Supporting Information for

# Surface Treatment of Inorganic CsPbI<sub>3</sub> Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light Emitting Diodes with High Brightness

Minh Tam Hoang<sup>1, 2, ‡</sup>, Amandeep Singh Pannu<sup>1, 2 ‡</sup>, Yang Yang<sup>1, 2</sup>, Sepideh Madani<sup>1, 2</sup>, Paul Shaw<sup>4</sup>, Prashant Sonar<sup>1, 2</sup>, Tuquabo Tesfamichael<sup>2, 3</sup> and Hongxia Wang<sup>1, 2, \*</sup>

<sup>1</sup> School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia

<sup>2</sup> Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia

<sup>3</sup> School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia

<sup>4</sup> Centre for Organic Photonics & Electronics (COPE), School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia

<sup>‡</sup>Minh Tam Hoang and Amandeep Singh Pannu contributed equally to this work.

\*Corresponding author. E-mail: <u>hx.wang@qut.edu.au</u> (Hongxia Wang)

## **Supplementary Figures and Tables**







Fig. S2 The picture of solution of  $CsPbI_3$  NCs in hexane before and after guanidinium iodide treatment. The solution is emitting red light under UV-365nm excitation



Fig. S3 The evolution of PL emission of  $CsPbI_3$  solution with different volume of GuI solution added in the post treatment step



**Fig. S4** The energy dispersive X-ray (EDX) elemental mapping of CsPbI<sub>3</sub> NCs showing clear distribution of Cs, Pb and I elements



**Fig. S5** The SEM images showing the morphology of (**a**)  $CsPbI_3 NCs$  film, (**b**) solution-phase GuI treated  $CsPbI_3$  film and (**c**)  $CsPbI_3 NCs$  film after solid-state ligand exchange treatment with GuI solution (0.5 mg/ml in ethyl acetate)



**Fig. S6** High resolution XPS of showing Cs 3d, Pb 4f and I 3d signal of pristine CsPbI<sub>3</sub> NCs in comparison with GuI treated CsPbI<sub>3</sub> NCs



Fig. S7 TGA measurement showing the thermal decomposition of the pristine and GuI treated  $CsPBI_3 NCs$ 



**Fig. S8 (a-b)** UPS measurement of pristine and treated CsPbI<sub>3</sub> NCs, the graph showing the valance band maximum energy and the cut off energy. The black line is the fitting line.; (c) Illustration of energy band alignment of the pristine and treated CsPbI<sub>3</sub> NCs in between of PEDOT:PSS and TPBi



**Fig. S9** The Commission Internationale de l'Eclairage (CIE) color coordinates of the GuI treated CsPbI3 NCs LEDs



**Fig. S10** The EL spectra of LED fabricated from GuI treated CsPbI<sub>3</sub> NCs operating at different driving voltages



**Fig. S11** Histogram of maximum brightness of multiple devices made from pristine (left) and treated (right) CsPbI<sub>3</sub> NCs

| $\boldsymbol{Q}_{\boldsymbol{X}} = \boldsymbol{Q}_{\boldsymbol{R}} \frac{\boldsymbol{I}_{\boldsymbol{X}}}{\boldsymbol{I}_{\boldsymbol{R}}} \frac{\boldsymbol{A}_{\boldsymbol{R}}}{\boldsymbol{A}_{\boldsymbol{X}}} \frac{n_{\boldsymbol{X}}^2}{n_{\boldsymbol{R}}^2}$ | Absorbance<br>(at 350 nm) | Integrated PL<br>intensity | FWHM<br>(nm) | PLQY (%) |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|--------------|----------|--|--|--|
| Rhodamine 6G                                                                                                                                                                                                                                                          | 0.098                     | 27787.82                   | 34.49        | 95.0     |  |  |  |
| CsPbI <sub>3</sub>                                                                                                                                                                                                                                                    | 0.101                     | 21572.05                   | 34.96        | 73.0     |  |  |  |
| Purified CsPbI <sub>3</sub><br>(Pristine)                                                                                                                                                                                                                             | 0.099                     | 17143.74                   | 34.25        | 59.2     |  |  |  |
| Purified CsPbI <sub>3</sub> /GuI<br>(Treated)                                                                                                                                                                                                                         | 0.104                     | 24829.65                   | 36.31        | 81.6     |  |  |  |

**Table S1** Relative PLQY detail calculation using Rhodamine 6G as reference dye [S1, S2]

| Table 52 Thied TK-TE data of pristile est of thes and our reaced est of thes |                        |           |                        |           |                        |           |                          |
|------------------------------------------------------------------------------|------------------------|-----------|------------------------|-----------|------------------------|-----------|--------------------------|
| Sample                                                                       | τ <sub>1</sub><br>(ns) | A1<br>(%) | τ <sub>2</sub><br>(ns) | A2<br>(%) | τ <sub>3</sub><br>(ns) | A3<br>(%) | τ <sub>ave</sub><br>(ns) |
| Pristine                                                                     | 3.3                    | 13.7      | 19.8                   | 42.4      | 76.8                   | 43.9      | 64.7                     |
| Treated                                                                      | 25.4                   | 47.7      | 85.4                   | 52.3      | 0                      | 0         | 72.6                     |

|--|

**Table S3** The table summarized the reported performance of red perovskite LED using different surface treatment method in comparison with our work

| Perovskite<br>materials                                                                                                                                  | Device<br>structure                                              | EL peak<br>(nm) | EQE<br>(%) | Maximum<br>brightness<br>(cd m <sup>-2</sup> ) | Stability                                                                                          | Year, Refs. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------|
| CsPb(Br/I) <sub>3</sub> post<br>treated with<br>polyethylenimine                                                                                         | ITO/ZnO/ PEI/<br>PSK/ CBP/<br>TCTA/ MoO <sub>3</sub> /<br>Au     | 648             | 6.3        | 2450                                           | NA                                                                                                 | 2016[S3]    |
| CsPbI <sub>3-x</sub> Br <sub>x</sub> NCs<br>with KBr<br>passivation                                                                                      | ITO/<br>PEDOT:PSS/<br>Poly-TPD/<br>PSK/ TPBi/<br>LiF/ Al.        | 637             | 3.55       | 2671                                           | $T_{50} = 50 \text{ min}$<br>at 5.0 V<br>constant<br>voltage.                                      | 2020[S4]    |
| CsPbI <sub>3</sub> NCs with<br>benzyl iodide<br>surface treatment                                                                                        | ITO/<br>PEDOT:PSS/<br>Poly-TPD/<br>PSK/ TPBi/<br>LiF/ Al.        | 625             | 12.9       | 3382                                           | NA                                                                                                 | 2020[85]    |
| CsPbI <sub>3</sub> NCs with<br>Zirconium<br>Acetylacetonate<br>surface<br>modification                                                                   | Si/Ag/ZnO/<br>PEI/ PSK/<br>TCTA/ MoO <sub>3</sub> /<br>Au        | 686             | 13.7       | 14725                                          | NA                                                                                                 | 2020[S6]    |
| CsPbI <sub>3</sub> NCs with 1-<br>hydroxy-3-<br>phenylpropan-2-<br>aminium iodide<br>(HPAI) and<br>tributylsulfonium<br>iodide (TBSI) post<br>treatment. | ITO/<br>PEDOT:PSS/<br>PTAA/PSK/<br>PO-T2T/ LiF/<br>Al            | 630             | 6.4        | 1212                                           | $T_{50} = 78 \text{ min}$<br>at current<br>density of 1<br>mA cm <sup>-2</sup>                     | 2021[S7]    |
| MAPb $(I_{1-x}Br_x)_3$<br>NCs treated with<br>multidentate<br>ligands                                                                                    | ITO/<br>PEDOT:PSS/<br>Poly-TPD/<br>TFB/ PSK/<br>TPBi/ LiF/ Al.   | 620             | 20.3       | 627                                            | $T_{50} = 340,$<br>130, 16 min<br>at current<br>density of<br>0.1, 1 and 10<br>mA cm <sup>-2</sup> | 2021[S8]    |
| CsPbI <sub>3</sub> NCs<br>incorporated with<br>poly(maleic<br>anhydride-alt-1-<br>octadecene) (PMA)                                                      | ITO/<br>PEDOT:PSS +<br>PFI/ Poly-<br>TPD/ PSK/<br>TPBi/ LiF/ Al. | 690             | 17.8       | 618                                            | $T_{50} = 317$<br>hours at<br>current<br>density of 30<br>mA cm <sup>-2</sup>                      | 2021[S9]    |

| CsPbI <sub>3</sub> NCs<br>passivated with<br>naphthylmethyl-<br>ammonium iodide<br>and incorporated<br>with CH <sub>3</sub> CH <sub>2</sub> NH <sub>3</sub> I | ITO/ZnO/ PEI/<br>PSK/ TCTA/<br>MoO <sub>3</sub> / Au             | 694 | 17.5 | 403   | NA                                                                                 | 2021[S10]                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----|------|-------|------------------------------------------------------------------------------------|------------------------------------------------------|
| CsPbI <sub>3-x</sub> Br <sub>x</sub> NCs<br>with Tetraoctyl-<br>ammonium<br>Bromide post<br>treatment                                                         | ITO/<br>PEDOT:PSS<br>VB-FNPD/<br>PSK/ TPBi/<br>LiF/ Al.          | 667 | 11.7 | 1345  | NA                                                                                 | 2021 (DOI:<br>10.1016/<br>j.jallcom.2021.<br>163182) |
| CsPbI <sub>3</sub> NCs with<br>Zn, Mn doping and<br>KI surface<br>treatment                                                                                   | ITO/<br>PEDOT:PSS +<br>PFI/ Poly-<br>TPD/ PSK/<br>TPBi/ LiF/ Al. | 640 | 23   | ~1500 | half-lifetime<br>of 10 h<br>(luminance<br>of 200<br>cd $m^{-2}$ )                  | 2021[S11]                                            |
| CsPbI <sub>3</sub> NCs with<br>GuI surface<br>treatment.                                                                                                      | ITO/<br>PEDOT:PSS<br>PSK/ TPBi/<br>LiF/ Ag.                      | 695 | 13.8 | 7039  | $T_{50} \sim 20 \text{ min}$<br>at current<br>density of 25<br>mA cm <sup>-2</sup> | This work                                            |

## **Supplementary References**

- [S1] D. Magde, R. Wong, P.G. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75(4), 327-334 (2002). <u>https://doi.org/10.1562/0031-8655(2002)0750327FQYATR2.0.CO2</u>
- [S2] G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Rev. J. Phys. Chem. 75(8), 991-1024 (1971). <u>https://doi.org/10.1021/j100678a001</u>
- [S3] X. Zhang, C. Sun, Y. Zhang, H. Wu, C. Ji et al., Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 7(22), 4602-4610 (2016). <u>https://doi.org/10.1021/acs.jpclett.6b02073</u>
- [S4] J.N. Yang, Y. Song, J.S. Yao, K.H. Wang, J.J. Wang et al., Potassium bromide surface passivation on CsPbI<sub>3-x</sub>Br<sub>x</sub> nanocrystals for efficient and stable pure red perovskite light emitting diodes. J. Am. Chem. Soc. 142(6), 2956-2967 (2020). <u>https://doi.org/10.1021/jacs.9b11719</u>
- [S5] H. Wang, Y. Dou, P. Shen, L. Kong, H. Yuan et al., Molecule-induced p-doping in perovskite nanocrystals enables efficient color-saturated red light-emitting diodes. Small 16(20), 2001062 (2020). <u>https://doi.org/10.1002/sml1.202001062</u>
- [S6] M. Lu, J. Guo, S. Sun, P. Lu, J. Wu et al., Bright CsPbI<sub>3</sub> perovskite quantum dot lightemitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 20(4), 2829-2836 (2020). <u>https://doi.org/10.1021/acs.nanolett.0c00545</u>
- [S7] Y.F. Lan, J.S. Yao, J.N. Yang, Y.H. Song, X.C. Ru et al., Spectrally stable and efficient pure red CsPbI<sub>3</sub> quantum dot light-emitting diodes enabled by sequential ligand posttreatment strategy. Nano Lett. 21(20), 8756-8763 (2021). https://doi.org/10.1021/acs.nanolett.1c03011

- [S8] Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala J.C. Sadighian, et al., Ligandengineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72-77 (2021). <u>https://doi.org/10.1038/s41586-021-03217-8</u>
- [S9] H. Li, H. Lin, D. Ouyang, C. Yao, C. Li et al., Efficient and stable red perovskite lightemitting diodes with operational stability>300 h. Adv. Mater. 33(15), 2008820 (2021). <u>https://doi.org/10.1002/adma.202008820</u>
- [S10] G. Sun, X. Liu, Z. Liu, D. Liu, F. Meng et al., Emission wavelength tuning via competing lattice expansion and octahedral tilting for efficient red perovskite lightemitting diodes. Adv. Funct. Mater. **31**(50), 2106691 (2021). <u>https://doi.org/10.1002/adfm.202106691</u>
- [S11] Y.K. Wang, F. Yuan, Y. Dong, J.Y. Li, A. Johnston et al., All-inorganic quantum dot LEDs based on phase-stabilized α-CsPbI<sub>3</sub> perovskite. Angew. Chem. Int. Ed. 60(29), 16164-16170 (2021). <u>https://doi.org/10.1002/anie.202104812</u>