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S1 Experimental Section 

S1.1 Characterizations  

FTIR spectra of various paper samples were performed on a FTIR spectroscopy (Antaris, 

Nicolet 7000) in the range of 600 to 4000 cm-1. XPS spectra of samples were used to identify 

the elemental compositions with a photoelectron spectrometer (VG Scientific ESCALab 220I-

XL). XRD results were recorded on a D/Max 2550 V X-ray diffractor (Rigaku, Japan). The 

morphologies of the samples were characterized by scanning electron microscopy (SEM) 

(Sigma-500, ZEISS). The tensile properties of various paper samples were tested by a DMA 

(TA-Q800) at strain rate of 100 μm·min-1. The thermal properties of the samples were 

performed using thermogravimetric analysis (TGA) (TA Instruments Q500), and the paper 

samples were scanned from 35 to 750 °C with a heating rate of 10 °C/min under air atmosphere. 

The thermogravimetric analysis/infrared spectrometry (TG-IR) was performed using the TGA 

Q500 thermogravimetric analyzer which was coupled with the Nicolet 6700 FT-IR 

spectrophotometer via the transfer line, the heating rate is 20 °C min-1. Electrical resistance 

transition behaviors of the various paper samples were recorded via connecting a multimeter 

(ESCORT 3146A) used typical two electrode method. Fire warning performance of paper 

samples (6 mm width and 20 mm length) was based on homemade alarm system via connecting 

with wires, an alarm lamp and a low voltage power supply (~24 V). The surface hydrophobic 

properties of various PU samples before and after hydrophobic treatment were obtained with a 

DSA30 CA analyzer (Kruss, Germany) using a 3 μL water droplet. The reciprocating friction 

and wear tests were conducted by a UMT-2 Universal Micro-Triboteste under room 

temperature condition. A friction velocity of 50 mm s-1, friction distance of 10 mm and a normal 
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load of 0.5 N were applied to the specimen. The LOI values f PU composites coated FR coatings 

were measured using a JF-3 type oxygen index meter in accordance with ASTM Standard 

D2863-2009 (size: 100×10 ×10 mm3). The combustion behaviors of the samples (100×100

×10 mm3) were carried out by a cone calorimeter device (Fire Testing Technology, UK) 

according to ISO Method 5660 under a heat flux of 35 kW/m2. The infrared images of the PU 

foam samples during burning tests were recorded using an infrared camera (Fuluke Ti450 pro). 

S2 Supplementary Figures and Tables 

 

Fig. S1 Typical cross-sectional SEM image of pure GO paper, showing multi-layered 

structure 

 

Fig. S2 Typical SEM image of GO sheet, showing wrinkled morphology structure 

 

Fig. S3 XPS N1s spectra of GO/HCPA paper, indicating the existence of chemical interaction 

between GO and HCPA molecules 
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Fig. S4 Cross-sectional SEM image of G1H1 paper. Compared to G1H0.50 paper with compact 

layered structure, with a higher content of HCPA, the obvious cracks can be observed in 

cross-sectional structure of G1H1 paper, which may lead to the decreased mechanical strength, 

indicating that the bonding interaction among GO sheets becomes weak 

 

Fig. S5 Combustion process of various paper samples, showing improved flame retardancy 

with the addition of HCPA 

 

Fig. S6 Surface SEM image of pure GO paper after being burned, damaged structure can be 

easily observed and many obvious microcracks appeared on its surface zone, indicating its 

poor flame retardancy and thermal stability 
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Fig. S7 Digital image of GO/HCPA paper after being burned, it still can be bent beyond 90°, 

showing a certain extent of structural stability 

 

Fig. S8 Digital photographs of GO paper and GO/HCPA paper before and after 300 °C for 10 

min. Compared with the damaged structure of pure GO paper after treatment, the structural 

integrity of GO/HCPA can well kept, indicating that the introduction of HCPA can improve 

thermal stability of GO network effectively 

 

Fig. S9 a, b Typical cross-section and c, d surface SEM and corresponding EDS mapping 

images of G1H0.50 paper after burning, indicating P and N-doped phenomena in rGO network 
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Fig. S10 XPS P2p spectra of G1H0.50 paper after being burned 

 

Fig. S11 Photographs of high-temperature warning process of G1H0.50 paper under the 

temperature of 350 ℃, showing ultra-fast alarm response time of ~1s 

 

Fig. S12 Schematic illustration for interfacial H-bonding between poly(VS-co-HEA) and the 

PU foam substrate 
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Fig. S13 Cross-section SEM image of PU foam coated with FR coatings 

 

Fig. S14 Digital and corresponding contact angles photos (inset) of FRPU samples a before 

and b after hydrophobic treatment 

 

Fig. S15 IR spectra of hybrid flame-retardant coating on FRPU foam surface. Due to surface 

hydrophobic treatment, a strong peak at ~1200 cm-1 can be observed, which is assigned to C-F 
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Fig. S16 Raman spectra of hybrid flame-retardant coating on FRPU foam surface. Compared 

to the GO/HCPA system, the characteristic D peak and G peak of hybrid coating system were 

shifted to lower wavenumber (from 1359 to 1342 cm−1 and 1604 to 1575 cm−1, respectively), 

which may induce by surface hydrophobic treatment 

 

Fig. S17 XPS C1s spectra of hybrid flame-retardant coating on FRPU foam surface. The C1s 

core level spectrum shows shifted characteristic peaks of oxygen-containing groups and C-

C/C=C, i.e., C-OH (284.7 eV), C-O-C (285.9 eV), C=O (286.7 eV), besides, the presence of C-

Si, C-F2, and C-F3 bonds is attributed to saline chain, indicating the successful surface 

hydrophobic functionalization 
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Fig. S18 Surface SEM image of hybrid flame-retardant coating on FRPU foam and 

corresponding EDS mapping images for C, N, O, F, Si and P, respectively. Evenly distribution 

of F and Si element can be observed on foam surface 

 

Fig. S19 Friction coefficient curve of FR coating coated on RPU foam surface. It can be found 

that the curve tends to be stable after 200 s, and the friction coefficient value remains almost no 

change in the later process. The result shows that the average friction coefficient value of FR 

coating is only about 0.28, besides, the wear rate is 0.061 (10-3 cm3/N·m), indicating a certain 

extent of wear resistance property of such FR coating 

 

Fig. S20 Inner cross-sectional morphology of various PU foam samples after 30 min alcohol 

lamp flame attack 
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Fig. S21 Digital photos of various PU foam materials for LOI test 

 

Fig. S22 Typical digital images of combustion behaviors of foam samples at a fixed oxygen 

concentration of 27% in the container: (a) pure PU foam and (b) FRPU-2.0 sample coated FR 

coating 

 

Fig. S23 Total heat release as a function of time of various PU foam materials 
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Fig. S24 Digital photos of residue chars for a pure RPU foam b FRPU-2.0 and c FRPU-4.0 

 

Fig. S25 Combustion behaviors of various samples. a (i) pristine natural wood and (ii) modified 

wood coated flame retardant coating with a content of 3 mg/cm2; b (i) pure FPU foam (ii) and 

modified FPU foam coated flame retardant coating with a content of 20 wt%. Clearly, besides 

rigid PU foam material, such fireproof coating also exhibits desirable flame retardant efficiency 

when applied in other various combustible materials e.g., rigid natural substrate and flexible 

polymer foam substrate 

Table S1 Tensile properties of pure GO paper and various GO/HCPA nanocomposite papers 

Sample 
Tensile strength 

(MPa) 
Elongation at break (%) 

Toughness 

(MJ/cm3) 

GO paper 40.9±3.6 1.2±0.2 2.46±0.2 

G1H0.10 paper 53.6±5.6 1.3±0.2 3.94±0.4 

G1H0.25 paper 68.8±7.4 1.6±0.3 6.0±0.7 

G1H0.50 paper 94.7±8.3 2.2±0.2 13.9±1.8 

G1H1 paper 58.5±3.3 1.7±0.2 5.6±0.4 
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Table S2 Comparison of mechanical strength of GO/HCPA paper and other similar GO-based 

paper nanocomposites 

Sample 
Tensile strength 

(MPa) 

Elongation at break 

(%) 

Toughness 

(MJ/cm3) 
Refs. 

rGO/PDA paper 25.0  ~2.6 NM [S1] 

Cellulose/GO film ~89 ~5.9 NM [S2] 

Filtrated GO paper ~34 ~0.13 NM [S3] 

PDDA-GO/ND paper 11.32 ~0.38 4.71 [S4] 

GO/TA/P-CNFs paper ~132 ~1.2 NM [S5] 

ZHS/GO/PVC 

nanocomposite 
14.3±0.3 NM NM [S6] 

rGO paper (11) ~34 ~3.0 NM [S7] 

SPI/MSF-g-COOH/CA/GN 

film 
23.32 10 NM [S8] 

GO/BP-MoS2 film 19.5 2.5 34.50 [S9] 

GO/BP-NH2 film 21.04 2.85 42.70 [S10] 

GO/HCPA paper 94.7±8.3 2.2±0.2 13.9±1.8 This work 

Notes: rGO: reduced graphene oxide; PDA: polydopamine; PDDA: poly 

(diallyldimethylammonium chloride); ND: nanodiamond; TA: tannic acid; P-CNFs: 

phosphorylated-cellulose nanofibrils; ZHS: zinc hydroxystannate; PVC: poly (vinyl chloride); 

rGO paper (11): reduced GO paper from GO suspension with PH value of 11; SPI: soy protein 

isolate; MSF-g-COOH: sisal cellulose microcrystals; CA: citric acid; GN: graphene nanosheets; 

BP: black phosphorene; MoS2: molybdenum disulfide; BP-NH2: amino-functionalized black 

phosphorene. 

Table S3 Cone calorimetry data of PU, FRPU-2.0 and FRPU-4.0 

Sample pHRR (kW/m2) THR (MJ/m2) Residual mass (%)  

PU 323 59.54 16.7 

FRPU-2.0 203 43.83 42.0 

FRPU-4.0 130 38.77 45.4 

pHRR: peak heat release rate; THR: total heat release; TSR: total smoke release. 

 

Table S4 The LOI value and UL94 rating of various foam samples 

Sample LOI (%) UL94 rating  

PU 18.4±0.3 NR 

FRPU-1.0 26.7±0.4 NR 

FRPU-2.0 30.4±0.3 V1 

FRPU-3.0 33.7±0.4 V0 

FRPU-4.0 36.5± 0.3 V0 
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