

4  Conclusions

In summary, we have designed a novel hybrid CAM aero‑
gel using a stepwise assembly approach involving the coat‑
ing and cross‑linking of CNFs with MOF nanolayers. First, 
Al‑MIL‑53 nanolayers were synthesized on the surface of 
CNFs to form integrated nanofibers with a distinct core–shell 
nanostructure. Next, extended growth of Al‑MIL‑53 on the 
hybrid nanofibers formed freestanding cross‑linked, nanofi‑
brous CAM aerogels. Because of their high porosity, cellular 
networks, and nanofibrous structure, the obtained aerogels 
demonstrated relatively low thermal conductivity (~ 40 mW 
 m−1  K−1), suggesting the potential for high‑temperature insu‑
lation applications. The hydrophobic, thermally stable Al‑
MIL‑53 nanolayers coated on the CNFs provided not only 
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high moisture resistance but also good fire retardancy (under 
a butane blowtorch at ~ 1300 °C) for the CAM aerogels, pav‑
ing the way for a solution to the longstanding challenges 
of moisture sensitivity and flammability faced by various 
biopolymer aerogels. Moreover, the CAM aerogels with their 
cross‑linked structures showed superelasticity (80%) and 
high specific mechanical strength (E/ρ: ~ 200 MPa cm3 g−1; 
σ/ρ: ~ 100 MPa cm3 g−1). This study opens up unprecedented 
possibilities for developing MOF‑based nanocomposites 
for thermal insulation and fire retardancy applications. The 
newly developed aerogels based on MOFs and sustainable 
celluloses (and perhaps other biopolymers) may find applica‑
tion in energy‑efficient buildings, structural materials, pack‑
aging and storage of food, and pharmaceuticals.
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