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Ultrahigh Density of Atomic CoFe‑Electron Synergy 
in Noncontinuous Carbon Matrix for Highly 
Efficient Magnetic Wave Adsorption
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Huabin Zhang2 *, Ke Pei3, Renchao Che3 *

HIGHLIGHTS

• A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in 
the range of 1 nm–15 μm.

• The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale vari-
able capacitors.

• The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation.

ABSTRACT Improving the atom utilization of metals and clarify-
ing the M–M’ interaction is both greatly significant in assembling 
high-performance ultra-light electromagnetic wave-absorbing 
materials. Herein, a high-temperature explosion strategy has been 
successfully applied to assemble the hierarchical porous carbon 
sponge with Co–Fe decoration via the pyrolysis of the energetic 
metal organic framework. The as-constructed hybrid displays a 
superior reflection loss (RL) value of − 57.7 dB and a specific RL 
value of − 192 dB  mg−1  mm−1 at 12.08 GHz with a layer thickness 
of 2.0 mm (loading of 15 wt%). The off-axis electron hologram 
characterizes the highly distributed numerous polarized nanodo-
main variable capacitors, demonstrating the dipole and interfacial 
polarization along the edges of the nanopores. More importantly, 
the X-ray absorption spectroscopy analysis verifies the mutual 
interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic 
wave absorption.

KEYWORDS Electromagnetic wave-absorbing materials; Off-axis electron hologram; M–M’ interaction; Hierarchical porous 
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1 Introduction

With the rapid development of 5G technology, numerous 
electronic devices that rely on electromagnetic waves (EWs) 
as information carriers have been widely applied in vari-
ous fields [1–5]. Despite their significant contributions to 
global communication, these equipment and devices also 
bring severe radiation pollution [6–11]. Hence, high-perfor-
mance EW-absorbing and shielding materials [12–16] have 
emerged as research hotspots, showing promising applica-
tions in civilian and military fields, such as radiation protec-
tion [17–20] and military stealth coatings [21–26].

Recently, a wide variety of electromagnetic wave-absorb-
ing materials (EWAMs) have been exploited [27], including 
carbon-based nonmetallic materials [28–30], polymers [23, 
31, 32], metallic carbides [33–37], oxides [38–41], nitride 
[42], sulfides [43–45], and their composites. Among them, 
magnetic metal/carbon composites combine both the mer-
its of the high conductivity of the carbon matrix and the 
excellent magnetism of metallic compounds, displaying 
superb EW-absorbing performance through the great bal-
ance between dielectric loss and magnetic loss [46–49].

In designing and synthesizing this kind of EWAM, select-
ing the metals and controlling their proportion, distribu-
tion, and existence form in the carbon matrix are critical to 
achieve high EW absorption [50]. In particular, to satisfy the 
high demands of thinness, lightweight, and low cost, many 
strategies have been employed to decrease the metal pro-
portion without sacrificing the EW-absorbing performance 
[51, 52]. In addition, reducing the size of metallic particles 
and embedding them in a highly homogeneous matrix can 
effectively prevent aggregation [53–55].

Some successful approaches have been demonstrated 
in recent years. For example, a cage-confinement strategy 
has successfully assembled tiny  MnO2 nanoparticles into 
two-dimensional (2D) support [56, 57]. Moreover, cycled 
annealing treatment on embedded Sn nanocrystals realized 
the multisplitting of nanoparticles, obtaining a size reduc-
tion and phase conversion [58]. In the future, simple and 
facile synthesis approaches of these fine nanoscale materials 
are crucial to promoting their industrial applications, which 
deserve further investigation [59]. Besides, the hierarchical 
porous nanomaterials generally result in great balance of 
electromagnetic wave reflection and adsorption through the 
air-filled nano-/meso-free spaces which could be obtained 

through the bottom-to-up way by employing hard porous 
template and the top-to-down method by using energetic 
precursors [60].

In addition, introducing multiple types instead of a single 
kind of metal into a composite could enhance the magnetic 
loss through the electromagnetic coupling effect between dif-
ferent metals, which is also an efficient way to enhance the 
EW attenuation performance [61, 62]. Thus far, many CoFe- 
or CoNi-bimetallic nanomaterials with special morphologies 
have exhibited highly improved EW-absorbing performance 
[63–66]. Additionally, the important polarization and elec-
tromagnetic synergistic effect among the interfaces of various 
magnetic particles in these materials has been proved and 
instrumentally observed by off-axis electron hologram and 
charge density map [67, 68]. However, the objects involved in 
these studies remain at the nanoscale, such as nanoparticles 
or nanointerfaces. The unclear arrangements and locations of 
metal sites in these materials create many barriers in hinder-
ing the investigation of the M–M’ interaction and designing 
bimetallic EWAMs at the atomic level [69]. Hence, a suit-
able material platform with highly distributed atomic metal 
sites must be constructed, which is helpful in unveiling the 
coupling mechanism of the M–M’ interaction.

Herein, by employing 1,2,3-triazole (with N–N = N bond) 
as a ligand, a high-crystalline energetic metal organic frame-
work (MOF) with low CoFe proportion was synthesized 
as a precursor (CoFe@MET) to construct highly efficient 
EWAMs (Scheme 1). Owing to the energetic  N3-bond in 
the precursor, CoFe@MET was in situ transformed into 
an atomic CoFe-doped atypical 3D porous carbon sponge 
(CoFe@PCS) during the high-temperature explosion pro-
cess. The characterizations revealed the continuous distri-
bution of hierarchical pores in the range of 1 nm–15 μm 
in the carbon matrix, providing an ideal platform for the 
homogenous dispersion of atomic Co and Fe (~ 0.6 wt%) 
sites and the related Co-Fe interactions. The off-axis elec-
tron holography demonstrated the polarization and electron 
coupling along the nanopores in CoFe@PCS, greatly pro-
moting EW absorption. At a low loading of 15 wt%, CoFe@
PCS displayed a high reflection loss (RL) value of − 57.7 dB 
and a specific RL value  (SRL) of − 192 dB  mg−1  mm−1 at 
12.08 GHz under the layer thickness of 2.0 mm. More impor-
tantly, the extended X-ray absorption fine structure (EXAFS) 
and X-ray absorption near-edge structure (XANES) revealed 
the coordination and bonding information around the Co 
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and Fe atoms on the carbon matrix, presenting an excellent 
example of the atomic-scale structure design.

2  Experimental Section

2.1  Synthesis of CoFe@MET Precursor

The  ZnCl2 (5.0 g) was dissolved in a mixture of ethanol 
(50 mL), water (75 mL), ammonium hydroxide (25–28%, 
20 mL), and N, N-dimethylformamide (50 mL), stirring for 
10 min. Afterward, 1H-1,2,3-triazole (6.26 mL) was slowly 
dropped into the solution during stirring. After 24 h of stir-
ring at room temperature, the white product of MET was 
generated and filtered. Then, the MET (2.0 g) powder was 
immersed into a solution of Co(CH3COO)2·6H2O (0.72 g), 
 FeCl2 (0.49 g), and methanol (200 mL), stirring at room 
temperature for 6 h. The light pink powder was filtered and 
washed using ethanol three times. After vacuum drying at 
60 °C for 8 h, CoFe@MET was collected with a yield of 
62%. In contrast, the Fe@MET and Co@MET precursors 
were synthesized, and the synthesis details are listed in sup-
porting information.

2.2  Synthesis of CoFe@PCS

The as-prepared 2.0  g CoFe@MET was placed into a 
ceramic boat and then the programmed tube furnace. It was 
heated to 900 °C at a heating rate of 5 °C  min−1 under a 
nitrogen atmosphere. Afterward, the furnace was maintained 
at 900 °C for 2 h and then naturally cooled to room tempera-
ture. The ultra-light black powder of CoFe@PCS (0.16 g) 
was successfully synthesized. Similarly, Fe@PCS and Co@
PCS were synthesized (details in supporting information).

2.3  Characterizations

A D8 DaVinci X-ray powder diffractometer (XRD) 
equipped with graphite-monochromatized Cu Kα radiation 
(λ = 0.1542 nm) was used to record the XRD patterns in 
the 2θ range of 5–80° with a scanning rate of 1°  min−1. 
The Brunauer–Emmett–Teller method calculated the spe-
cific surface area through nitrogen adsorption and desorp-
tion at 77 K using the ASAP 2020 sorption system. The 

scanning electron microscopy (SEM) images were collected 
using a Hitachi S4800 apparatus with an acceleration volt-
age of 2 kV. The transmission electron microscopy (TEM) 
images were recorded on JEM-2100F, JEM-2010HR, and 
FEI Talos F200X, working at an accelerating voltage of 
200 kV, and the X-ray energy-dispersive spectroscopy was 
taken on a JEM-2010HR-Vantage-type energy spectrometer. 
The XPS was implemented on a Thermo ESCA Lab250XI. 
The Raman spectroscopy of the samples was obtained using 
a Renishaw via a Raman microscope. The electromagnetic 
parameters were analyzed using an HP8753D vector network 
analyzer in the frequency range of 2–18 GHz. The measured 
samples were homogeneously dispersed in paraffin with a 
sample-to-paraffin weight ratio of 3:17, and the mixture 
was pressed into a toroidal shape with an inner diameter of 
2.0 mm and an outer diameter of 7.0 mm. The conductiv-
ity of the samples (1 × 1  cm2) was performed through an 
ST2253 four-probe resistance meter. The hysteresis loop of 
the materials was tested using a superconducting quantum 
interference device MPMS (SQUID) VSM magnetometer. 
The absorption spectra of the Mo-edge were collected in 
transmission mode at room temperature using an Si (111) 
double-crystal monochromator at the 1W1B station of the 
Beijing Synchrotron Radiation Facility.

2.4  Data Analysis

The reflection loss (RL) value of the absorber was calcu-
lated according to the transmission line theory. The polariza-
tion process was calculated using the Cole–Cole semicircle 
model. Polarization relaxation and charge transport in the 
dielectric loss were calculated using the Debye relaxation 
correction formula. The calculation details are listed in Sup-
porting Informations.

3  Results and Discussion

3.1  Construction and Characterization of CoFe@PCS

The synthesis procedure of the CoFe-embedded porous car-
bon sponge (CoFe@PCS) is illustrated in Fig. S1. Firstly, an 
energetic MOF (MET) crystallized from Zn and 1,2,3-tria-
zole  (N3) was immersed in a  Co2+ and  Fe2+ solution for 6 h 
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and was filtered out as precursor (CoFe@MET). In addition, 
CoFe@MET inherited the original morphology of MET, dis-
playing an octahedron with an average diameter of 100 nm 
(Fig. S2). The Co and Fe atoms were doped on the surface 
of the CoFe@MET crystals without changing the crystal-
line structure, which was confirmed via TEM (Fig. S6) and 
XRD investigation (Fig. S7). During the calcination process 
at the range of room temperature to 900 °C under nitrogen 
flow, the unstable N–N = N bonds in 1,2,3-triazole exploded 
at ~ 440 °C (Fig. S9), whereas the Co and Fe atoms were 
highly dispersed within the carbon matrix (CoFe@PCS) 
during the gas departure and volume expansion process 
(Fig. 1g). The point of the explosion and the decomposed 
temperature were evaluated using DSC and TGA.

After heat treatment, the precursor was in situ transformed 
into the hierarchical carbon sponge, which revealed an 
ultralow density (Fig. S18) and high porosity (Fig. 1). The 
SEM and TEM results (Fig. 1a–f) indicate that the diameters 
of the pores are continuously distributed within a wide range 
of 10 nm–15 μm, which was also demonstrated by the pore 
size distribution map fitted by  N2 adsorption–desorption 
isotherms (Fig. 1h). Such a hierarchical porous structure of 
CoFe@PCS provided an atypical 3D noncontinuous carbon 
matrix unlike other carbon composites, which facilitates 

high dispersion and efficient utilization of metals sites. More 
importantly, it may provide a great opportunity for generat-
ing atomic metal sites and studying the existing status of 
the M-M’ units.

3.2  Electromagnetic Wave‑Adsorbing Performance

In CoFe@PCS, a small number of Co and Fe atoms (0.344 
and 0.316 wt%, respectively) were inserted on the carbon 
surface in a highly dispersed manner. Owing to the high 
specific surface of CoFe@PCS, the doped metal sites in 
the carbon matrix brought a high density of dipole polar-
ized units, which reflected in the nanoscale are abundant 
nanodomain variable capacitors. As confirmed by off-axis 
electron holograms and the corresponding charge density 
map (Fig. 2a–c), the high distribution of charge polarization 
spaces is highly matched with the distribution of nanopores. 
Along with the white arrow in Fig. 2c, the polarized positive 
and negative charges (3 to 10 eV) are distributed on edges at 
both sides of the pores (~ 10 nm; Fig. 2d).

Generally, the loading amount of filler in a testing ring 
is in the range of 30–50% to achieve high EW adsorption. 
However, owing to the highly distributed atomic metal sites 
and ultralow density of CoFe@PCS, a small loading of 

Non-continuous carbon
matrix

200 nm

Nano-domain variable
capacitors

Ultra-high density of CoFe
electron synergy

High detonation velocity (D)
High detonation pressure (P)High crystallinity

2.012 ~ 2.086 Å

Coordination Bond

Orderly arrangement of Atoms & Bonds Fast decomposition and Gas release

Energetic Bond1,2,3-triazole

M

N
N

N N

Scheme 1  Material design strategy and characteristics of CoFe@PCS
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15 wt% was applied in this work. The reflection loss (RL) 
and |Zin/Z0| of the CoFe@PCS were calculated from the 
tested electromagnetic parameters through Eqs. S1–S2 
(Fig. 2e–g). To our delight, a high RL value of –57.73 dB 
at 12.1 GHz (Fig. 2e) and a wide effective adsorption band 
(<  − 10 dB) of 4.2 GHz (Fig. 2g) at the thickness of 2.0 nm 
were observed, indicative of the excellent EM absorption 
performance. For further comparison with other reported 
CoFe-based materials, the SRL value, which considers the 
loading and layer thickness of the test ring, was calculated 
according to Eq. S3 (Fig. 2l). In addition, CoFe@PCS dis-
plays a remarkable SRL of − 192 dB  mg−1  mm−1, which is far 
beyond the values for CoFe-based materials reported previ-
ously (Table S2). Moreover, unlike most metal/carbon com-
posite EWAMs, the ultralow density and metal proportion 

(only around at ~ 0.6 wt%) make it a promising light-weight 
EWAM.

Single-metallic Fe- and Co-embedded porous carbon 
sponges (Fe@PCS and Co@PCS) were synthesized as con-
trast samples to investigate the EW attenuation mechanism 
(Fig. S1). The electron microscope characterization of Fe@
MET and Co@MET precursors revealed similar octahedron 
morphology, particle size (Figs. S2–S6), and crystalline 
structure (Fig. S7) with CoFe@MET, while the Fe@PCS 
and Co@PCS after calcination also displayed the same hier-
archical porous structures as CoFe@PCS (Figs. S10–S16). 
Generally, the Co and Fe atoms in the precursors display dif-
ferent catalytic abilities in transforming graphitic carbon in 
the composite during high-temperature treatment. However, 
according to the PXRD and Raman results (Fig. S17), the 
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scarce metal content in these three precursors resulted in a 
negligible difference in the ID/IG ratios (0.96–1.03) in the 
final composites. Hence, the M@PCS in this work provides 
an ideal platform for evaluating the M-M’ interactions in the 
EW attenuation process due to the consistent nanostructures, 
except for metal sites.

The RL, 3D RL, and |Zin/Z0| values of three M@PCS sam-
ples were calculated and are illustrated in Figs. 2e–k and 
S18–S22. A higher RL value of CoFe@PCS (− 57.73 dB 
at 12.08 GHz) than the values of Co@PCS and Fe@PCS 
(− 29.68 dB at 6.64 and − 14.72 dB at 3.92 GHz) and a 
wider effective bandwidth (fe, frequency range of RL value 
below − 10 dB) of CoFe@PCS (4.2 GHz) than the values of 
Co@PCS and Fe@PCS (2.48 and 0.95) were observed, indi-
cating the superior EW attenuation of CoFe@PCS. These 

results demonstrate the key role of the M-M’ interaction in 
CoFe@PCS.

Therefore, the EM parameters calculation and relevant 
characterization of three M@PCS materials were conducted 
and analyzed to study the role of the M-M’ interaction in 
CoFe@PCS during the EW-absorbing process. The attenu-
ation constant (α), calculated using Eq. S4, is a parameter 
representing the attenuation ability of the materials, con-
sisting of dielectric loss and magnetic loss. As illustrated 
in Figs. 3 and S21, relatively stronger permittivity and per-
meability of Fe@PCS than those of CoFe@PCS and Co@
PCS were observed in the dielectric and magnetic loss 2D 
contour maps (Fig. 3a,b), which are fitted from tan δε and tan 
δμ values. These results were highly agreed with the attenua-
tion constant (Fig. 3c). The real part of the permittivity and 
permeability exhibited higher ε′ and µ′ values for CoFe@
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PCS than Co@PCS. However, the higher ε′′ and µ′′ values 
of Co@PCS than CoFe@PCS at a high-frequency range 
(> 10 GHz) resulted in the corresponding higher attenua-
tion constant of Co@PCS (Fig. S21).

Dielectric loss is the main attenuation in carbon-based 
nanomaterials, containing conductive and polarization con-
tributions. Firstly, the electrical conductivity (σ) of three 
materials was tested using a four-probe resistance meter 
(Fig. 3d), displaying the highly conductive contribution of 
the single-metallic Fe@PCS and Co@PCS. Moreover, the 
polarization relaxation process of the materials was stud-
ied through the Cole–Cole semicircle mode (Eq. S5), and 
the contribution of polarization relaxation and the charge 
transport ( �′′

p
 and �′′

c
 ) in the dielectric loss was calculated 

according to the Debye theory (Eqs. S6-S10). Figures 3e 
and S22 present a relatively stronger polarization of Fe@
PCS, compared with Co@PCS and CoFe@PCS. However, 
the polarization maps and values of these materials are very 
close, which could be further experimentally confirmed 
using off-axis electron holograms and charge density maps. 
Figures 2a–d and S23–S24 reveal three materials displaying 
strong interfacial polarization. In such a hierarchical porous 
structure, the polarization loss of the materials is primarily 
derived from the nonporous structures and chemical bond 
dipoles, which indicates the Co-Fe interaction may play key 
roles in magnetic loss and impedance matching.

As another part of the attenuation contribution, the mag-
netic loss of the materials can be evaluated by the eddy cur-
rent loss (C0) through Eq. S11. Figure 3f presents higher C0 
values for CoFe@PCS than Co@PCS and Fe@PCS in the 
low-frequency region (< 7 GHz); however, the C0 values of 
CoFe@PCS decrease gradually with increasing frequency 
in an opposite tendency with Co@PCS and Fe@PCS. 
However, owing to the low metal proportion in these three 
materials, the calculated C0 values are very low only around 
0–0.02 ns. Moreover, the fitted magnetic hysteresis loops of 
the materials (Figs. 3g and S25) clearly exhibit the highest 
saturation magnetization (Ms) and coercive force (Hc) for 
CoFe@PCS among three samples, confirming the electro-
magnetic coupling between the Co and Fe atoms. Therefore, 
we can conclude that in the CoFe@PCS, the dielectric loss 
is the dominant contribution of the EW attenuation, which 
is determined by the conductivity of the carbon matrix and 
the chemical dipole and defects on the surface of the hier-
archical porous structure. Although the magnetic loss is not 
the leading contribution in EW attenuation, the strongest 

magnetic loss of the CoFe@PCS resulting from the Co–Fe 
coupling is observed.

Furthermore, the impedance matching of three materials 
was analyzed. Impedance matching directly determines the 
EW absorbing ability by balancing the impedance between 
the substance and free space. Generally, designing the mor-
phology of the materials with suitable hollow or porous 
micro-nanostructures can effectively control impedance 
matching. However, the chemical composition and atomic 
electronic structure influences in materials are still unclear. 
In this work, the same porous morphology and highly dis-
tributed atomic sites in three materials offer an excellent 
chance for investigating the key role of the Co-Fe interac-
tion on impedance matching. The impedance matching of 
three materials (Fig. S26) was calculated using the normal-
ized characteristic impedance (Z =|Zin/Z0|) based on Eq. S2. 
As presented in Fig. 3h–j, the red area (Z = 0.8–1.1) in the 
2D contour maps of the Z values indicates good impedance 
matching. Compared with the single-metallic Co@PCS and 
Fe@PCS, the great matching of impedance for CoFe@PCS 
(close to 1) directly resulted from its superior EW absorp-
tion (Fig. 3k). Owing to the hierarchical porous structure 
of CoFe@PCS, the air-filled nano- and mesopores greatly 
prevent the reflection in the matrix and promote the adsorp-
tion; moreover, the meso- and micro-scale pores enhanced 
the multi-reflection of the escaped EW. However, the best 
matching of impedance for CoFe@PCS indicated that the 
chemical M-M’ dipole in the nanoporous matrix/air greatly 
enhances the EW adsorption. To the best of our knowledge, 
the key role of the atomic Co–Fe interaction in enhancing 
impedance matching of the material was first proposed in 
this work.

3.3  M‑M’ Interaction Evaluation in EW Adsorption

The extended EXAFS spectroscopy was applied to clarify 
the three samples’ local atomic and electronic structures 
to further study the atomic Co–Fe interaction. The Fourier 
transform of the Co K-edge EXAFS (Fig. 4e) for Co foil, 
cobalt(II) phthalocyanine (Co PC), and CoFe@PCS indi-
cated that the bond distance around the Co atom (1.86 Å) 
in CoFe@PCS lies between Co–N (1.49 Å) and Co–Co 
(2.17 Å) bonds. The Fourier transform of the Fe K-edge 
EXAFS (Fig. 4f) for CoFe@PCS compared with Fe foil and 
iron (II) phthalocyanine (Fe PC) revealed the coexistence 
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of isolated Fe atoms and Fe–Fe/Co interaction. The bond-
ing between the Co and Fe atoms changes their coordina-
tion environments in CoFe@PCS, displaying the shifts of 
the bond lengths. The X-ray absorption near-edge structure 
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(XANES) results (Fig. 4g) were performed to identify the 
valence state of the metal sites. The valence of Co in CoFe@
PCS lies between the Co foil and Co@PCS, indicating the 
charge transfer from Fe to Co, resulting in the valence rise 
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of Co in CoFe@PCS. In Fig. 4h,i wavelet transform simu-
lation images of Co and Fe displayed the visualized radial 
distance resolutions in K space. The Co and Fe radial dis-
tances indicate a positive shift of Co and negative shift of 

Fe in CoFe@PCS, compared with the single-metallic Co@
PCS and Fe@PCS. These accurate chemical characteriza-
tion results reveal the chemical bonding and electron transfer 
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between Co and Fe sites, which agrees with the X-ray pho-
toelectron spectroscopy (XPS) results (Fig. 1i–l).

Furthermore, the EW-absorbing performance of the three 
HF-treated samples was measured to compare and evaluate 
the contribution of these Co and Fe sites (Co–N4 and Fe–N4) 
in the carbon matrix (Figs. 4a–d and S27–S29). As presented 
in Fig. 4j,k, Co/Fe–N4 in CoFe@PCS displayed the strongest 
permittivity and permeability contribution (ε′, ε′′, µ′, and µ′′) 
among the three materials, revealing the sequence CoFe@
PCS > Fe@PCS > Co@PCS. These results indicate that the 
coordination among Co and Fe realizes the charge transfer 
from Fe to Co, changing the existing state of the metal sites 
and further enhancing the EW attenuation in CoFe@PCS.

3.4  Electromagnetic Wave Adsorption Mechanism

At last, the EW absorbing mechanism of CoFe@PCS, a 
unique Co-Fe coupling un-continuous hierarchical porous 
carbon network, is illustrated as Fig. 5. The continuous 
high-density distribution of nano-meso-micropores at the 
range of 1 nm–15 μm resulted in the synergistic enhance-
ment of the multi-reflection though the micro-scale pores 

and impeding matching through the air-filled nano- and mes-
ospaces, displaying the optimal EW adsorption [70]. The 
electron transfer on the graphic carbon induced electron 
current on the matrix. In addition, although only ~ 0.6 wt% 
atomic Co and Fe were loaded on the carbon sponge matrix 
in CoFe@PCS, the atomic-doped Co–Fe heteroatoms and 
defects on the graphic carbon resulted in the high density of 
chemical dipoles. The Co/Fe, metals/carbon, and matrix/air 
in the structure provide abundant heterointerfaces for inter-
facial polarizations, giving numerous nanoscale variable 
capacitors. The Co–Fe electromagnetic coupling induced 
the intense magnetic loss of the materials. Combining the 
intense dielectric and magnetic loss of the CoFe@PCS, the 
promoted attenuation and impendence matching displaying 
the optimal EW absorbing performance.

4  Conclusion

Improving the atom utilization of the metals and investigat-
ing the M-M’ interaction is of great significance for assem-
bling high-performance ultra-light EWAMs. In this work, 
a CoFe-soaked energetic MOF with N–N = N bonds as a 
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Fig. 5  Schematic diagram of the electromagnetic wave adsorption mechanism for CoFe@PCS
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precursor successfully constructed an atypical 3D porous 
carbon sponge (CoFe@PCS), exhibiting the continuous dis-
tribution of hierarchical pores in the range of 1 nm–15 μm. 
In CoFe@PCS, only ~ 0.6 wt% atomic Co and Fe were 
homogeneously dispersed on the carbon sponge matrix 
(CoFe@PCS). Owing to the low density and metal propor-
tion, CoFe@PCS (loading of 15 wt%) displayed a superior 
EW-absorbing performance of RL of − 57.7 dB and SRL of 
− 192 dB  mg−1  mm−1 at 12.08 GHz under the layer thick-
ness of 2 mm.

Benefit from the 3D conductive network, the doped Co/
Fe atoms and defects on the graphic carbon further delivered 
the high density of chemical dipoles, resulting in numerous 
nanoscale variable capacitors. The off-axis electron holog-
raphy and charge density maps experimentally confirmed 
the ultrahigh-density distribution of the nanoscale polarized 
charges (+ / −) along the edges of the pores in CoFe@PCS. 
Furthermore, the atomic Co-Fe interaction was investigated 
by EXAFS and XANES, revealing that the chemical bonding 
between Co and Fe realizes the charge transfer from Fe to Co 
and further enhances the EW adsorption with the great bal-
ance of EW attenuation and impedance matching. This work 
presents an excellent example of the atomic-scale structure 
design of EWAMs.
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