Supporting Information for

High-Performance Blue Quasi-2D Perovskite Light-Emitting Diodes *via* Balanced Carrier Confinement and Transfer

Zhenwei Ren^{1, 3}, Jiayun Sun¹, Jiahao Yu², Xiangtian Xiao¹, Zhaojin Wang², Ruijia Zhang¹, Kai Wang², *, Rui Chen², *, Yu Chen³, Wallace C. H. Choy^{1, 4, *}

¹Department of Electrical and Electronic Engineering, The University of Hong Kong

Pokfulam Road, Hong Kong, P. R. China

²Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China

³School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, P. R. China

⁴Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen 518055, P. R. China

*Corresponding authors. E-mail: <u>wangk@sustc.edu.cn</u> (Kai Wang), <u>chenr@sustech.edu.cn</u> (Rui Chen), <u>chchoy@eee.hku.hk</u> (Wallace C. H. Choy)

Supplementary Figures and Tables

Fig. S1 (a) XPS spectra of Pb 4f signals at the depth of 30 nm in pristine and TEPO, TBPO, and TOPO incorporated perovskite films. (b) The atomic ratio of phosphorus atom for the perovskite films at different etching depths. The distributions of phosphorus atom at different etching depth show that the atomic ratios of phosphorus atom decrease 7.7%, 9.8%, and 13.7% at the etching depth of 40 nm for pristine/TEPO, pristine/TBPO, and pristine/TOPO perovskite films, respectively. The larger decrease of phosphorus atomic ratio for pristine/TBPO and pristine/TOPO perovskite films than that of pristine/TEPO indicates that the larger molecule size of TBPO and TOPO than that of TEPO can deteriorate the permeation of TBPO and TOPO to a certain degree

Nano-Micro Letters

Table S1 The fitted parameters of TRPL decay curves based on pristine and phosphine oxides incorporated perovskite films with a biexponential function of I (t) = $A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$

perovskites	A_1	τ_1 (ns)	A_2	τ_2 (ns)	$\tau_{average}$ (ns)
pristine	32448.21	3.53	1235.23	12.81	4.66
pristine/TEPO	29890.28	3.82	1167.31	14.56	5.21
pristine/TBPO	27247.78	4.35	738.75	19.82	6.05
pristine/TOPO	24754.36	4.37	1230.12	22.08	7.92

Table S2 The fitting parameters extracted from a multi-exponential function: $\Delta A(t) = a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2) + a_3 \exp(-t/\tau_3) - c_1 \exp(-t/\tau_{et})$, where a_1, a_2, a_3 , and c_1 are amplitudes; τ_1 is the fast decay time constant ascribed to the energy transfer process in the perovskite; τ_2 and τ_3 represent the slow decay constant, and τ_{et} is the formation time constant

Perovskites		$\tau_1/ps(a_1)$	τ_2/ps (a ₂)	$\tau_{3}/ps(a_{3})$	$\tau_{et}/ps~(c_1)$
pristine/TBPO	<i>n</i> =3 <i>n</i> ≥4	1.69 (2.69) 0.87 (6.87)	97.59 (0.21) 5.42 (0.77)	625.12 (0.64)	0.37 (71.25) 1.58 (22.77)
pristine/TOPO	<i>n</i> =3 <i>n</i> ≥4	3.90 (0.95) 8.53 (0.52)	76.74 (0.43) 61.55 (0.32)	- 2851.31 (0.38)	0.47 (71.86) 2.61 (38.58)

perovskite

Fig. S2 Schematic illustration of the dielectric screening effects of organic molecules with small and large dielectric constant

Fig. S3 Cross-sectional scanning electron microscopy (SEM) image of the device with a structure of ITO/PVK/perovskite/Al, in which the thicknesses of ITO, PVK, perovskite, and Al are around 103 nm, 20 nm, 40 nm, and 101 nm

Fig. S4 Capacitance-frequency (*C*-*f*) measurements of TEPO, TBPO, and TOPO incorporated films without perovskite (CsBr, PbBr₂) components

Fig. S5 The SEM images of (a) pristine, (b) pristine/TBPO, and (c) pristine/TOPO perovskite films

Fig. S6 The curves of (**a**) EQE–luminance (*EQE–L*) and (**b**) current efficiency–current for pristine, pristine/TBPO, and pristine/TOPO PeLEDs

Fig. S7 Statistical graph of pristine, pristine/TBPO, and pristine/TOPO PeLEDs obtained from15 devices for each condition

Fig. S8 (a) The electroluminescence (EL) spectra and (b) the current density–voltageluminance (J-V-L) curves for pristine and pristine/TBPO green PeLEDs. The green PeLEDs were fabricated by spin-coating the perovskite precursor (CsBr: PbBr₂: PEABr = 1:1:0.4) on PVK substrate with similar method to that of blue PeLEDs in the manuscript

Fig. S9 The performances of pristine/TBPO PeLEDs with incorporation of different TBPO concentrations: (a) current density–voltage (J-V), (b) luminance–voltage (L-V), and (c) efficiency–current density (*EQE–J*) curves

Fig. S10 The performances of pristine/TOPO PeLEDs with incorporation of different TOPO concentrations: (a) current density–voltage (J-V), (b) luminance–voltage (L-V), and (c) efficiency–current density (*EQE–J*) curves

Nano-Micro Letters

Fig. S11 Histograms of 15 devices for pristine/TEPO PeLEDs with the maximum efficiency of 8.9% and an average efficiency of 7.9%

Fig. S12 EL spectra of (a) pristine and (b) pristine/TOPO PeLEDs at different bias voltages

Fig. S13 CIE coordinates of pristine/TBPO PeLEDs with increase of the bias voltage from 3.5 to 6.0 V (the enlarged area is shown in the inset)

Nano-Micro Letters

Table S3 CIE coordinates of pristine/TBPO PeLEDs during the stability test

Fig. S14 The time-dependent stability lifetime measurements under 1.2 mA cm⁻² of pristine, pristine/TBPO, and pristine/TOPO PeLEDs with the initial luminance of 83, 102, and 90 cd m⁻²