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HIGHLIGHTS

• Detailed summary of current trends in the advancement of flexible EMI shielding materials.

• The theoretical shielding mechanisms and the latest concept of "green shielding" index (gs) are outlined.

• Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, 
sensing even multiple functions.

• Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided.

ABSTRACT With rapid development of 5G communication technologies, electromag-
netic interference (EMI) shielding for electronic devices has become an urgent demand 
in recent years, where the development of corresponding EMI shielding materials against 
detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI 
shielding materials with high flexibility and functional integrity are highly demanded 
for emerging shielding applications. Hitherto, a variety of flexible EMI shielding mate-
rials with lightweight and multifunctionalities have been developed. In this review, we 
not only introduce the recent development of flexible EMI shielding materials, but also 
elaborate the EMI shielding mechanisms and the index for "green EMI shielding" per-
formance. In addition, the construction strategies for sophisticated multifunctionalities 
of flexible shielding materials are summarized. Finally, we propose several possible 
research directions for flexible EMI shielding materials in near future, which could be 
inspirational to the fast-growing next-generation flexible electronic devices with reliable 
and multipurpose protections as offered by EMI shielding materials.
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Abbreviations
gs  Green shielding index
EMI  Electromagnetic interference
WLAN  Wireless local area network
IARC   International Agency for Research on Cancer
WHO  World Health Organization
3GPP  3Rd Generation Partnership Project
EMW  Electromagnetic wave
SE  Shielding efficiency
SEA  Absorption loss
SER  Reflection loss
SEM  Multiple reflection loss
SET  The total SE of EMI
3D  Three-dimensional
CNT  Carbon nanotube
GO  Graphene oxide
rGO  Reduced graphene oxide
G-film  Graphene film
G-foam  Graphene foam
CVD  Chemical vapor deposition
SSE  Specific shielding efficiency
2D  Two-dimensional
1D  One-dimensional
PDMS  POLYDIMETHYLSILOXANE
CNFs  Carbon nanofibers
CB  Carbon black
NPs  Nanoparticles
ABS  Acrylonitrile–butadiene–styrene
AgNW  Silver nanowire
PVA  Polyvinyl alcohol
SCF  Short carbon fiber
EVA  Vinyl acetate
PAN  Polyacrylonitrile
PDA  Polydopamine
PANI  Polyaniline
PF  Polyfuran
PTH  Polythiophene
PPy  Polypyrrole
PEDOT  Poly(3,4-ethylenedioxythiophene)
PPP  Polyparaphenylene
PA  Polyacetylene
PPV  Poly(p-phenylene vinylene)
PSS  Poly(styrenesulfonate)
PIPD  Poly(pyridobisimidazole)
PDDA  Polydimethyl diallyl ammonium
TC  Thermal conductivity
CPFCs  Conductive polymer fabric composites
PET  Poly(ethylene terephthalate

1 Introduction

In modern society, electromagnetic radiation has become 
omnipresent in environment because of the tremendously 
growing usage of mobile phones, Wi-Fi and Bluetooth 
devices all around the world. It is reported that the number 
of wireless local area network (WLAN) connected devices 
in major cities worldwide has doubled from 2016 to 2021 
[1], exposing the public to potential health risk that has yet 
to be adequately assessed. As early as in 2011, the French 
International Agency for Research on Cancer (IARC), which 
was authorized by World Health Organization (WHO), has 
classified that the electromagnetic radiation within 30 to 
300 GHz could be carcinogenic [2]. It is known that 4G 
network and household appliances like microwave ovens 
mainly use the frequencies around 2.4 GHz. In recent years, 
a large number of reports have revealed the adverse effects of 
electromagnetic radiation in microwave frequencies around 
2.4 GHz on the central nervous system of human beings, 
which could cause sleep disorders and wakefulness [3, 4], 
learning/memory impairment [5] and physical/cognitive 
abnormality [6]. In addition, the significantly increased inci-
dences of malignant gliomas and schwannomas in male rats 
also turn out to be associated with the prolonged exposure to 
the electromagnetic radiation at 900 MHz to 1.8 GHz [7, 8].

Particularly, the public concern on the safety of elec-
tromagnetic radiation is further growing with the rapid 
advances in 5G technologies very recently. According to 
the 3rd Generation Partnership Project (3GPP) specification 
of TS 38.104 [9], the 5G-FR1 (sub-6 GHz) network could 
cover the 450 MHz to 6 GHz band, while mainly works 
in the n77 (3.3–4.2 GHz) and n79 (4.4–5.0 GHz) bands. 
Compared to traditional 4G networks which mainly work at 
around 2.4 GHz, it is obvious that the emerging 5G networks 
work at higher frequencies, and thus would emit electromag-
netic radiation with higher energy. Therefore, such radiation 
can cause more serious health and safety issues to human 
bodies. Moreover, besides these possible health and safety 
issues to human beings, the electromagnetic radiation could 
also strongly interfere with the electronic devices [10] due 
to the interaction between electrons in the metallic conduc-
tor and the electric fields in the radiation, resulting in the 
malfunction of electronic devices [11, 12]. Therefore, the 
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development of corresponding electromagnetic interference 
(EMI) shielding coatings, layers and devices that could resist 
harmful electromagnetic pollution is essential for the nor-
mally operation of electronic devices [13, 14] and the guar-
antee of human health and safety [15].

To develop high-performance and reliable EMI shielding 
devices, the EMI shielding materials play a fundamental role 
by absorbing or reflecting incident electromagnetic wave 
(EMW) to avoid it penetrating across the shielding layer [16, 
17]. Generally, the EMWs are composed of magnetic fields 
and electric fields, which are perpendicular to each other. 
In this regard, EMI shielding mechanisms can be primarily 
categorized into electric shielding, magnetic shielding and 
electric–magnetic coupling EMI shielding [18]. According 
to the electromagnetic theory, the electric field and mag-
netic field of high-frequency EMWs that characterize the 
radiation strength are interdependent to each other; thus, the 
shielding of either of them can lead to the vanishing of the 
other. That is the main reason why traditional EMI shield-
ing materials are mostly conductive materials. At present, 
the EMI shielding materials actually used in our daily life 
are mostly conductive materials [19]. According to the dif-
ferent requirements on varied occasions, it could be divided 
into conductive cloth, conductive rubbers, conductive adhe-
sives and conductive coatings. Generally, conductive cloth 
are mostly used for flexible human-protective equipment; 
Conductive rubbers and adhesives are more used in elec-
tronic devices owing to their high processability and sealing 
ability, while the adhesives are usually more indispensable 
and stable. Conductive coatings have already been widely 
used in furniture such as chassis. However, as the advances 
in flexible electronic technology, the EMI shielding materi-
als with the low density, high corrosion resistance, superior 
mechanical flexibility and low-processing-cost features are 
extremely desirable for practical applications [20].

Meanwhile, with the rapid advances in flexible and wear-
able electronics [21], the corresponding EMI shielding 
materials should also possess low density (i.e., lightweight), 
high thermal stability, appreciable mechanical flexibility and 
corrosion resistance besides effective EMI shielding perfor-
mance [22]. Currently, the developed flexible EMI shielding 
materials are mainly based on carbon materials [23, 24], 
polymers [25–27] and MXene-based materials [28]. Particu-
larly, MXene materials, as a novel branch of two-dimen-
sional (2D) inorganic materials, are generally known as 
transition metal carbides, nitrides or carbonitrides. Although 

MXenes contain metal elements, they have displayed many 
unique physicochemical properties which are favorable for 
flexible EMI shielding, while maintaining the metal-com-
parable high electrical conductivity at the same time. In the 
past decade, the number of publications related to flexible 
EMI shielding materials has been increasing quickly [11, 
29, 30]. However, this important topic has been rarely sum-
marized systematically in review articles till now.

This review specifically focuses on various flexible EMI 
shielding materials for advanced flexible electronic devices 
and equipment, such as intrinsically flexible substrate/
matrix materials and composite flexible matrixes (e.g., 
carbon-based, MXene-based and polymer-based flexible 
composite materials). Further, we also analyze the EMI 
shielding mechanisms and the correlation between EMI 
shielding efficiencies and absorption/reflection components 
of EMW, based on which the different construction strate-
gies for the shielding materials are illustrated. Furthermore, 
we also summarize the multifunctional integration of flex-
ible EMI shielding materials toward extended application 
fields. Finally, current research challenges and prospective 
research directions are pointed out for future development 
of advanced flexible shielding materials.

2  Electromagnetic Shielding and Attenuation 
Mechanisms

2.1  Shielding Modes and Shielding Efficiency

The shielding efficiency (SE) can be used to evaluate the 
degree of suppression of EM energy for EMI shielding mate-
rials at a specific frequency [31]. Figure 1 shows the pos-
sible interaction between EMWs and shielding materials. 
When EMWs reach the surface of shielding material, it first 
interacts with the surface, then penetrates it and enters the 
inner part. A part of the EMWs are absorbed by the main 
body of material, resulting in absorption loss (SEA) [30, 32, 
33]. Those EMWs that are not absorbed by the material are 
reflected by the material surface, resulting in reflection loss 
(SER). When the absorbed EMWs travel to another interface 
of the shielding material, they are reflected again, followed 
by the energy dissipation in the shielding body, leading to 
multiple reflection loss (SEM). The three different types of 
losses, i.e., SER, SEA and SEM, together make contributions 
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to the attenuation of EMW [26], so the total SE of EMI (SET) 
could be calculated from the sum of the above three effects, 
as shown in Eq. 1 [18, 23, 26, 34]:

where PI, PT, EI, ET, HI and HT stand for the incident power, 
transmitted power, incident electric field intensity, transmit-
ted electric field intensity, incident magnetic field intensity 
and transmitted magnetic field intensity, respectively. Usu-
ally, there are three situations that will occur, given the inter-
actions between EMWs and shielding materials, as follows:

(i) When EMWs reach the material surface, the incident 
waves get reflected due to the discontinuous impedance 
on the surface of the material in contact with the air [26]. 
This reflection only requires the discontinuity of the imped-
ance on the intersecting surface [31, 35]. After simplifying 
Fresnel’s equation for a highly conductive shielding materi-
als, the reflection loss from the front to the back of the shield 
can be expressed as follows [36, 37]:

where η0 and η are the impedances of the free space and 
shielding material, respectively, μ, σ and f represent the per-
meability, conductivity of shielding material and incident 
EMW frequency, respectively. Obviously, SER increases with 
improving conductivity, indicating that the electrical con-
ductivity is extremely important to achieve strong reflection 
loss for shielding material. However, the reflection loss is 
not only affected by conductivity. The EMW frequency and 
permeability of the shielding layer also play a part.

(1)
SET = 10 log10

PI

PT

= 20 log10
EI

ET

= 20 log10
HI

HT

= SER + SEA + SEM

(2)SER(dB) = 20 lg
(�+�0)

2

4��0
= 39.5 + 10 lg

�

2�f�

(ii) A part of the EMWs may not be reflected while enter-
ing the material. They would be gradually converted into the 
forms of dielectric loss, magnetic loss and conduction loss 
during the propagation process [26, 38–42]. This consump-
tion is called absorption attenuation. Generally, the absorb-
ing material can completely absorb the EMWs inside under 
normal circumstances. Magnetic permeability and dielec-
tric constant are always used to quantitatively reflect the 
transmission and reflection properties of absorbing materi-
als, respectively [43–46]. The SEA for conducting and non-
magnetic shielding materials could be expressed [37, 47]:

where α is the attenuation constant and δ is the penetration 
or skin depth. This is a useful parameter for shielding and 
means the distance below the surface where the electric field 
intensity is reduced to 1  e−1 of the intensity of initial inci-
dent wave [48]. The conductivity and thickness are the main 
factors of absorption, while permeability and permittivity 
determine absorption loss [49].

(iii) When the EMWs that are not consumed inside the 
material reach another surface of the material, they again 
encounter the interface between the material and the air, 
and then return to the interiors of the material again [50, 
51]. This kind of reflection is called multiple reflection 
[52–54]. Multiple reflections from the front and back of 
the shielding material lower EMI SE. SEM could be calcu-
lated as follows [37]:

SEM is highly relied on thickness, and when thickness is 
near or greater than skin depth, or when SET reaches above 
15 dB, SEM can be ignored. However, when the skin depth 
thickness is larger than the thickness, multiple reflections 
must be considered when studying the shielding effective-
ness [55–58]. The shielding capability can be enhanced by 
increasing additional interfaces within the shielding mate-
rial. An interface with mismatched impedance character-
istics results in additional internal scattering, also known 
as internal multiple reflection, which increases the absorp-
tion loss [59]. Internal scattering should be different from 
aforementioned multiple reflection The former caused 
by additional internal interfaces within the shield greatly 
increases absorption loss and overall shielding effective-
ness, while multiple reflections occur between front and 
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Fig. 1  EMW propagation model in EMI shielding materials
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rear surfaces of the shield reduce shielding effectiveness 
[60–63].

As depicted in Fig.  1, the mechanisms of shielding 
EMWs in the medium through realizing the loss of EMWs 
are the reflection loss, multiple reflection loss and absorp-
tion loss [46, 47, 64]. For non-magnetic media, a continu-
ous conductive path is formed on the surface that could 
result in an effective EMW reflection loss. The charged 
dipole and current path of the medium can effectively con-
vert the energy of the EMWs into other energies (such as 
heat), realizing electromagnetic loss [65–69]. For mag-
netic media, the resonance or deflection of the magnetic 
dipoles mainly contributes to EMW absorption loss (SEA). 
The mechanisms of EMI shielding in the medium with 
multiple heterogeneous interfaces are mainly dominated 
by multiple reflection losses [64, 70–74]. Through the 
internal multiple reflections of EMWs that increase the 
propagation distance in the medium, the EMWs are attenu-
ated [75–78].

At present, vector network analyzers are generally used 
for the EMI shielding ability test. Incident waves and 
transmitted waves can be represented mathematically by 
S-parameters ( S11 and S21 ). Therefore, it is possible to cal-
culate the ability of the material to reflect, absorb and shield 
EMWs according to Eqs. 5–10 [79]:

where R, A and T represent the energy coefficients reflected, 
absorbed and transmitted, respectively, revealing the true 
EMW energy loss. However, SER, SEA and SET represent 
the ability to reflect, absorb and total shield EMWs, respec-
tively. These two sets of indicators are easy to be misunder-
stood, because EMI shielding materials with high absorp-
tion capacity (SEA) do not necessarily absorb most of the 
energy of EMWs. This is because EMWs could only enter 

(5)R = ||S11||
2

(6)T = ||S21||
2

(7)A = 1 − R − T

(8)SER = −10 lg (1 − R)

(9)SEA = −10 lg
(

T

1−R

)

(10)SET = SER + SEA = −10 lg T

the material after reflection [80–83]. The reflection capac-
ity (SER) describes the ratio of the reflected energy to the 
incident energy, and the absorption capacity (SEA) describes 
the ratio of the absorbed energy to the energy entering the 
material. Obviously, the denominators are different when 
calculating SER and SEA.

2.2  Index for "Green EMI Shielding"

For EMI shielding, a problem that cannot be ignored is 
that high-performance EMI shielding materials are usually 
composed of highly conductive materials, which can cause 
very strong secondary reflections. The strong reflected 
waves generate more significant electromagnetic radiation 
through mutual superposition and mutual interference, cre-
ating an additional adverse EM environment. This issue 
should be considered in EMI shielding materials seriously, 
but unfortunately it is usually neglected [84, 85].

With rapid development in human society, the empha-
sis should also be laid on green shielding of EMI, where 
"green" means less harm on external and/or internal envi-
ronment of materials [84]. The ultimate goal of green elec-
tromagnetic interference shielding materials is to obtain 
low reflection and high shielding capability. This means 
that electromagnetic waves are mainly consumed in the 
form of absorption to protect the electronics on both sides 
of the shielding material. Cao et al. proposed the con-
cept of green index (gs) for the first time and expounded 
the concept of "green shielding" materials [29]. Besides, 
they summarized the new requirements for "green EMI 
shielding" materials and gave the analytical method that 
defines the green index (gs) with the corresponding for-
mula (Eq. 11):

where S11 and S21 represent input reflection coefficient and 
the transmission coefficient from input to output, respec-
tively.  S11 and  S21 are expressed as follows (Eqs. 12 and 13):

(11)gs=
1

S2
11

−
S2
21

S2
11

− 1

(12)S11=
r(1−e−i2nk0d)
1−r2e−i2nk0d

(13)S21=
1−r2

1−r2e - i2nk0d
e−ink0d
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where n,  k0 and d represent refractive index, vacuum wave 
number and sample thickness, respectively. R could be 
obtained from Eq. 14:

where Z is the impedance matching of sample, and could be 
calculated by Eq. 15:

In addition,  S11 and  S21 are related to frequency (f), tem-
perature (T) and sample thickness (d). Therefore,  gs can be 
described by Eq. 16:

The "green" materials depend on two key factors includ-
ing the effective shielding effect (SE) and outstanding 
impedance matching and absorption loss.

High SE means that human being or working space (inter-
nal environment) can be protected from electromagnetic 
radiation, while good impedance matching could promote 
the absorption and restrict the secondary reflection of EMW, 
improving the SEA for high gs [85–87]. Generally, efficient 
shielding materials usually show a SE of ≥ 30 dB and a gs 
of ≥ 1 [29]. The "green EMI shielding" materials should 
not only reduce the transmission of EMWs, but also dis-
sipate EMWs as much as possible to achieve "green EMI 
shielding."

3  Construction Strategies for Flexible EMI 
Shielding Materials

With the increasing use of highly integrated portable elec-
tronic devices, flexible EMI shielding devices are expected 
to be thin and light [88–90]. It is also believed that satisfac-
tory electrical conductivity, complex permittivity and per-
meability are critical factors toward efficient EMI shield-
ing. Meanwhile, materials with hierarchical structures (like 
porous, hollow-like) show great potential in EMI shielding. 
"Green EMI shielding" effects achieved in the materials 
themselves will cause less additional environmental hazard 
from the lower secondary reflection. Most of the EMWs 
radiated into the materials will be consumed by multiple 
reflections [76, 91].

(14)r =
Z−1

Z + 1

(15)Z =
�

�r

�r
tanh

�
2j�fd

c

√
�r�r

�
≈
�

�r

�r

(16)gs =
1

|S11(f , T , d)|2
−

|S21(f , T , d)|2

|S11(f , T , d)|2
− 1 = gs(f , T , d)

Some materials inherently possess good flexibility such 
as high degrees of bendability, twistability and foldabil-
ity. Otherwise, they have to be combined with mechanical 
support materials to achieve flexible shielding. Therefore, 
depending on whether mechanical reinforcement is required, 
flexible shielding materials could be divided into two cat-
egories, including intrinsically flexible materials (graphene 
aerogel, 3D graphene foam, MXene foam, carbon nanotube 
sponge and fibrous polymer) and flexible composite mate-
rial (nanoscale carbon composite flexible materials, flexible 
MXene-based composite materials and polymer-based flex-
ible composite materials), as illustrated in Fig. 2 [92].

3.1  Intrinsically Flexible EMI Shielding Matrixes

Intrinsically flexible EMI shielding matrixes are required 
to possess not only outstanding EMI shielding capabili-
ties but also good flexibility. Aerogels, sponges, films or 
foams with highly porous 3D network composed of ultrahigh 
contents of gas phases and a solid matrix [93] show decent 
mechanical properties. Due to their unique physical charac-
teristics including ultralow density, large openings as well 
as ultrahigh surface area, they can be promising candidates 
of intrinsically flexible EMI shielding materials.

3.1.1  Versatile Nanocarbon Matrixes from Aerogels, 
Sponges, Films to Foams Based on Graphene 
and CNTs

Graphene aerogel has been utilized for flexible shielding 
material due to its lightweight, extremely high conductiv-
ity and mechanical stability, and unique 3D microporous 
structure [80, 94]. The large number of internal pores and 
free space in the graphene aerogel ensure low density and 
multiple reflections between the 3D carbon material and air 
[95]. In addition, the high conductivity of graphene mate-
rials increases the relative complex permittivity and SER, 
thus enhancing the EMI shielding performance [96]. Marta 
et al. [97] prepared highly porous graphene aerogels via 
the improved hydrothermal treatment method. In a typical 
hydrothermal process, graphene oxide (GO) nanosheets are 
reduced and assembled around the hexane droplets. After 
two rounds of freeze-drying process, the hierarchical and 
porous structures with ~ 225 μm large pores and ∼5 μm small 
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pores are obtained (Fig. 3a-d). The shielding SE of as-syn-
thesized material is evaluated at 8–18 GHz. It is found that 
the transmittance is less than 5% of input EMW energy for 
all porous samples.

The microstructure of graphene aerogels can also be 
tailored to improve electromagnetic loss [98]. Li et al. 
[99] prepared graphene aerogel by compressing graphene 
hydrogel mechanically, accompanied by freeze-drying and 
annealing (Fig. 4a). It was found that the microstructure 
of the hydrogel transformed from cellular to layered con-
figuration after compressing (Fig. 4b-e), which plays a key 
role in dissipation of EMWs. The study also illustrated 
that the compressed graphene aerogel presented excellent 
conductivity of 181.8 S/m and EMI SE of 43.29 dB in 
X-band at the thickness of 2.5 mm, meaning ≥ 99.99% of 
EMWs have been shielded. To study the effects of differ-
ent porous molds on EMI shielding, Shen et al. [100] sys-
tematically studied the EMI SE of graphene film (G-film) 
and microporous graphene foam (G-foam) (Fig. 4f-g). It 
is notable that changing the layered G-film into porous 
G-foam improves the performance of EMI shield-
ing because of the SEM by microporous structure at the 
matrix interface (Fig. 4h). Besides, rather than reflection, 
the thickness of the G-foam is a key factor in improving 
electromagnetic absorption (Fig. 4i-k). It is found that the 
SE of G-foam increased along with the increase in sample 
thickness, but such increment is not proportional. Cre-
spo et al. [101] reported flexible carbon nanotube (CNT) 
sponge with < 0.02 g  cm–3 density by CVD route for effi-
cient shielding. Owing to its extremely lightweight, the 

specific SE (SSE) of it was found to be up to 1100 dB 
 cm3  g–1, with a SET ≥ 20 dB throughout 1–18 GHz range, 
and capable of realizing shielding by absorption. Their 
remarkable net absorption ability favors "green EMI 
shielding" when incorporated into a multilayer structure 
to inhibit EMW reflection at the input interface. Thus, gra-
phene aerogel, graphene film, microporous graphene foam 
and CNT sponge could be regarded as friendly "green EMI 
shielding" materials.

3.1.2  2D MXene: Effective Assembly from Film to Foam

As a promising type of two-dimensional (2D) materials, 
MXene perfectly interprets the superior electrical conduc-
tivity of the layered structure and shows reliable mechanical 
stability along with adjustable surface, which make it capable 
for a number of applications such as portable and wearable 
electronics, especially in the fast-growing field of flexible EMI 
shielding materials [102–104]. Liu et al. [105] first developed 
hydrazine-induced foaming technology to prepare hydropho-
bic MXene foam by assembly of MXene nanosheets into film 
and further into foam (Fig. 5a). It is found that when MXene 

Mechanical Support

Intrinsic Flexible Materials Flexible Composite Material

graphene
aerogel

3D
graphene

foam

nano-scale carbon
composite materials

flexible composite
materials based on MXene

polymer-based flexible
composite materials

MXene
foam

carbon
nanotube
sponge

flexible
polymer

Fig. 2  Classification of flexible EMI shielding materials

(b)(a)

(d)(c)

Fig. 3  a-d SEM micrographs of graphene aerogels at different reduc-
tion temperatures: non-treated (a), 400 (b), 600 (c) and 1000 °C (d) 
under Ar/H2 1:0.15 atm. The scale bar denotes 200 μm [97];  Copy-
right © 2019 Elsevier Ltd
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film was converted to foam, its conductivity decreased as its 
thickness is increased (Fig. 5b-e). It exhibited higher shield-
ing SE of 70 dB than 53 dB of pristine MXene film, due to its 
highly efficient EMW attenuation in its well-existed porous 
structure. Qian et al. [106] fabricated the unique egg-box-
structured carbonized MXene films (Fig. 5f). It was shown that 
such structure with abundant interior voids could contribute 
to interfacial polarization and multiple reflection of incident 
EMWs, and finally promote the EMW absorption (Fig. 5g). 
Specifically, in Fig. 5h, EMW reflection of the MXene film 
was drastically increased because of the enhanced conductivity 
coming from the large amount of free electrons.

3.1.3  Non‑Conductive Polymer Matrixes with Intrinsic 
Flexibility

Polymer-based materials with intrinsic flexibility have 
shown absorption-dominant EMI shielding capability, 
which is highly favorable in many application fields like 
military stealth [50]. In particular, conductive polymers 

possessing delocalized p-conjugated electrons display 
peculiar electronic properties, for example low ionizing 
potential and high electron affinity. The SE of conductive 
polymers roots in the moving charges as well as bound 
charges on the backbone [107]. Furthermore, conductive 
polymers possess easy preparation/processing, easy mor-
phology/shape control, low density and tunable flexibil-
ity and conductivity. Nevertheless, for most of non-con-
ducting polymers, they do not provide shielding effects. 
Therefore, the common approach is to introduce suitable 
conductive fillers to form polymer composites, which not 
only offer the possibility to adjust their physicochemical 
properties, but also afford the opportunity to modify the 
complex permeability and permittivity, and conductivity to 
optimize the shielding performance. Suitable filler or filler 
combinations are essential as well. These fillers would 
serve as the backbone to provide robust supports for ensur-
ing the flexible structural integrity and effectively allevi-
ating the structure destruction. Thus, the polymers with-
out filler support are usually difficult for EMI shielding 
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application directly. Oppositely, their composites could be 
more versatile with expanded application potential.

In brief, in order to achieve great flexibility and EMI 
shielding capacity, the conductivity and special network, 
usually in the form of aerogel, sponge, film or foam struc-
ture, are vital for intrinsic flexible substrate/matrix EMI 
shielding materials. It is highly feasible to achieve highly 
efficient EMI shielding materials from MXene, CNT, 
graphene, as well as many other carbon-based materials, 
which provide inspirations for advanced design of more 
flexible EMI shielding composites.

3.2  Construction of Flexible Composite Architectures 
for Dielectric and Magnetic Synergy Effects

Nanocomplexing is regarded as a facile strategy to efficiently 
adjust conductivity and magnetic properties of the overall 
composites for superior EMI shielding performance. Also, 
it is popular strategy to construct flexible EMI shielding 

composites by combining intrinsically flexible bodies with 
mechanical supported fillers. Based on aforementioned flex-
ible matrixes, reasonable dielectric or magnetic filling in 
these materials will greatly conduce to "green EMI shield-
ing" by dielectric and magnetic synergy effects (Fig. 6).

3.2.1  Dilectric‑type Complexing and Magnetic Filling 
for High SEA Based on Flexible Nanocarbon 
Matrixes

As an alternative for conventional metal EMI shielding 
materials, carbon-based materials and their composite 
materials with high corrosion resistance, low density, suit-
able conductivity and easy processing feasibility have been 
intensively investigated. The nanocarbon-based materials 
including CNTs, graphene and other nanocarbons are widely 
applied to construct flexible EMI shielding composites [42, 
108–113].
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As typical one-dimensional (1D) material, CNT is regarded 
as a promising candidate for EMI shielding due to the high 
aspect ratio and conductivity. Moreover, the establishment 
of simple routes for constructing CNT-based 3D intercon-
nected networks for mass production has attracted great inter-
est [114–116]. Mei et al. [117] obtained CNT-based sponges 
with different compaction rates (0%, 30%, 50% and 70%) and 
studied their EMI SE in X-band (Fig. 7a). The microstructures 
of CNT sponges with different compaction ratios are displayed 
in Fig. 7b-e. With increased compaction degree, the pore size 
between the samples greatly decreases, showing a great impact 
on the sponge density, i.e., the higher compaction degree is, 
the higher density of CNT sponge is, ranging from 11.1 to 24.4 
vol%. It was also demonstrated that 70% compaction rate was 
beneficial to the buildup of denser and tighter CNTs networks 
as an interconnected conducting network and finally enhanced 
the SE of such CNT sponge/EP composite. Similarly, Lu et al. 
[118] directly used the flexible sponge-like CNTs composed 
of self-assembled, interconnected CNT skeletons as shielding 
films with 10.0 mg  cm−3 density (Fig. 7f-g). The SE and SSE 
of the freestanding film with 1.8 mm thickness in X-band reach 
as high as 54.8 dB and 5480 dB  cm3  g−1 (Fig. 7h-i). Further, 
these CNT sponges could also be combined with polymers for 
EMI shielding. Figure 7j presents the CNT/poly (dimethylsi-
loxane) (PDMS) nanocomposites as a typical case. Such CNT/

PDMS film demonstrates satisfied SE of 46.3 dB at 2.0 mm of 
thickness with low CNT loading amount of < 1.0 wt%. After 
1000 times of stretching or bending, the SE shows little change. 
These flexible, highly conductive and stable composites could 
be directly exploited for efficient EMI shielding coatings.

The combination of CNTs and graphene foam can also 
achieve efficient shielding against EMWs while maintaining 
their flexibility. Sun et al. [119] combined PDMS, CNT and 
graphene foams (GF) with cellular structure to achieve great 
EMI shielding performance (Fig. 8a-f). Compared with GF/
PDMS composite, the SE of GF/CNT/PDMS with the same 
porosity (90.8%) increases from 25 to 75 dB (Fig. 8g). How-
ever, it does not mean that the higher CNTs filling volume 
could result in the better EMI SE because there is no differ-
ence in the SE between GF/CNT/PDMS with 5 and 2 wt% 
CNT fillings. This is due to the synergistic effect of CNTs 
and GFs, which is manifested in the introduction of CNTs 
that greatly improves the EMW absorption capacity of the 
composites. On the one hand, the conductive network enabled 
by the GFs could provide the pathway for electromagnetic 
field-induced currents, while on the other hand, CNTs could 
add more interfaces for surface current attenuation. When the 
content of CNTs was further increased, the conductivity of 
the GF/CNT/PDMS composite could no longer be improved 
significantly due to the agglomeration effect. Therefore, the 
EMI shielding ability did not increase further. Similarly, Kong 
et al. [116] prepared porous CNTs/rGO foam composites for 
efficient EMI shielding (Fig. 8h). The introduction of CNTs 
increased SER and SEA of the foam simultaneously and thus 
realized the enhanced EMW attenuation (Fig. 8i- j). The EMI 
SE of CNTs/rGO reached 31.2 dB at 2 mm thickness, and the 
SSE even reached 547 dB  cm3  g−1 with an ultralow density 
of 57 mg  cm−3 (Fig. 8k-l). Sundararaj et al. [41] combined 
CNTs, carbon nanofibers (CNFs) and carbon black (CB) 
nanoparticles (NPs) with acrylonitrile–butadiene–styrene 
(ABS) polymer, and found that the CNT/ABS nanocompos-
ites showed the best EMI shielding performance on account 
of their higher aspect ratio and electrical conductivity.

In spite of combination with each other among carbon 
materials to form composites, intrinsic carbon composition 
is usually limited by extremely high permittivity, resulting 
in the impedance mismatch. To promote the electromag-
netic coupling of carbon materials and thus balance their 
impedance matching, magnetic particles or low permittivity 
of nanomaterials are exploited to be embedded or hybrid-
ized in the carbon materials. Cheng et al. [74] designed 
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a lightweight and flexible composite aerogel, which was 
comprising of Co NPs anchored CNTs grown on cotton-
derived micron-scale carbon fibers via a facile CVD method 
(Fig. 9a). It was revealed that the conductivity change of 
the sample could be controlled by adjusting the morphol-
ogy of CNTs, i.e., longer and straight CNTs contributed 
to improved conductivity, resulting in considerable SE of 
29.8 dB (Fig. 9b). In contrast, short and curled CNTs with 
optimized conductivity could facilitate the SEA, resulting in 
a wide EAB of 5.08 GHz at 1.6 mm. Overall, when CNTs 
were filled at the amount of 25% and 30 wt% in matrix, the 
SET reached 20.6 and 29.8 dB, respectively, indicating their 
capability for shielding ≥ 99% incident EMWs (Fig. 9c). 
For obtaining "green EMI shielding," Zhang et al. [37] 
developed a novel dielectric-type  WS2-rGO self-assembly 
architecture (Fig. 9d). The unique  WS2-rGO gable structure 
also exhibited efficient and "green EMI shielding" within 
2–18 GHz, with the SE > 20 dB, and the maximum shielding 
value of 32 dB (Fig. 9e). Endearingly, the green index  (gs) 
was evaluated to be near 1.0. It is revealed that their multi-
layer structure and inherent dielectric properties, including 

synergistic relaxation and conduction, and multiple scatter-
ing within abundant voids together contributed to the effi-
cient and green EMI SE.

Furthermore, Wan et al. [120] manufactured a flexible, light-
weight and corrosion-resistant Ag nanowire-wrapped carbon 
(Ag@C) sponge (Fig. 10a), which exhibited ultrahigh EMI SE 
with superior mechanical stability and ultracompressibility. The 
Ag@C sponge with a low density of 0.00382 g  cm−3 achieved 
363.1 S  m−1 conductivity and an ultrahigh SE of 70.1 dB within 
8.2–18 GHz. Besides, the SE of the Ag@C sponge was posi-
tively correlated with the thickness and annealing temperature, 
suggesting that the conductive nanocarbon played a key role in 
EMI shielding (Fig. 10b-c).

Nanoscale carbon materials are good EMW dissipation 
materials, regarding their great electrical conductivity. At the 
same time, their easy processability ensures that they can be 
combined with other mechanical support materials easily or 
can be produced into a variety of microstructures. Particularly, 
porous materials can trap EMWs within their pores, promot-
ing multiple reflections to achieve improved SEA. For flexible 
composite materials, the high-aspect-ratio conductive fillers 
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and segregated structure are beneficial to the low percolation 
threshold; thus, high SE is achievable at relatively low filler 
loading levels than the randomly distributed systems. Moreover, 
the incorporation of dielectric materials can further increase 
the SET due to dielectric loss. Similarly, incorporation of mag-
netic materials can also increase the SET owing to interfacial 
polarization, eddy current loss and magnetic losses involving 
the magnetic domain movement, relaxation of the magnetiza-
tion, etc.

3.2.2  Polymer Insertion and Ion Doped in Highly 
Conductive MXene

MXene is a distinguished 2D transition metal carbide and/
or nitride  (Mn+1XnTx) where M is an early transition metal 
and X stands for C or N [22]. The superior electrical con-
ductivity and mechanical properties related to metal ions, 
and the facile insertion of organic molecules and ions, 

together make MXene good candidates for EMI shield-
ing [121]. As a highly conductive filler, it has attracted 
tremendous attention in producing EMI shielding com-
posites. In combination with polymers fiber or other fibers, 
MXene composites can achieve outstanding mechanical 
properties. MXene  Ti3C2Tx is often incorporated into dif-
ferent polymer matrices to improve its tensile strength, 
while maintaining good electrical conductivity under low 
polymer loadings.

The EMI SE of freestanding MXene-based paper was 
studied by Ma et al. [99]. They prepared aramid nanofib-
ers-Ti3C2Tx/Ag nanowire (AgNW) composite paper with a 
double-layer structure, super-flexibility and high mechanical 
strength, and found that higher content of MXene/AgNW led 
to stronger SE. The MXene/AgNW double-layer nanocom-
posite paper exhibited high conductivity as well as excellent 
electrical stability and even maintained excellent shielding 
performance (~ 80.0 dB, 91 mm, X-band) after repeated 
bending and stretching (Fig. 11a-b). Jiang et al. _ENREF_22 
[122] explored an efficient EMI shielding composite paper 
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based on cellulose /MXene  (Ti3C2Tx) via a simple dip coat-
ing approach. It is found that with the increase in the num-
ber of coatings, the conductivity of the composite paper 
increases remarkably from 0 to 2756 S  m−1 attributed to the 
gradual formation of  Ti3C2Tx conductive networks. After 
seven times of dip coating, the SE of the composite reaches 
43 dB, which was much better than that of the composite 
paper without dip coating. Even after 2000 cycles, the EMI 
SE could still attain exceeding 90% (42.1 dB), indicating 
its broad application for next-generation flexible devices. 
Although MXene shows great potential for construction of 
conductive papers, it is still challenging to achieve satisfac-
tory EMI SE with lowered amount of MXene. Feng et al. 
[123] systematically studied the influence of  Mn2+ insertion 
on composite films and found that the introduction of  Mn2+ 
significantly enhanced the shielding performance. Due to the 
ion bridging effect between MXene nanosheets, the overall 

electrical conductivity could be ultrahigh (4268 S  m−1) with 
less amount MXene by Mn ions, which is nearly three times 
than original  Ti3C2Tx films (1894 S  m−1). The SE of Mn 
ion modified film could reach as high as 69 dB at 9.4 GHz.

As set forth, foaming is considered as an efficient tech-
nique to build up the shielding materials with high flexibil-
ity and lightweight. Xu et al. [60] produced porous  Ti2CTx 
MXene/polyvinyl alcohol (PVA) composite foam (Fig. 11c). 
The calculated SSE reached 5136 dB  cm2  g−1 with ultralow 
PVA filling of 0.15 vol% and ultralow SER of < 2 dB. After 
the foam was compressed into a thin film, the EMI shielding 
mechanism was changed from SEA-dominated to SER-dom-
inated mechanisms (Fig. 11d-f). Comparative experiments 
confirmed that internal multiple reflection, porous structure 
and dipole polarization show synergistic effects on improv-
ing SEA toward excellent EMI SE. However, the introduced 
bubbles also easily destroyed the conductive networks in 
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the composite, which leaded to the degradation of EMI SE. 
Zhao et al. prepared  Ti3C2TX-MXene/rGO aerogel with 
successive core–shell structures via hydrothermal assembly 
[124]. The porous structure and superior conductivity (1085 
S  m−1) together enhanced the  Ti3C2Tx composite aerogel an 
outstanding SE of 50 dB across X-band, which was a mile-
stone record for the composites with similar MXene loading 
amount. Meanwhile, the composite aerogel also possessed 
stable EMI SE for EMWs from different directions attrib-
uted to the highly ordered lattice structure. Such assembly of 
three-dimensional (3D) porous structure can greatly promote 
the practical utilization of MXene-based composites for EMI 
shielding devices.

Although the EMI shielding performance is prominent 
for bare MXenes, their dielectric constants and conductiv-
ity are too high; thus, the resulted SER is too high while 
SEA is low, which consequently cause undesired secondary 
pollution of EMWs. Incorporation of multiple components 
in the MXene-based composites could reduce the overall 
conductivity and EM reflection, resulting in moderate per-
mittivity and increased dielectric loss. When the complex 
permeability and permittivity are close to each other, they 
could exhibit the best EMI SER and SEA at the same time. In 
summary, combination of MXene with mechanical support 
materials such as polymers and carbon materials can take 
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full advantages of the electromagnetic dissipation capability 
of MXene while achieving flexibility.

3.2.3  Reinforced Flexible Polymer Composites 
by Mechanical Supported Matrixes

Polymers are widely used for EMI shielding due to the sat-
isfactory flexibility, corrosion resistance, lightweight and 
cheap price, while most polymers have poor mechanical 
property and inherently low electric conductivity, which 
limit their practical applications. Therefore, it is necessary 
to mix polymers with conductive and high-strength fillers 
to obtain desired EMI SE [125–128]. For non-conducting 
polymer, filling is usually employed to retain reinforced bulk 
polymer composite, which refers to the composite material 
consisting of polymer matrix and particle/fiber-type conduc-
tive fillers, and the combination of the two into it. Das et al. 
[129] reported a bulk polymer composite with short carbon 
fiber (SCF) and carbon black (CB) as filler, and vinyl acetate 

(EVA) as matrix. Correspondingly, the EMI shielding per-
formance of SCF/EVA, CB/EVA and SCF/CB/EVA com-
posite were studied. As a result, it is found that composites 
with SCF filler exhibited more superior EMI shielding per-
formance than the composites with CB filler. The reason was 
also confirmed as SCF showed better dispersion in matrix, 
thus enhancing the SE. Notably, the shielding effect is incon-
sistent at Ku band (8–12 GHz) as the frequency increases. 
Oppositely, it increases slowly as the frequency increases in 
the lower-frequency range (100–2000 MHz). These carbon 
fillers could effectively promote the delocalization of the 
charge carriers and enhance the structural order of the poly-
mer chains, thus facilitating the conductivity.

The composite of metal and non-conductive polymer 
is a feasible strategy for flexible EMI shielding [130]. Li 
et al. [131] prepared flexible  CuxS/polyacrylonitrile (PAN) 
nanofiber mats (Fig. 12a). Such  CuxS/PAN mats demon-
strated excellent EMI shielding capability (29–31 dB) at 
low frequencies (500 -3000 MHz). Besides, Zeng et al. 
[132] designed membranes based on easy polydopamine 
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(PDA)-assisted Cu or Ag deposition on electro-spun PDA 
polymer nanofibers. The PDA layer served as a substrate 
allowing the growth of ordered Cu NPs to form continu-
ous layers, with the root mean square surface roughness 
of ≤ 9.2 nm, suggesting distinct core–shell structure in the 
membrane (Fig. 12b-d), which enabled the high conductiv-
ity and EMI SE of as-obtained membranes. Therefore, by 
effectively utilizing the interaction between cellular structure 
of metal and polymer nanofibers, excellent flexibility and 
conductivity as well as ultrahigh EMI SE could be achieved. 
The SE of membrane (2.5 µm of thickness, 1.6 g  cm−3 of 
density) was up to 53 dB with a broad frequency range. The 
SE of 44.7 dB was achieved at the lowest thickness (1.2 µm) 
with normalized SSE as high as 232,860 dB  cm2  g−1. In 
addition, Shen et al. have also exploited PDA functionaliza-
tion to construct polymer films based on Ag@CNTs hybrids 
[133]. A flexible and highly conductive Ag@PDA@ carbon 
nanotube–polyvinyl alcohol (PVA) film was formed with the 
addition of well-dispersed carbon nanotubes and additional 
silver particles. Compared with the pure carbon nanotubes 
(21 dB), the shielding efficiency was significantly increased 
to 42.75 dB for the composite film. PDA polymerization 
time controls the size of silver particles, the formation of 
effective conductive network and conductive/interfacial 
polarization-induced loss mechanisms determine the shield-
ing performance of the film.

In contrast, conductive polymers like polyaniline (PANI), 
polyfuran (PF), polythiophene (PTH), polypyrrole (PPy), 

poly(3,4-ethylenedioxythiophene) (PEDOT), polyparaphe-
nylene (PPP), polyacetylene (PA) and poly(p-phenylene 
vinylene) (PPV), not only maintain decent mechanical 
properties, but also show outstanding electrical conductivity, 
making them suitable candidates as flexible EMI shielding 
agents. Combined with other electrically conductive materi-
als, it is expected that EMWs can be dissipated effectively 
due to the synergistic effect. Wu et al. [134] reported ultra-
light EMI shielding composites utilizing the GF/poly(3,4-eth
ylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 
(Fig. 13a). An ultralight porous composite structure with 
ultralow density of 0.0182 g/cm3 was gained when GF mass 
fraction is 58% (Fig. 13b-d). Owning to the good conduc-
tivity and porous structure, the composites delivered excel-
lent EMI shielding performance (91.9 dB in SE, 3124 dB 
 cm3  g−1 in SSE). And as shown in Fig. 13e, the charge delo-
calization in highly conductive networks plays a key role by 
generating the local eddies under an alternating EM field.

Although conductive carbon-based foams show light-
weight and high EMI SE [135], their flexibility and con-
ductivity seem insufficient as compared to those of metal. 
Alternatively, the combination of flexible skeleton of poly-
mer and highly conductive networking species is expected 
to achieve high EMI shielding performance. Li et al. [136] 
constructed a porous polymer nanofiber material with a 
density of only 0.26 g  cm−3 via assembly of Au NPs on 
a poly(pyridobisimidazole) grafted polydimethyl diallyl 
ammonium (PIPD-g-PDDA) backbone. It is revealed that 
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the lower the Au content applied, the faster the conductiv-
ity declined. For high-Au-content PIPD-g-PDDA/Au film, 
the weight of the film decreases by about 0.8% after heat-
ing, with its surface morphology collapsed, as shown in 
Fig. 13f. The Au NPs were found to fuse together to form 
a solid gold network. Besides thermal treatment, compress-
ing provides another possibility to promote the electrical 
conductivity of thin films. The electrical conductivity value 
of PIPD-g-PDDA/Au films rose to 22,240 ± 998 S  cm−1 at 
3 MPa pressure. The compressed morphology of the com-
posite material was shown in Fig. 13h. Under compres-
sion, as the cross-linked structure of PIPD-g-PDDA NFs 
changed from round to flat, the Au NPs were arranged more 
closely, which reduced the contact resistance of Au network 
(Fig. 13i). It was also found that the shielding effect exceeds 
64.9 dB in the nanocomposite material with only 20 mm 
thick and in the band of 250 MHz-1.5 GHz. By compar-
ing and analyzing SER, SEA and SEM, the related shielding 
mechanism is revealed, suggesting that the PIPD-g-PDDA/
Au composite materials were both absorptive and reflective 

to EMW within a certain frequency band, where the SER was 
dominant for overall SET. As discussed above, conductive 
dielectrics-based fillers show satisfactory permittivity and 
conductivity, low density, as well as suitable physicochemi-
cal properties, contributing not only to reliable physical/
mechanical properties, but also to high EMI SE of the cor-
responding composites. The shielding mechanism depends 
on balanced combination of SEA and SER, rather than the 
SER-dominant mechanism of metals.

As a comparison, we summarize EMI shielding proper-
ties of representative flexible EMI shielding materials from 
intrinsically flexible substrate to composite flexible matrix 
(Table 1). It seems that the foam structure could be a promis-
ing choice for highly efficient shielding materials. Further-
more, it is also an effective approach to design the shielding 
materials with multiphase interfaces, which could extremely 
improve the multireflections and promote EMWs absorption. 
Nonetheless, an in-depth exploration on the materials that 
possess both ultralow thicknesses, low density and high SE 
as well as large SSE, and on the mechanisms of shielding 
in different bands or even broadband is still highly required.
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4  Multifuctionality

Multifuctionality is inevitably a main direction for future 
development of EMI shielding materials. Particularly, the 
development of low-dimensional, nanoscale and func-
tional EMI shielding agents could bring about advanced 
properties of materials. New functionalities related to EM 
properties in miniaturized EM devices occupy a lot of 
potential in the future development of various scientific 
and technological fields. Besides EMW absorbing and 
shielding, the new functionalities also include EMW fil-
tering, sensing, optics and energy conversion and storage 
devices.

4.1  Thermal Conductivity and Hydrophobicity

For modern flexible electronic devices, the effective heat 
dissipation during operation is essential, which ensures the 
reliability and service life of devices. Therefore, it opens 
an important direction for developing next-generation EMI 
shielding material with efficient heat conduction. Usually, 
the parameter thermal conductivity (TC) represents the abil-
ity of material to conduct heat, with its unit of W  m−1  K−1, 
which means the capacity of material to transport a specific 
quantity of heat energy in 1 s via a plate of a specific area 
(1  m2) and thickness of (1 m) when its opposite face differs 
in temperature by 1 K. The development of EMI shield-
ing materials should integrate the functionalities of high 

Table 1  Comparison of EMI SE of representative flexible EMI shielding materials

Materials Thickness (mm) Density (g  cm−3) EMI SE (dB) EMI SSE (dB  cm2  g−1) Refs

PI 2.5 0.076 26.1–28.8 1373–1518 [80]
Graphene aerogel 2.5 – 43.29 – [165]
Graphene aerogel 5 0.006 – 6743 [97]
Graphene foam 0.3 0.06 25.2 – [100]
MXene foams – – 70 – [105]
Microsphere@void@ MXene 0.01 – 46.51–59.76 18,637.14 [106]
CNTs/RGO foam 2 5.7 31.2 547 [117]
CNT sponge/epoxy 3 – 53.14 – [118]
PIPD-g-PDDA/Au 0.02 – 66.9 15,890 [136]
GF/CNT/PDMS – – 75 833 [119]
CNTs aerogel 1.6 – 29.8 – [74]
CNTs/RGO 2 – 31.2 547 [116]
Ag@C 3 0.00382 70.1 61,169 [120]
d-Ti3C2Tx/r-CNFs 0.015 – 42.7 – [22]
MXene/AgNW – – 80 3725.6 [99]
rGO/epoxy – 0.06 38 500 [125]
PVDF/MWCNT/GNPs/Ni 0.3 – 43.7 – [128]
GF/PEDOT:PSS – 0.0182 91.9 3124 [134]
Cu-wrapped polymer nanofiber 0.0025 1.6 53 232,860 [132]
PAN/CNT/Fe3O4 1.5 – 59.85 – [147]
PPy/MXene 1.3 – 90 1000 [140]
CuxS/PAN 0.423 0.044 29–31 16,655.92 [131]
MCP-SiC composite paper 0.3 – 67 1– [137]
AgNWs/cellulose films 0.0445 – 101 5571 [138]
PP/PDA/AgNPs/PDMS – 0.263 71.2 270.7 [139]
AgNF 0.1 – 76 – [143]
PEBAX/graphene – – 30.7 – [145]
Fe3O4@Ti3C2Tx/GF/PDMS – – 77–80 – [146]
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TC and high SE values. Chaudhary et al. [137] prepared 
multicomponent framework derived SiC composite paper 
with both strong EMI shielding effect (−67 dB at 10.3 GHz) 
and good TC of 6.5 W  m−1  K−1, which were positively cor-
related with the amount of SiC. Similarly, Gu et al. [138] 
obtained AgNWs/cellulose films with outstanding mechani-
cal strength and superior in-plane TC of 10.55 W  m−1  K−1. 
Meanwhile, the SE was ultimately retained as ∼95 dB after 
bending for 1500 cycles. To further apply the AgNWs/cellu-
lose films to thermal management, polyimide electrothermal 
films were pasted on AgNWs/cellulose films, and the varia-
tion in surface temperature was recorded (Fig. 14a). Unlike 
the sharp temperature increase when pure cellulose or air 
was used as heat sink, the maximum operating temperature 
fell to around 142 °C when 50 wt% AgNWs/cellulose film 
was utilized as heat sink, demonstrating its efficient heat 
dissipation during device operation. Additionally, the 50 
wt% AgNWs/cellulose film also showed rapid response to 
Joule heating (Fig. 14b). When the input voltage is 1 V, the 
temperature did not increase greatly. However, the 1.5 and 
2 V of input voltage caused rapid temperature increase of 
the AgNWs/cellulose film, which finally stabilized at 59.3 
and 99.5 ℃, respectively.

Due to the requirement of water resistance for electronic 
devices, hydrophobicity becomes one of the emerging func-
tions for EMI shielding materials. Gao et al. [139] prepared 
conductive polymer fabric composites (CPFCs) with high 
SE of 71.2 dB and an extremely high water-contacting angle 
(152.3°). More importantly, the super-hydrophobicity and 
EMI SE retained great stability after the abrasion/wind-
ing cycling tests. Zhang et al. [140] further designed and 
prepared a new fabric material, i.e., silicone-coated PPy-
modified MXene sheets embedded on poly(ethylene tere-
phthalate) (PET) textiles. Besides excellent joule heating 
and EMI SE performance, the thin silicone coating offered 
high hydrophilic property (Fig. 14c). The silicon-coated 
textiles occupied a contact angle up to ≈126°, which to a 
large degree protected MXene from water-induced oxida-
tion and afforded valuable waterproofing performance. The 
experimental results also showed that the flexible and mul-
tifunctional textiles had low resistance from nearly linear 
I–V curve, which ensure voltage-driven heating favoring the 
safety of operators (Fig. 14d). The EMI shielding efficiency 
of resultant multifunctional textile at a thickness of 1.3 mm 
was up to 90 dB. What is more, it could maintain great EMI 
shielding ability even after washing (Fig. 14e). Therefore, 

such versatile textile holds great potential in smart clothing 
allowing both EMI shielding and personal heat management.

4.2  Transparency, Sensing and Multiple Functions

Transparency is also important for next-generation flexible 
shielding agents because of the demand for visualizations 
of electronic devices. Among the wide choice of materials, 
silver nanowires or nanofibers can well satisfy the industrial 
requirement of sheet resistance < 100 Ω  sq−1 and transmit-
tance > 90% [141]. Moreover, AgNWs are more chemically 
stable than other metals like Cu. When compared to carbon-
based NWs/NFs, AgNWs could create the networks with 
higher conductivity. The ferro-ferric oxide  (Fe3O4)-modified 
AgNW films obtained by Jiao et al. [142] exhibited EMI 
SE of 24.9 dB and transparency of 90%. Due to the high 
permeability of  Fe3O4, the absorption loss of electromag-
netic radiation was improved. By improving the conductiv-
ity of silver nanowire film, the shielding effectiveness of 
silver nanowire EMI shielding film was enhanced. Subse-
quently, Lei et al. [143] prepared silver nanofiber film by a 
room-temperature roll-to-roll production method, exhibiting 
superior EMI shielding ability (76 dB, at 100 μm) and great 
light transmittance (89%, at 1 μm) (Fig. 15a-b). By control-
ling the fibers diameter and spinning time, the optical trans-
mittance of silver nanofiber film can be varied (Fig. 15c). 
Furthermore, the film flexibility and bending stability was 
investigated. Figure 15d shows the test results for flexibility 
and durability of silver nanofibers and silver nanofiber film. 
No breaking was observed in silver nanofiber film despite 
the 180-degree bending.

The rapid developing industry of flexible electronics 
requires various sensors with high sensitivity and a wide 
range of responses [144]. Zhao et al. [145] prepared the 
poly(ether-block-amide)/graphene films. With 8.91 vol% 
graphene, the composite film could reach 30.7 dB of aver-
age EMI SE. More interestingly, the poly(ether-block-
amide)/graphene film exhibited an almost linear pres-
sure sensing behavior as the external pressure stimulation 
increased owing to the formation of more conductive paths 
via decreased distance between adjacent graphene. Also, 
Nguyen et al. [146] demonstrated a multifunctional EMI 
shielding skin containing freestanding graphene-reinforced 
PDMS foam decorated by  Fe3O4 NPs-interbedded  Ti3C2TX 
nanosheets (Fig. 15e), exhibiting remarkable EMI SE of 
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80 dB in X-band and 77 dB in Ka-band because of high 
SEA. Besides, it also played a part as a pressure sensor 
owing to the high electrical conductivity, good elasticity 
and rapid recovery. It is distinct in Fig. 15f that the sens-
ing material is highly bendable and stretchable. The relative 
resistance variation (R − R0)/R0 for the composites is shown 
in Fig. 15g under varied pressure from 62.4 to 998.9 kPa. 
The lightweight, highly conductive and flexible composite 
with favorable response to external pressure is holding great 
potential for multifunctional EMI shielding skin toward 
wearable electronics.

Many studies have also shown that flexible EMI shield-
ing materials can demonstrate multiple functions simulta-
neously. Wang et al. [147] recently reported a multifunc-
tional nylon/graphene nanoplatelet (GNP) paper material 
made of commercial nylon gauze and GNP, via a feasible 
and scaled method combing vacuum filtration and compres-
sion molding. It is investigated that the as-prepared com-
posite paper possesses the advantages of good flexibility 
and multifunctional properties. When adding 11.8 wt% 
GNPs, the three-layer composite nylon/GNP paper with 
a thickness of ~ 180 μm demonstrates both high electrical 
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conductivity and high thermal conductivity of 24.3 S  cm−1 
and15.8 W  m−1  K−1, respectively. In particular, it shows 
a large EMI SE of 58.1 dB in x-band (8.2–12.4 GHz). 
Remarkably, the hydrophobicity and flame retardancy of 
the composites are improved obviously, and the mechanical 
properties are also satisfactory. For future electronic equip-
ment, the electromagnetic pollution is not the only concern, 
while flame retardant, heat insulation, water resistance and 
other features may also be required. Besides, the flexible 
EMI shielding materials may be required to become opti-
cally transparent, electrically conductive, thermally conduc-
tive or even sensitive. Therefore, multifunctional integra-
tion will be one of the directions in developing flexible EMI 
shielding materials in the future.

5  Conclusions and Prospect

Given the rapid advancement of 5G-related microelectron-
ics and flexible electronics industries, the overwhelmingly 
generated electromagnetic radiation has definitely become a 
serious pollution source. Great advances have been achieved 

in exploration of reliable EMI shielding agents which could 
reduce or even eliminate detrimental electromagnetic radia-
tion. In this regard, this review describes recent develop-
ments of flexible shielding agents based on a comprehensive 
elaboration of EMI shielding mechanisms, the correlation 
between absorption and shielding, and lays a specific empha-
sis on flexible EMI shielding materials with excellent struc-
tural integrity and various functional construction. Through 
literature survey, generally, flexible EMI shielding materi-
als could be obtained via either direct or indirect construct-
ing routes. In terms of the direct route, conductive foam, 
sponge or aerogel 3D structure present some representative 
merits and is regarded as excellent contenders. In addition 
to contributing low weight, the pores in foam, sponge or 
aerogel promote absorption of EMW energy by multiple 
scattering at the interfaces within pores. Therefore, foam, 
sponge or aerogel-structured materials are specialized in 
flexible portable electronics and defense wearable devices. 
The indirectly constructed flexible EMI shielding composite 
materials could show not only great EMI shielding perfor-
mance but also various excellent properties by introducing 
nanofillers. On the one hand, the abundant heterogeneous 
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interfaces enhance the interface polarization/relaxation, 
resulting in magnified interface polarization and multi-
ple reflection-induced SEA. On the other hand, introduc-
ing magnetic species into dielectric system could achieve 
greatly enhanced magnetic loss [148–151]. Meanwhile, the 
composite materials integrating both magnetic and dielec-
tric components could display both high magnetic loss and 
dielectric loss [152–155], along with the improved imped-
ance matching [156–159]. From the perspective of flexible 
materials, carbon-based materials, MXenes and polymers 
are three mainstream matrixes for constructing the intrinsi-
cally flexible substrates or their composites based on nearly 
most of reported literature.

For carbon-based materials, 1D CNTs and CNFs, and 
2D graphene nanosheets could show highly efficient EMW 
absorption and EMI shielding performance, but their excel-
lent flexibility and mechanical properties can no longer meet 
the current development of devices. As mentioned previ-
ously, various 3D carbon structures including foam, sponge, 
aerogel are encouraging. Besides the large surface area and 
highly porous structure, which are conducive to enhanced 
multiple reflections, the electromagnetic parameters can be 
adapted by mechanical compression of the foam or sponge. 
Despite that carbon-based porous microstructures and 
their composites have been verified to be beneficial toward 
improved multiple reflections, the underlying mechanism 
remains unclear. What is the optimal pore size range for EMI 
shielding? What is the relation between wavelength of inci-
dent EMW and aperture? How to evaluate the contribution 
from multiple reflections and scattering? All these questions 
need systematic study and urgent breakthrough.

The research on MXene-related materials has been deep-
ened with extensive in-depth investigation from all over the 
world. MXene exhibits great potential in EMI shielding 
owing to its laminated structure and high conductivity. By 
atomic layer clipping and hybridization, the interior con-
ductive networks of MXenes could be regulated to afford 
high SE and SSE. Nonetheless, the irreversible oxidation 
of MXene may destroy its microstructure and restrict its 
EMI SE. Next, it is essential to optimize the hybridization 
approach to avoid undesired damage of the microstructure 
for efficient regulation of the network structure. Further-
more, even though the manufacturing method for MXene-
based material is coming-of-age at present, in order to 
achieve large-scale production of MXene, more reliable, 
safer and economical manufacturing process is admirable.

Polymers are favorable for constructing flexible shield-
ing agents because of excellent elastic–plastic properties. 
Through addition of nanofillers with high conductivity 
(CNTs/graphene/CNFs/metal and other fillers) into the pol-
ymers, the electrical conductivity and mechanical strength 
of the resultant composites are further improved. However, 
dispersion of nanofillers in polymers is a challenging work 
as van der Waals attraction among carbonaceous fillers 
would cause agglomerations in the polymers. Therefore, 
addressing the interface interaction issue between these 
fillers and polymer matrix is crucial. Besides, some fibrous 
fillers, such as CNTs and CNFs, present a long structure, 
but they may transform into curved ones because of duc-
tility during the mixing process, which further increases 
viscosity. To alleviate these problems, appropriate blend-
ing process is also needed along with surface treatment. 
To sum up, surface treatment and better mixing method of 
filler are very important to obtain a good EMI shielding for 
polymer-based composites. The improved wettability of the 
filler reduces the matrix viscosity, requiring smaller shear 
stress for filler decentralization in the matrix. This creates 
multiple contacts between the entangled structure, and the 
filler in the matrix creates more paths that facilitate elec-
trons to move efficiently through the insulating polymer. 
Nevertheless, appropriate mixing mechanisms and equip-
ment is challenging in order to achieve such a dispersion 
in mass production. As described in the literature, it is a 
challenging to improve structure performance with supe-
rior EMI shielding effect under the premise of low quality 
and low cost.

Based on the above discussion, some prospects concern-
ing the flexible EMI shielding materials are proposed and 
summarized as follows:

 (i) Exploring more novel materials for flexible EMI 
shielding. Besides the materials discussed above, 
there are some other emerging materials which are 
promising for flexible shielding applications. For 
example, the atomic sheets of boron, called boro-
phene, have shown even more favorable electrical 
and mechanical properties than graphene [160]. 
Calculations reveal that corrugated borophene could 
conduct electricity more easily along the ridge direc-
tion than across them, and is also stiffer in this direc-
tion than graphene, which suggest its great prom-
ise as a new EMI shielding material. What is more, 
phosphorene, liquid metallic/ionic foams are also 
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holding great promise as future flexible EMI shield-
ing [161].

 (ii)  Controllable fabrication. The adjustable fabrication 
and optimization of EMI shielding constituent with 
designed structure are fundamental for developing 
the flexible and efficient shielding material. Cur-
rently, it is difficult to obtain stable and reproduc-
ible materials with precisely controlled morphology, 
porous structure and multiple interfaces, especially 
for those sophisticated multilayer or 3D structures 
such as hydrogels, aerogels and foams that hold great 
potential for next-generation SEA-dominant shield-
ing materials and devices. More importantly, from an 
industrial viewpoint, the fabrication of typical shield-
ing materials such as MXene is not environmentally 
friendly and cost-effective because it usually requires 
longtime hydrofluoric acid etching, which is quite 
energy-consuming, time-consuming and dangerous 
to workers. Meanwhile, the complicated fabrication 
details, along with unclear synthetic mechanisms 
have also hindered the scaling up of production of 
current EMI shielding materials toward practical 
applications and commercial usage.

 (iii)  In-depth understanding of shielding mechanisms for 
"green EMI shielding." The fundamental insights of 
the composition–structure–property relationship 
are vital for further optimization of SE. This is the 
prerequisite for developing highly efficient flexible 
shielding materials. Currently, the mechanisms of 
EMI shielding still need to be further studied. Par-
ticularly, the future trend of EMI shielding materials 
is low SER and high SEA, i.e., "green EMI shield-
ing." Most of the current EMI shielding materials 
are dominated by reflection, which comes from high 
electrical conductivity, while such high reflection 
will result in secondary pollution of electromag-
netic radiation. However, it is still an arduous task to 
search for more high-absorption and low-reflection 
materials and develop absorption-dominated EMI 
shielding mechanisms. In this regard, some advanced 
techniques such as electron holography could be 
helpful for revealing the magnetism-related interfa-
cial phenomena toward enhanced "green EMI shield-
ing" performance [162, 163]. On the other hand, it 
is difficult to implement the absorption, conversion 
and storage of electromagnetic energy simultane-
ously to realize the energy recycling. To date, there 
are still few reports on this meaningful topic. Thus, 
MXene as an emerging type of materials which pre-
sents amazing performance as a variety of catalysts 

and supercapacitor electrodes [164], may bring about 
some breakthroughs in the near future.

 (iv) Toward multifunctional and practical applications. 
Till now, highly efficient flexible shielding materials 
have been extensively studied. The multifunctional 
level has also been constantly extended from TC 
and hydrophobicity to transparency, sensing even 
multiple functions. However, these materials were 
mostly tested at the laboratory level, while there is 
still a large gap to practical production. In this regard, 
the cost control and standardization are two most 
important prerequisites for scale-up of the produc-
tion. For cost control, both the selection of EMI flex-
ible shielding material and the consequent process-
ing, including design, fabrication and optimization 
of multifunctional properties need to be considered 
more economically. For example, as reported high-
performance material for flexible EMI shielding, 
MXenes are quite expensive, and their fabrication 
processes are usually quite complicated, which need 
to be fulfilled at extremely harsh, energy-consuming 
and time-consuming conditions. One possible way 
to solve the problems is to reduce the concentration 
of electrical or magnetic conductive filler in a well-
designed 3D scaffold. It could significantly reduce 
the using amount of MXene, bringing about more 
cost-effective, low-density flexible shielding materi-
als. Moreover, the controlled porosity can help dis-
perse the conductive species selectively and thereby 
optimize the generation of conductive network at a 
lower MXene amount to achieve superior shield-
ing performance. In another concerned respect, for 
standardization, it is of great significance as well 
for multifunctional and practical usage of the cur-
rent laboratory-level shielding materials because it 
can ensure the stability and reliability with regard to 
both the production and usage of the materials and 
devices.

We believe that there is huge space for further develop-
ment of flexible EMI shielding materials, and this review 
offers some guidelines for future research on construction of 
next-generation flexible and multifunctional EMI shielding 
materials with high performance.
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