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Supplementary Figures 

 

Fig. S1 The fabrication procedures of the ITM through electrostatic spinning process; The 

ITM is fabricated by two-step electrospinning technology; (i) The electrospinning process of 

the ionic electrode layer; (ii) The electrospinning process of the TPU layer. The TPU 

nanofibers were electrospun directly on the above electrode layer 

 

Fig. S2 Thickness characterization of the ITM; The thickness of the ITM membrane measured 

by the step profiler; The roughness of the surface is attribute to three-dimensional hierarchical 

stacked nanofiber networks 
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Fig. S3 Permeability property of the ITM; Water vapor permeability property of the pure TPU 

triboelectrification layer, ionic nanofibers electrode and the ITM membrane 

 

Fig. S4 Optical transmittance characterization; Optical transmittance spectra for the pure TPU 

triboelectrification layer, ionic nanofibers electrode and the ITM membrane 

 

Fig. S5 Stress-strain curve; Stress-strain curve of the ionic nanofiber electrodes with 

[EMI][TFSI] concentration of 30% and 50% 

It was observed that stress-strain curves decrease when increasing the concentration of 

EMITFSI in ionic nanofiber electrodes, and we ascribe the decreases to the finer nanofibers 

diameter. As shown in Fig. 2e-f, it was found observed that the addition of ionic liquid gives 

rise to the finer nanofibers. Under the same conditions for the electrospinning process, the 

resultant diameter for the pure TPU nanofiber is around ~610 nm, the diameter for the ionic 

electrode nanofiber (with 60% ionic liquid) is around 150~210 nm. In this regard, we infer that 

reduced mechanical strength of the ionic electrode film results from finer nanofibers.  
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Fig. S6 Cyclic performance of the ionic electrode; a The relative resistance variations of the 

ionic electrode against cyclic strain at 40%; b The relative resistance variations of the ionic 

electrode against cyclic strain at 60%; c Conductivity variations of the ionic electrode after 

storage for three weeks at room temperature 

 

Fig. S7 SEM characterization of the surface morphology of the ITM; a SEM images for the 

initial surface morphology for the ITM; b SEM images for the ITM surface after being 

stretched over 20000 cycles (Scar bar is 50 μm) 

 

Fig. S8 The output performance of the ITM when the TPU triboelectrification layer was fixed 

at 2 μm; a Open-circuit voltage; b Short-circuit current; c Transferred charges and d 

Normalized output of the ITM when varying the thickness of the ionic  electrode  

http://springer.com/40820


Nano-Micro Letters 
 

S4/S15 

 

 

Fig. S9 Measured 𝐷𝐴𝐼; Measured 𝐷𝐴𝐼 derived from the 29 complete pulse periods 

 

Fig. S10 Durability test of the ITM after contacting for 30000 cycles; a Open-circuit voltage 

of the ITM after contact-separation for 30000 cycles; b SEM images of the ITM surface after 

contact-separation cycles (Scar bar is 10 μm) 

Figure S10 shows the open-circuit voltage of the ITM, and the SEM characterization of the 

ITM surface morphology after 30000 contacting cycles. Results showed that the output can 

maintain over 68% of the initial level after contact-separation for over 30,000 cycles. And the 

SEM images imply that, applied pressure caused by frequent contacts would make the 

nanofibers film become more tight and compacted, but no fiber fracture is observed after 30,000 

contacts 
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Fig. S11 Durability test of the ITM after sliding for 40000 cycles; a Open-circuit voltage of 

the ITM after sliding for 30000 cycles; b SEM images of the ITM surface after sliding cyclic 

test (Scar bar is 10 μm) 

Figure S11 shows the open-circuit voltage of the ITM, and the SEM characterization of the 

ITM surface morphology after 40000 sliding cycles. Results showed that the output can 

maintain over 70% of the initial level after sliding for 40,000 cycles. Although showing a little 

attenuation, it’s reasonably to believe that this output attenuation is acceptable and reasonable, 

since no encapsulation strategy was utilized in order to maintain the great breathability of our 

device. And due to the simple and cost-effective fabrication strategy, the ITM can also be used 

as disposable product for short-time usage. In this sense, the durability/stability for the ITM 

(under tens of thousands of cycles) is enough to support short-time (for one or several days) 

service. Indeed, we know that there’s room for improvement of the ITM in stability and 

durability performance. And it’s believed to be further optimized by materials modification and 

structure design in future explorations. 
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Fig. S12 Durability test of the ITM after bending for 30000 cycles; a Open-circuit voltage of 

the ITM after bending for 30000 cycles; b SEM images of the ITM surface after bending 

cyclic test (Scar bar is 10 μm) 

Figure S12 shows the open-circuit voltage of the ITM, and the SEM characterization of the 

ITM surface morphology after 30000 bending cycles. Results showed that the output can 

maintain over 90% of the initial level after bending for 30000 cycles. And the SEM images 

imply no obvious morphology changes of the nanofibers film, and no fracture is observed in 

the fibers after 30000 bending tests. 
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Fig. S13 Durability test of the ITM after stretching for 20000 cycles; a Open-circuit voltage 

of the ITM after stretching for 20,000 cycles; b SEM images of the ITM surface after 

stretching cyclic test 

For the stretching cyclic tests, we measured the output performance of the ITM under different 

stretched states (from 0% to 60%), the open-circuit voltage can maintain 52% of the initial 

value when the ITM was stretched to 60% state (Fig. S13a). Then, we tested the performance 

of the ITM after stretching to 50% for 20,000 cycles, the output is 86% of the initial level, as 

demonstrated in Fig. S13b. SEM images in Fig. S13c demonstrate that, when the nanofiber film 

is stretched under external strain, the nanofibers are driven to directional alignment while no 

fibers fracture is observed. The contrastive SEM images of the ITM surface before (Fig. S13d) 

and after stretching (Fig. S13e) are consistent, indicating the great stability of the ITM. 

 

Fig. S14 Durability test of the ITM under humidity conditions; Open-circuit voltage of the 

ITM under different humidity conditions  

Figure S14 presents the output of the ITM under different humidity conditions, from 30% to 

90%. Since triboelectrification is mainly surface phenomenon, therefore open-circuit voltage 

of the ITM is distinctly affected by the environmental humidity and perspiration. But, the ITM 

also maintain over 28% of the initial value even under 90% humidity, and the output can recover 

to the initial value after the humidity recovered. 
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Fig. S15 Durability test of the ITM under perspiration conditions; The photographs of the 

ITM attached on the finger joint under dry and perspiration conditions (top); Cyclic output 

tests of the ITM under sweating conditions (down) 

The output performance of the ITM under perspiration condition is shown in Fig. S15 Under 

sweating conditions, our ITM also demonstrates decent output after working for 3000 cycles. 

All these results prove that our ITM is suitable for on-skin and epidermal devices, it not only 

has the imperceptible and breathable structure, but also demonstrates excellent stability during 

daily activities. 

 

Fig. S16 Sensitivity of the ITM for acoustic energy sensing; The relationship between open-

circuit voltage of the ITM and the sound pressure level (SPL) 
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Fig. S17 Acoustic testing by the ITM; a Photograph of the PTFE film with acoustic holes 

distributed. (Scale bar: 1 cm); b Optical microscope photograph of the acoustic holes; c The 

gap between the acoustic holes; d Structure scheme of the Helmholtz resonant cavity for 

harvesting acoustic energy 

 

Fig. S18 Open-circuit voltage measured from the ITM with and without the PTFE film (with 

SPL of 55.7 dB and frequency of 110 Hz) 
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Fig. S19 Typical voltage signal of the ITM under the variable acoustic frequency; The 

relationship between open-circuit voltage of the ITM and the sound frequency (sweeping 

frequency ranges from 70 to 5000 Hz; sound intensity is 87.3 dB SPL) 

 

 

Fig. S20 Waveform and frequency spectrogram signals of melody “March of the Volunteers” 

extracted by the ITM; Real-time voltages capture and display of the decoded frequency-domain 

information 
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Table S1 Comparison of different environmental energy harvesters 

Energy harvesters Materials/structure 
Power density 

(W/kg) 
Refs. 

TEG carbon nanotube (CNT) fibers 1.9 [S1] 

TEG glass fabric 2.8 [S2] 

TEG carbon nanotube yarn 697×10-3 [S3] 

TEG reduced graphene oxide sheets 4.19×10-3 [S4] 

Photovoltaic Harvester perovskite solar cells 23×103 [S5] 

Photovoltaic Harvester organic photovoltaics 11.46×103 [S6] 

Photovoltaic Harvester PbS colloidal quantum dots 15.2×103 [S7] 

Photovoltaic Harvester nanocellulose paper-based perovskite solar cells 0.56×103 [S8] 

PEG PVDF/a multilayer and multistep configuration. 15.4×10-3 [S9] 

PEG 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 0.88 [S10] 

PEG PVDF/rGO/BT fibers 3 [S11] 

Electrochemical Harvester carbon nanotube yarn twist 0.25×103 [S12] 

Electrochemical Harvester hierarchically twisted carbon nanotube yarn 0.65 [S13] 

Electrochemical Harvester three-dimensional graphene aerogel 11.7 [S14] 

Electrochemical Harvester carbon nanotube yarn 5.3 [S15] 

EMG metal Cu and PA film/rotating-disk structure 24×10-3 [S16] 

EMG 
Au electrode and PTFE film/ rotating-disk 

structure 
180×10-3 [S17] 

EMG metal Al and PA film/contact-separation structure 5.31 [S18] 

TENG 
Au electrode and PTFE film/ rotating-disk 

structure 
1152×10-3 [S17] 

TENG metal Cu and PA film/rotating-disk structure 119×10-3 [S16] 

TENG 
Nylon and PVDF nanofibers/contact-separation 

structure 
0.28 [S19] 

TENG metal Al and PA film/contact-separation structure 0.48 [S18] 

TENG TPU/S-TENG of contact-separation structure 895 
This 

work 

TEG: thermoelectric generator; PEG: piezoelectric generator; EMG: electromagnetic generator; 

TENG: triboelectric nanogenerator; S-TENG: single-electrode triboelectric nanogenerator; 

PVDF: polyvinylidene fluoride; rGO: reduced graphene oxide; BT: barium-titanium oxide; PA: 

polyamide; PTFE: polytetrafloroethylene 
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Table S2 Comparison of different polymer nanofibers based on electrostatic-spinning 

technology 

Materials  

Young’s 

Modulus 

(MPa) 

Tensile 

strength 

(MPa) 

Elongation 

at break (%) 
Refs. 

Collagen 1.5 22 2 [S20] 

CA 1170 12.1 1.31 [S21] 

Nylon 6 19.4 10.45 250 [S22] 

Nylon 6,6 20.9 6.5 140 [S23] 

PET 60 3.7 - [S24] 

PCL 3.8 4.5 170 [S25] 

PLA 8.7 0.76 - [S26] 

PMMA 12.9 0.3 - [S23] 

PU 45 4.5 - [S27] 

PVA 175 5.8 102 [S28] 

PVC 12.3 2.2 90 [S23] 

PVDF 168.9 3.7 - [S29] 

PVDF-HFP 10 10 - [S30] 

TPU 13.3 17.34 183 This work 

 

Note 1:  

To better convey the advantages of our ITM, the differences between the developed ITM and 

other reported triboelectric mechanoreceptors are listed as below:  

1. The ITM can achieve versatile epidermal applications in single device. We demonstrate 

the ITM applying for mechanical energy harvesting, radial artery pulse monitoring, human 

activities monitoring, acoustic energy harvesting and biometric applications. More importantly, 

all these functions are performed in one single ultralight and breathable device. However, 

previous triboelectric mechanoreceptors are reported to achieve only one or two of these 

functions. For instance, some mechanoreceptors are unable to detect subtle pulse signals (with 

three distinct peaks), and others mechanoreceptors show inability for biometric applications.  

2. The ITM shows high weight specific power density in harvesting mechanical energy. 

For previous mechanical energy harvesters, they need either sophisticated and bulk structure 

design or extra power management circuits to achieve desirable power density. [31-36] For 

our ITM, we achieve high-performance with an ultrathin and ultralight device. As 

summarized in Table S1, we compared the different energy harvesters. As a result, our ITM 

shows high weight specific power density compared with other mechanical energy harvesters; 

and also holds comparable performance advantages when referring to other cutting-edge 

environmental energy technologies. 
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