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S1 Experimental Section 

S1.1 Synthesis of MET 

The synthesis of MET is according to the literature [S1]. ZnCl2 (5.0 g) was dissolved in a 

mixture of ethanol (50 mL), water (75 mL), ammonium hydroxide (25%-28%, 20 mL) and N, 

N-dimethylformamide (DMF, 50 mL), and then kept stirring for 10 min. After that, 1H-1,2,3-

triazole (6.26 mL) was slowly dropped in the solution during stirring. After a 24-hours stirring 

at room temperature, the white product of MET was generated and filtered out. After three times 

washes by ethanol, the product was dried at 80 °C for 8 h with a yield of 90%. 

S1.2 Synthesis of CoFe@MET, Fe@MET, and Co@MET 

For synthesizing CoFe@MET, Co(CH3COO)2·6H2O (0.72 g) and FeCl2 (0.49 g) in a 

molar ratio of 1:1 were first dissolved in 200 mL methanol as a metal solution. Then, 

MET (2.0 g) powder was immersed into above solution, and then stirred at room 

temperature for 6 h. The pink powder was filtered out and washed by ethanol for three 

times. After the vacuum drying at 60 °C for 8h, the CoFe@MET was collected with a 

yield of 62%. 

The Fe@MET and Co@MET were synthesized, as contrast samples, for investigating 

the internal Co-Fe synergistic effect and microwave absorbing mechanism. The 

synthesis of reseda Fe@MET (yield of 67%) and pink Co@MET (yield of 63%) were 

obtained in the similar way with CoFe@MET, except form the metal solutions are 

instead of FeCl2 (0.98 g FeCl2 in 200 mL methanol) and Co(CH3COO)2·6H2O (1.44 g 

Co(CH3COO)2·6H2O in 200 mL methanol) solutions.  

S1.3 Synthesis of and CoFe@PCS, Fe@PCS, Co@PCS 

The as-prepared 2.0 g CoFe@MET was put into the ceramic boat and then placed in the 

programmed tube furnace. It was heated up to 900 °C at a heating rate of 5 °C min-1 

under the nitrogen atmosphere. After that, the furnace was kept at 900 °C for two hours 

and then naturally cooled to room temperature. The ultra-light black powder of 

CoFe@PCS (0.16g) was successfully synthesized. The Fe@PCS and Co@PCS were 

http://springer.com/40820
mailto:huangwenhuan@sust.edu.cn
mailto:huabin.zhang@kaust.edu.sa
mailto:rcche@fudan.edu.cn
file:///D:/Dict/8.9.6.0/resultui/html/index.html#/javascript:;


Nano-Micro Letters 
 

S2/S18 

 

synthesized at the same condition by using Fe@MET and Co@MET as precursors. 

S2 Characterizations 

D8 DAVANCI X-ray powder diffractometer equipped with graphite monochromatized Cu Kα 

radiation (λ = 0.1542 nm) was used to record powder X-ray diffraction (PXRD) patterns in the 

2θ range of 5o-80o with a scanning rate of 1 o/min. The Brunauer-Emmett-Teller (BET) method 

was employed to calculate the specific surface area through nitrogen adsorption and desorption 

at 77 K by ASAP 2020 sorption system. Scanning electron microscopy (SEM) images were 

collected by a Hitachi S4800 apparatus with an acceleration voltage of 2 kV. The transmission 

electron microscopy (TEM) images were recorded on JEM-2100F, JEM-2010HR, and FEI 

Talos F200X, working at an accelerating voltage of 200 kV and X-ray energy-dispersive 

spectroscopy (EDS) was taken on a JEM-2010HR-Vantage typed energy spectrometer. X-ray 

photoelectron spectroscopy (XPS) was implemented on Thermo ESCA Lab250XI. Raman 

spectroscopy of the samples was obtained by a Renishaw in Via Raman Microscope. The 

electromagnetic parameters were analyzed using a HP8753D vector network analyzer in the 

frequency range of 2-18 GHz. The measured samples were dispersed in paraffin 

homogeneously with a sample-to-paraffin weight ratio of 3:17, and then the mixture was 

pressed into a toroidal shape with an inner diameter of 2.0 mm and an outer diameter of 7.0 

mm. The conductivity of the samples (1×1 cm2) was performed through a ST2253 four-probe 

resistance meter. The hysteresis loop of the materials was tested by superconducting quantum 

interference device MPMS(SQUID) VSM magnetometer. The absorption spectra of Mo-edge 

were collected in a transmission mode at room temperature using a Si (111) double crystal 

monochromator at the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF, Beijing). 

S3 Data Calculations 

The reflection loss (RL) values of the absorbers are calculated according to transmission line 

theory by the following Eqs. S1-S2 [S2]: 

𝑅𝐿(𝑑𝐵) = 20𝑙𝑔 ∣
𝑍𝑖𝑛 − 𝑍0

𝑍𝑖𝑛 + 𝑍0
∣                              ( S1) 

𝑍𝑖𝑛 = 𝑍0√
𝜇𝑟

𝜀𝑟
tanh [𝑗 (

2𝜋𝑓𝑑

𝑐
) √𝜇𝑟𝜀𝑟]                   (S2) 

Where Z0 is the characteristic impedance of free space, Zin is the normalized input impedance 

of absorber, 
r  and 

r  are the relative complex permittivity and permeability, d is the layer 

thickness, c is the speed of light in free space and f is the frequency. 

SRL is calculated based on RL value, considering the filler loading amount and the layer 

thickness [S3]. 

SRL = RL/(filler loading × thickness)                   (S3) 

Where filler loading is the wt % in test ring.  

The attenuation coefficient (α) [S4]: 

𝛼 =
√2𝜋𝑓

𝐶
√(𝜇′′𝜀′′ − 𝜇′𝜀′) + √(𝜇′′𝜀′′ − 𝜇′𝜀′)2 + (𝜇′𝜀′′ + 𝜇′′𝜀′)2      (S4) 

Cole–Cole semicircle model (Eq. S5) [S5]: 

(𝜀′ −
𝜀𝑠+𝜀∞

2
)2 + (𝜀′′)2 = (

𝜀𝑠−𝜀∞

2
)2                         (S5) 

Each semicircle in the ε′–ε″ curve stands for a polarization relaxation process. The εs and ε∞ 

represent the static dielectric constant, the dielectric constant at infinite frequency, 

respectively. The high number of semicircles means the strong dipole polarization process. 
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Debye relaxation correction formula (Eqs. S6-S7) [S6]: 

𝜀𝑟 = 𝜀𝑟∞ +
𝜀𝑟𝑠 − 𝜀𝑟∞

1 + (𝑖𝜔𝜏)1−𝐴
  (0 < 𝐴 < 1)                                            (S6) 

𝜀𝑟
′ = 𝜀𝑟∞ + (𝜀𝑟𝑠 − 𝜀𝑟∞)

1 + (𝜔𝜏)(1−𝐴)𝑠𝑖𝑛
𝜋𝐴
2

1 + 2(𝜔𝜏)1−𝐴𝑠𝑖𝑛
𝜋𝐴
2 + (𝜔𝜏)2(1−𝐴)

  (S7) 

𝜀𝑝
′′ and 𝜀𝑐

′′ are the dielectric loss contributed by polarization relaxation and charge transport, 

respectively, which can be obtained according to Debye theory (Eqs. S8-S10). 

𝜀" =
𝜀𝑠 − 𝜀∞

1 + (2𝜋𝑓)2𝜏2
𝜔𝜏 +

𝜎

2𝜋𝑓𝜀0
= 𝜀𝑝

′′ +  𝜀𝑐
′′                            (S8) 

𝜀𝑐
′′ =

𝜎

2𝜋𝑓𝜀0
                                                                                    (S9) 

𝜀𝑝
′′ =

𝜀𝑠 − 𝜀∞

1 + (2𝜋𝑓)2𝜏2
𝜔𝜏 = 𝜀′′ − 𝜀𝑐

′′                                             ( S10) 

Where 𝜀𝑠 is the relative permittivity at static, and 𝜀∞ is at “infinite” high frequency. 𝜎 

is the conductivity, Conductivity is a parameter used to describe the difficulty of charge 

flow in matter [S7]. 

(∁0= 𝜇′(𝜇′′)−2(𝑓 )−1 = 2𝛱𝜇0𝑑2𝜎/3)               (S11) 

 

S4 Supplementary Results and Disscussion 

 

Fig. S1 The scheme of the synthesis routes for all the samples in this work 
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Fig. S2 SEM of (a) MET, (b) Fe@MET, (c) Co@MET and (d) CoFe@MET 

 

Fig. S3 TEM (a) and the TEM-EDS mapping (b) of MET 

 

Fig. S4 TEM (a) and EDS mapping (b) of Fe@MET 
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Fig. S5 TEM (a) and EDS mapping (b) of Co@MET 

 

Fig. S6 TEM (a) and EDS mapping (b) of CoFe@MET 

 

Fig. S7 PXRD results of synthesized MET, Fe@MET, Co@MET, CoFe@MET and the 

simulated curves of MET crystals (CCDC: 837471) 
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Fig. S8 (a-c) N2 sorption isotherms (77 K) for Fe@MET (a), Co@MET (b), and CoFe@MET 

(c), and (d-f) Pore diameter distribution curves for Fe@MET (d), Co@MET (e), and 

CoFe@MET (f) 

 

Fig. S9 The DSC and TGA curves of CoFe@MET under nitrogen atmosphere at the range of 

Room temperature to 900 °C 
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Fig. S10 SEM (a-d) of Fe@PCS 

 

Fig. S11 SEM (a-d) of Co@PCS 
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Fig. S12 SEM (a-d) of CoFe@PCS 

 

Fig. S13 TEM (a-b) and mapping (c) of Fe@PCS 

 

Fig. S14 TEM (a-b) and EDS mapping (c) of Co@PCS 
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Fig. S15 TEM (a-b) and EDS mapping (c) of CoFe@PCS 

 

Fig. S16 (a) N2 sorption isotherms (77 K) for Fe@PCS, Co@PCS, CoFe@PCS. (b) Pore 

diameter distribution curves for Fe@PCS, Co@PCS, CoFe@PCS 

 

Fig. S17 PXRD of Fe@PCS, Co@PCS, and CoFe@PCS 
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Fig. S18. Raman spectra for Fe@PCS, Co@PCS, CoFe@PCS 

 

Table S1 ICP-OES results of of Fe@PCS, Co@PCS and CoFe@PCS 

 Fe@PCS 

(wt%) 

Co@PCS 

(wt%) 

CoFe@PCS 

(wt%) 
Co - 0.602 0.344 

Fe 0.672 - 0.316 

 

Fig. S19 2D contour map of RL for Fe@PCS (a), Co@PCS(b), CoFe@PCS(c) 

 

Fig. S20 The best of RL values and the effective frequency bandwidth (RL < -10 dB) of 

Fe@PCS (a), Co@PCS (b), CoFe@PCS (c).The experimental and theoretical fitted dm 

values of Fe@PCS (d), Co@PCS (e), CoFe@PCS (f) 
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Fig. S21 The real part of permittivity (a), imaginary part of permittivity (b), dielectric loss 

tangent (c), real part of permeability (d), imaginary part of permeability (e) and magnetic loss 

tangent of Fe@PCS, Co@PCS and CoFe@PCS 

 

Fig. S22 The calculated 𝜀𝑝
′′ (a) and 𝜀𝑐

′′ (b) of Fe@PCS, Co@PCS and CoFe@PCS 

 

Fig. S23 The magnetic hysteresis loop of Fe@PCS, Co@PCS and CoFe@PCS 
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Fig. S24 HR-TEM and its corresponding hologram images (a-b), charge density map (c), the 

profile of charge density in the region along the white arrow (d) of Fe@PCS 

 

Fig. S25 HR-TEM and its corresponding hologram images (a-b), charge density map (c), the 

profile of charge density in the region along the white arrow (d) of Co@PCS 
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Fig. S26 |Zin/Z0| and RL plots of Fe@PCS,Co@PCS and CoFe@PCS 

 

Fig. S27 ε′, ε′′, µ′ and µ′′ contribution of Fe-N4 in Fe@PCS 
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Fig. S28 ε′, ε′′, µ′ and µ′′ contribution of Co-N4 in Co@PCS 

 

Fig. S29 ε′, ε′′, µ′ and µ′′ contribution of Fe/Co-N4 in CoFe@PCS 
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Table S2 Comparison of microwave absorption performance of CoFe@PCS with other 

reported CoFe-based carbon EW absorbers 

Samples 
RL 

(dB) 

Thickness 

(mm) 

Bandwidth 

(GHz) 

Loading 

(wt%) 

SRL 

(dB mg-1 mm-1) 
Refs. 

CNT-CoFe@C-900 −40.00 3.0 5.62 10% -133 [S8] 

Co0.8Fe2.2O4/rGO −51.20 2.1 5.7 30% -81 [S9] 

CFs@H-Fe3O4/CoFe −40.85 3.5 2.14 30% -39 [S10] 

Co0.2Fe2.8O4 −43.45 3.0 5.58 30% -48 [S11] 

CoFe@N-CNT/rGO −33.2 2.0 3.8 50% -33 [S12] 

Co15Fe85@C/RGO-2  −33.4 2.5 9.2 30% -44 [S13] 

Fe–Co/NC/rGO  −43.36 2.5 9.29 30% -57 [S14] 

MWCNTs/FeCoNi@C −36 2.0 4.0 30% -60 [S15] 

Fe-Co/NPC/RGO −52.9 2.5 3.1 30% -70 [S16] 

CoFe2O4/FeCo -54.3 1.2 15.2 50% -90 [S17] 

CoFe@C@MnO2 -64 1.3 9.2 30% -164 [S18] 

ZnO/FeNiMo -28 1.5 4.54 30% -61 [S19] 

rGO/CoFe2O4 -56.3 1.4 3.4 30% -134 [S20] 

Co1− xNixFe2O4  -37.66 2.1 2.64 30% -59 [S21] 

CoFe0.26@Co@C  -62.5 1.5 14.7 30% -138 [S22] 

CoFe2/BTO-1 HNFs -82.4 1.2 5 50% -137 [S23] 

FeCoNi-MOF-74 -64.75 2.1 8.08 38% -81 [S24] 

Ba0.8Dy0.2Co2Fe16O27  -15 1.5 7 30% -33 [S25] 

Ni(Co/Zn/Cu)Fe2O4/SiC@Si

O2 
-32.76 3.0 2.1 30% -36 [S26] 

CoFe@PCS-900 −57.7 2.0 4.24 15% -192 
This 

work 
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