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Ultralight Magnetic and Dielectric Aerogels 
Achieved by Metal–Organic Framework Initiated 
Gelation of Graphene Oxide for Enhanced 
Microwave Absorption
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HIGHLIGHTS 

• Metal–organic frameworks (MOFs) are used to directly initiate the gelation of graphene oxide (GO), producing MOF/rGO aerogels.

• The ultralight magnetic and dielectric aerogels show remarkable microwave absorption performance with ultralow filling contents.

ABSTRACT The development of a convenient methodology for syn-
thesizing the hierarchically porous aerogels comprising metal–organic 
frameworks (MOFs) and graphene oxide (GO) building blocks that 
exhibit an ultralow density and uniformly distributed MOFs on GO 
sheets is important for various applications. Herein, we report a facile 
route for synthesizing MOF/reduced GO (rGO) aerogels based on the 
gelation of GO, which is directly initiated using MOF crystals. Free 
metal ions exposed on the surface of MIL-88A nanorods act as link-
ers that bind GO nanosheets to a three-dimensional porous network via 
metal–oxygen covalent or electrostatic interactions. The MOF/rGO-
derived magnetic and dielectric aerogels  Fe3O4@C/rGO and Ni-doped 
 Fe3O4@C/rGO show notable microwave absorption (MA) performance, 
simultaneously achieving strong absorption and broad bandwidth at low thickness of 2.5 (− 58.1 dB and 6.48 GHz) and 2.8 mm (− 46.2 dB 
and 7.92 GHz) with ultralow filling contents of 0.7 and 0.6 wt%, respectively. The microwave attenuation ability of the prepared aerogels 
is further confirmed via a radar cross-sectional simulation, which is attributed to the synergistic effects of their hierarchically porous 
structures and heterointerface engineering. This work provides an effective pathway for fabricating hierarchically porous MOF/rGO hybrid 
aerogels and offers magnetic and dielectric aerogels for ultralight MA.
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1 Introduction

High-performance microwave absorption (MA) materials 
exhibiting broadband microwave attenuation capability, a 
low density, and a low thickness, which can eliminate the 
adverse effects of electromagnetism on human health, elec-
tronic equipment, and military security, are in high demand 
[1–10]. In MA materials, the interest in nanostructures 
derived from metal–organic frameworks (MOFs) such as 
metals/metal compounds, carbon, and their composites, 
which are prepared via the high-temperature pyrolysis of 
MOF precursors is increasing because they show excel-
lent electrical conductivity, good magnetism, and sufficient 
defects and interfaces, providing obvious merits in terms 
of both impedance matching and microwave loss [11–14]. 
Derivatives of MOFs are typically used as fillers for matrices 
to fabricate MA materials. Owing to their inherent properties 
such as well-dispersed nanoparticles and pristine microstruc-
tures at the nanoscale, MOF derivatives achieve good MA 
performance [15–19]. However, the practical application of 
MOF derivatives is hindered by challenges such as the high 
density, large loading content, and uncontrolled distribution 
in matrices. The direct fabrication of MOF derivatives with 
stable three-dimensional (3D) lightweight architectures and 
controllable length scales to achieve microwave absorbers 
is desirable yet a major challenge.

Graphene oxide (GO) has been considered an ideal precur-
sor for assembling materials with extended architectures such 
as films, aerogels, or foams with MOF nanocrystals owing 
to its functional surface and large surface area [20–25]. The 
beneficial properties of individual compounds are retained 
in MOF/reduced GO (rGO) hybrid composites. The pres-
ence of graphene also enhances the electrical conductivity 
and mechanical properties of the composites. Moreover, 3D 
architectures can provide a hierarchical porous structure com-
prising nanoporous MOF derivatives and macroporous rGO 
aerogels, further extending the functional applications of MA 
materials [26]. Therefore, the integration of 3D graphene-
based aerogels and MOF derivatives is a promising strategy 
for fabricating hierarchically porous high-performance MA 
materials with magnetic and dielectric synergy.

Generally, the fabrication of 3D MOF/graphene-based 
aerogels is divided into two categories: the in situ growth 
of MOFs on a preformed 3D graphene-based framework 
[23] and interfacial coordination between GO sheets and 

MOF precursors [24]. The former approach is an attractive 
strategy for preparing MOF/graphene-based aerogels with 
controlled 3D porous structures and uniformly distributed 
MOF particles on the graphene surface; however, the result-
ant interfacial binding is weak and this approach involves 
complicated synthetic steps. The interfacial coordination 
and assembly route for synthesizing 3D aerogels involve the 
direct synthesis of MOF particles in the presence of GO. 
The most straightforward technique for preparing MOF/gra-
phene-based aerogel is the mixing of MOF precursors and 
GO at ambient temperature before heating the mixture under 
solvothermal or reflux conditions, which are necessary for 
MOF synthesis [25]. However, in this technique, excess MOF 
precursors must be introduced directly, possibly inducing the 
aggregation of GO nanosheets and the uncontrolled distribu-
tion of each component in the obtained MOF/rGO composite. 
Therefore, developing a convenient synthetic methodology 
for MOF/rGO hybrid aerogel materials is essential.

Here, we report a facile route for synthesizing MOF/rGO 
hybrid aerogels based on the direct gelation of GO initi-
ated using MOF crystals in an aqueous solution. In a typi-
cal procedure, MIL-88A nanorods are introduced in a GO 
aqueous dispersion to eliminate the electrostatic repulsive 
forces between GO nanosheets, enabling the linking of GO 
nanosheets to form a stable 3D hydrogel under moderate 
heating conditions. The use of metal ions exposed on the 
surface of one-dimensional (1D) MIL-88A nanorods and 
functioning as joining sites enhances the linking of GO 
nanosheets to form a 3D network because of metal–oxygen 
covalent and electrostatic interactions. The gelation process 
is easy and does not involve any complicated synthetic step 
and the use of additional chemical reagents. Subsequently, 
we reveal the impressive MA performance of the pre-
pared MOF/rGO-derived magnetic and dielectric aerogels 
 Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO aerogels.

2  Experimental Section

2.1  Synthesis of MIL‑88A Nanorods

In a typical synthesis, 2.1638 g  FeCl3·6H2O (8 mmol) was 
dispersed into 20 mL deionized water by magnetic stirring 
for 15 min. Then 0.9288 g (8 mmol) fumaric acid was dis-
persed into 50 mL deionized water under stirring until the 
solution became clear. These solutions were then mixed in 



Nano-Micro Lett.          (2022) 14:107  Page 3 of 16   107 

1 3

a 100 mL Teflon-lined autoclave. After stirring for 15 min, 
the autoclave was transferred to normal oven and heated at 
100 °C for 4 h to obtain MIL-88A. At last, the products were 
filtered and washed with ethanol and water for three times 
and finally dried at 60 °C overnight.

2.2  Synthesis of Ni‑doped MIL‑88A Nanorods

For the preparation of Ni-doped MIL-88A nanorods, only 
the species and content of metal ions were changed. Spe-
cifically, 1.0812 g  FeCl3·6H2O (4 mmol) and 1.1631 g 
Ni(NO3)2·6H2O (4 mmol) were employed for Ni-doped 
MIL-88A.

2.3  Preparation of MOF/rGO Aerogels

The MOF/rGO aerogels were synthesized as follows. Typi-
cally, 1 mL of 10 mg  mL−1 MIL-88A aqueous solution was 
dispersed into 2 mL dispersion of GO (5 mg  mL−1) by shak-
ing for 1 min, standing for 1 min and repeating 3 times, 
respectively. The solutions were then heated at 95 °C for 
5 h in an oven to form hydrogels. At last, the hydrogels were 
frozen for 24 h and freeze-dried for 24 h to obtain MIL-
88A/graphene aerogels. Other Ni-doped MIL-88A/graphene 
aerogels were synthesized by the same way.

2.4  Preparation of Pea‑like  Fe3O4@C/rGO Aerogels

For the preparation of pea-like  Fe3O4@C/rGO aerogels, the 
MIL-88A/rGO aerogels were put into a glass tube and heated 
to 800 °C for 1 h in Ar with a heating rate of 3 °C  min−1.

2.5  Preparation of Cocoon‑like Ni‑doped  Fe3O4@C/
rGO Aerogels

For the preparation of cocoon-like Ni-doped  Fe3O4@C/rGO, 
the Ni-doped MIL-88A/rGO aerogels were put into a glass 
tube and heated to 800 °C for 1 h in Ar with a heating rate 
of 3 °C  min−1.

2.6  Characterization

The microscopic and structure characterizations of aero-
gel samples were carried out through scanning electron 

microscopy (SEM, Zeiss Ultra-55), transmission electron 
microscope (TEM, FEI Tecnai G220 TWIN), X-ray photo-
electron spectroscopy (XPS, Thermo Scientific K-Alpha), 
and X-ray powder diffraction (XRD, Rigaku Co., Cu Kα 
1.5406 Å, 40 kV, 40 mA, D/teX Ultra 250 detector).

2.7  MA Measurements

To measure the MA performance, MOF/rGO-derived 
magnetic-dielectric aerogels were impregnated with paraf-
fin. Then the obtained composites were cut into concentric 
rings with an inner diameter of 3.04 mm and outer diameter 
of 7.00 mm. Electromagnetic parameters were measured 
using a coaxial method on a vector network analyzer (Agi-
lent 5324A) in the frequency range of 2 − 18 GHz. The fill-
ing loading content of as-prepared aerogels in paraffin wax 
matrix can be calculated as follows:

where ρaerogel is the density of aerogel, vring and mring is the 
volume and the weight of the ring, respectively.

2.8  RCS Simulation

COMSOL Multiphysics 5.6 was used for simulating the radar 
cross-sectional of the MOF/rGO-derived magnetic-dielectric 
aerogels. According to metal back model, the simulation model 
of the specimens was established as a square (10×10  cm2) with 
dual layers, which consisted of an aerogel absorption layer and 
a back plate of the perfect electric conductor (PEC). The thick-
ness of the bottom PEC layer was 1.0 mm, and the absorber 
layer thickness values were set as 2.5 and 3.5 mm at the fre-
quency of 15 and 10 GHz, respectively. The aerogel-PEC 
model plate is placed on the X-O-Y plane, and linear polar-
ized plane electromagnetic waves incident from the positive 
direction of the Z axis to the negative direction of the Z-axis. 
Meanwhile, the direction of electric polarization propagation 
is along the X-axis. Open boundary conditions are setting in 
all directions with field monitor frequency of 10 and 15 GHz. 
The RCS values can be described as follows:

Here, S is the area of the target object simulation model, 
λ is the wavelength of electromagnetic wave, Es and Ei 
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represent the electric field intensity of scattered wave and 
the incident wave, respectively.

3  Results and Discussion

3.1  Synthesis of MOF/rGO‑derived Aerogels and Their 
Gelation Mechanism

Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO magnetic and 
dielectric aerogels were prepared using a three-step proce-
dure involving the synthesis of MOFs, MOF/rGO aerogels, 
and MOF/rGO-derived magnetic and dielectric aerogels. To 
fabricate MIL-88A nanorods,  FeCl3·6H2O was first mixed 
with fumaric acid (organic ligand) in an aqueous solution. 
The resulting mixture was then subjected to hydrothermal 
treatment at 100 °C. By changing the composition of the 
metal ions (e.g., Ni: Fe ratio of 1:1 in the reactants), Ni-
doped MIL-88A nanorods were obtained. The morphol-
ogy of the as-prepared MIL-88A and Ni-doped MIL-88A 
nanorods was characterized using SEM. The SEM images of 
both the MIL-88A and Ni-doped MIL-88A nanorods reveal 
highly uniform hexagonal rod-like nanostructures (Figs. 
S1a, b and S2a, b). Based on the elemental mapping images 
of MIL-88A, Fe, C, and O are homogeneously distributed 
in the hexagonal nanorods (Fig. S1c–e). An additional ele-
mental Ni is also detected in the Ni-doped MIL-88A sam-
ple (Fig. S2c–f). After introducing Ni, the average length 
and width of the hexagonal nanorods decrease from 3.3 to 
1.9 μm and 650 to 550 nm, respectively (Fig. S3), indicating 
a change in the growth rate and crystal size. Furthermore, 
the doping process did not considerably modify the crystal 
structure and composition of MIL-88A [27], which was con-
firmed from its XRD patterns (Fig. S4).

Figure 1 schematically presents the preparation processes 
of 3D MOFs/rGO aerogels and their derived aerogels. In 
brief, a GO aqueous suspension and a presynthesized MOF 
crystal suspension (e.g., containing MIL-88A) were mixed 
under vigorous shaking conditions. Owing to the metal–oxy-
gen covalent or electrostatic interactions between the free 
 Fe3+ on the MOF crystal surfaces and the oxygenated func-
tional groups (i.e., –OH and –COOH) of GO, the precipita-
tion of insoluble MIL-88A nanorods could be prevented in 
the GO nanosheets, thus affording stable suspensions. The 
mixed suspensions were rapidly transformed into wet gels in 
10 min under moderate heating conditions. Under prolonged 

gelation time, the color of the gels gradually changed 
from brown to black, accompanied by volume shrinkage 
(Fig. 2a). This suggests that GO can be sufficiently reduced 
using MIL-88A without the use of additional chemicals or 
reagents.

To further explore the MOF-mediated gelation process, 
the evolution of the crystal structure and morphology of 
MIL-88A/rGO aerogels prepared at different gelation times 
was investigated (Fig. 2a). In the XRD patterns (Fig. 2b), 
the peak intensity gradually decreases and only two sub-
peaks of the (101) and weak (200) crystallographic facets are 
retained. The MIL-88A nanorods were randomly coupled 
with rGO nanosheets (Fig. 2c–g). The average length of the 
nanorods decreased from 2.5 to 1.6 μm (Fig. 2c2–g2). More-
over, the shape of the nanorod ends transformed from a hex-
agonal cone to a dome. Subsequently, nanorods with short-
ened ends were formed, finally producing small nanorods 
with dome-like shapes (Fig. 2c1–g1). During the gelation 
process, the MIL-88A nanorods were though to decompose 
and coordinate with the oxygenated groups of GO at both 
ends of the hexagonal structures, producing small nanorods 
anchored on the GO sheets and subsequently affording stable 
gels.

Therefore, the MIL-88A-mediated gelation of GO is 
divided into two steps. In the first step, the electrostatic inter-
action between free  Fe3+ and the functional groups on a GO 
surface destroy the electrostatic repulsive forces between 
the GO nanosheets. In the second step, the crosslinking of 
GO nanosheets is assisted by  Fe3+ functioning as linkers, 
promoting the stacking of GO nanosheets and initiating the 
assembly of the sheets into a 3D network. Such a gelation 
process is easy to achieve and does not involve any com-
plicated synthetic step and the use of additional reagents. 
Furthermore, aerogels with different weight ratios of MOFs 
and GO were prepared by adjusting the initial concentra-
tions of MOFs in mixed suspensions. MIL-88A/rGO and 
Ni-doped MIL-88A/rGO aerogels with different MOFs/GO 
weight ratios were obtained (Figs. S5, S6), which show uni-
form cylindrical structures from top to bottom, indicating the 
homogeneous distribution of MOFs in the aerogels without 
precipitate formation. At a low weight ratio of MOFs and 
GO of 1:10, a low-shrinkage aerogel was achieved owing to 
insufficient crosslinkers (i.e.,  Fe3+) in the reaction mixture.

Under an additional thermal treatment, the MIL-88A/rGO 
and Ni-doped MIL-88A/rGO aerogels were converted to 
 Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO magnetic and 
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dielectric aerogels, respectively, showing density values of 
6.2 and 5.3 mg  cm−3, respectively. The  Fe3O4@C/rGO aero-
gel is ultralight and exhibits magnetic properties (Fig. 3a, b). 
Furthermore, it presents highly porous 3D structures with 
microscale pores, which are obtained via the interlinking of 
the rGO sheets (Fig. 3c). Pea-like core–shell nanocapsules, 
which were derived from the MIL-88A nanorods, are uni-
formly coated on the surface of the rGO sheets (Fig. 3d). 
These nanocapsules comprise a carbon shell and large  Fe3O4 
(L-Fe3O4) cores (Fig. 3e–h). Similar pea-like core–shell 
nanostructures were observed in the TEM images of samples 
containing rGO nanosheets (Fig. 3i–k). The high-resolution 
TEM (HRTEM) of the L-Fe3O4 nanoparticles reveals lattice 
distances of 0.147, 0.242, and 0.257 nm (Fig. 3l–m), cor-
responding to the (440), (222), and (311) planes of  Fe3O4. 
The selected-area electron diffraction (SAED) pattern 
(Fig. 3n) also confirms the transformation of MIL-88A to 
 Fe3O4. Furthermore, the HRTEM (Fig. 3o) and correspond-
ing FFT (Fig. 3p) patterns show  Fe3O4 nanoparticles with 
sizes of < 50 nm anchored on the rGO surface (Fig. 3j–k), 
suggesting that the  Fe3+ coordinated with the oxygenated 
groups of rGO was converted to  Fe3O4 during high-temper-
ature annealing.

In the case of the Ni-doped  Fe3O4@C/rGO aerogel, 
the inner morphology also shows a 3D interconnected 
porous microstructure (Fig. 4a) with numerous cocoon-
like core–shell nanocapsules on rGO walls (Fig. 4b). The 
elemental mapping images of the Ni-doped  Fe3O4@C/rGO 
aerogel (Fig. 4c) show the distribution of Fe, O, C, and Ni in 
the rGO sheets. The enlarged SEM and TEM images further 
confirm the presence of cocoon-like nanocapsules, which 
consist of a thin shell and nanoparticle cores (Fig. 4d–f). The 
magnified HRTEM image (Fig. 4g) reveals lattice fringes 
with a spacing distance of 0.295 nm, corresponding to the 
(220) plane of  Fe3O4. Clear diffraction rings are observed 
in the corresponding SAED pattern (Fig. 4h), where the 
components are consistent with those observed in the XRD 
results (Fig. 5a).

The structures and composition of the  Fe3O4@C/rGO and 
Ni-doped  Fe3O4@C/rGO aerogels were further examined 
using XRD and XPS. The XRD patterns of the aerogels 
exhibit the characteristic peaks of  Fe3O4 and a broad peak 
at 2θ = 26°, corresponding to the (002) reflection of rGO 
sheets (Fig. 5a). However, a tiny shift in the diffraction peaks 
of the Ni-doped  Fe3O4/rGO aerogel is observed (Fig. 5b). 
Based on the Bragg laws, an increase in 2θ corresponded to 

Fig. 1  Schematic of the fabrication process of MOF/rGO hybrid aerogels by the use of MOFs to directly initiate the gelation of GO strategy
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a decrease in the d-spacing, which indicates a reduction in 
the magnitude of the lattice parameters. During pyrolysis, 
 Ni2+ would enter the  Fe3O4 lattice and replace  Fe2+, decreas-
ing the lattice parameter because the ionic radius of  Ni2+ 
(0.069 nm) is smaller than that of  Fe2+ (0.074 nm) [28, 29]. 
This phenomenon is also observed in the case of pure Ni-
doped MIL-88A nanorod–derived nanomaterials (Fig. S7).

The high-resolution C 1s spectra of the aerogels (Fig. 5c, 
e) reveal binding energies of 284.6, 285.8, 288.2, and 
289.8 eV, representing the C–C, C–O, C = O, and π–π inter-
actions, respectively, thus indicating a sufficient reduction 
of GO [30, 31]. The high-resolution Fe 2p spectra of the 
aerogels (Fig. 5d, f) show two obvious peaks at binding ener-
gies of 711.2 and 724.8 eV, representing Fe 2p3/2 and Fe 

Fig. 2  Representative a images during gelation and freeze drying, b XRD patterns, and c–g rod length distributions based on the SEM and 
TEM images of MIL-88A/rGO aerogels prepared at different gelation times
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2p1/2, respectively, thereby indicating the presence of  Fe3O4 
[32, 33]. Ni is not detected in the XPS pattern of the Ni-
doped  Fe3O4@C/rGO aerogel, ascribed to its trace amount. 
The ICP measurements reveals Ni (trace amount: 0.02 
wt%) in the pure Ni-doped MIL-88A–derived  Fe3O4@C 
nanomaterial.

3.2  MA Performance

Aerogel/paraffin composites were fabricated by immersing 
the as-prepared aerogels in molten paraffin to retain the 3D 
porous structure (Fig. S8), instead of mixing rGO aerogel 
powders with paraffin to avoid the possible agglomeration 

Fig. 3  a, b Optical, c–e SEM, f–h elemental mapping (Fe, O, and C), i–k TEM, l, m, o HRTEM, and n, p SEAD and fast Fourier transform 
images of m and o, respectively, of the  Fe3O4@C/rGO aerogel
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and uncontrollable distribution of aerogels. The reflection 
loss (RL) curves and the two-dimensional (2D) and 3D rep-
resentations of the RL for the  Fe3O4@C/rGO and Ni-doped 
 Fe3O4@C/rGO aerogels (Fig. 6a–c) are calculated based on 
the transmission line theory using Eqs. 3 and 4 [34]:

where  Zin,  Z0, c, and f denote the normalized input imped-
ance of the absorber, impedance of air, velocity of light, 
and frequency of microwaves, respectively. Furthermore, εr, 
µr, and d represent the relative complex permittivity, rela-
tive complex permeability, and thickness of the absorber, 
respectively.

Based on Figs.  6a1, a2 and S9, the minimum RL 
value  (RLmin) of the optimal  Fe3O4@C/rGO aerogel 
reaches − 58.1 dB at 15.4 GHz at a thickness of 2.5 mm 
and the effective absorption bandwidth (EAB) ranges from 
10.16 to 18.0 GHz at a thickness of 2.8 mm, covering the 
entire Ku band (12–18 GHz). In the case of the Ni-doped 
 Fe3O4@C/rGO aerogel, the strong absorption peak shifts to 
a low-frequency range with increasing matching thickness of 
the sample, subsequently reaching an  RLmin of − 48.0 dB at 

(3)RL = 20 lg
||
||

Zin − Z0

Zin − Z0

||
||
.

(4)Zin = Z0

�
�r

�r
tanh

�

j
2�fd

√
�r�r

c

�

14 GHz at a thickness of 2.85 mm. Alternatively, the  RLmin 
of the Ni-doped  Fe3O4@C/rGO aerogel exceeds − 20 dB at 
thicknesses of 2.5–5 mm (Fig. 6f) and the EAB range from 
10.08 to 18 GHz, with the maximum reaching 7.92 GHz, 
covering the entire Ku band and 48% of the X band 
(8–12 GHz) at a thickness of 2.8 mm. The  Fe3O4@C/rGO 
and Ni-doped  Fe3O4@C/rGO aerogels show efficient elec-
tromagnetic wave absorption in the entire X band and 75% 
of the C band at thicknesses of 3.5 and 5 mm, respectively 
(Fig. 6d). These results confirm the considerable effect of 
the size and composition of the original MIL-88A nanorods 
on the EM response capability, thus affecting the resulting 
MA performance.

Based on the aforementioned results, the  Fe3O4@C/
rGO and Ni-doped  Fe3O4@C/rGO aerogels show remark-
able MA performance based on their high  RLmin and wide 
EAB values at low thicknesses (− 58.1 dB, 6.48 GHz, and 
2.5 mm and − 46.2 dB, 7.92 GHz, and 2.8 mm, respectively) 
with ultralow filling contents (0.7 and 0.6 wt%). The filling 
content and EAB for the ultralight magnetic and dielectric 
aerogels are compared with corresponding values (Tables 
S1 and S2) reported in the recent literature on spinel struc-
tured  MFe2O4 (M = Fe and Ni) composites [35] and rGO 
aerogel–based microwave absorbers [36]. As shown in 
Figs. 6g-h and S10, both the  Fe3O4@C/rGO and Ni-doped 
 Fe3O4@C/rGO aerogels present obvious advantages such as 

Fig. 4  a, b, d SEM, c elemental mapping (Fe, O, C, and Ni), e, f TEM, g HRTEM, and h SEAD images for f of the Ni-doped  Fe3O4@C/rGO 
aerogel
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ultralow filling contents and broadband MA. Furthermore, 
to access a comprehensive MA performance with thick (T), 
light (L), strong (S), and wide (W) features, the TLSW value 
is obtained using the following equation of a material: |RL| 
(dB) × bandwidth (GHz)/thickness (mm)/filling ratio (wt%). 
Because the  Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO 
aerogels achieve high TLSW values (Table S3 and Fig. 6i), 
these magnetic and dielectric aerogels can be categorized 
in the group of state-of-the-art MA materials such as mag-
netic MXene/graphene aerogel [3], organic–inorganic hybrid 
aerogel [37], 3D NiAl-LDH/graphene [38], CoNi@SiO2@
TiO2 microspheres [1], multicomponent hierarchical aero-
gels [7], and magnetic carbon aerogel [39].

To clarify the MA mechanism, the electromagnetic 
parameters including the real (ε′ and µ′) and imaginary 
parts (ε″ and µ″) are shown in Figs. 7a and S11. ε′ and µ′ 
represent the storage capability of electric and magnetic 
energies, respectively, and ε″ and µ″ denote the dissipation 
capability of electric and magnetic energies, respectively. 
Generally, the dielectric loss of graphene-based aerogels is 
attributed to polarization relaxation and conduction losses 
(εp″ and i″, respectively), which are further confirmed 

using the Cole–Cole curves of ε′–ε″ according to the Debye 
relaxation theory [40, 41]. The curves are divided into two 
parts: the part with several semicircles and a small ε′ value 
is related to the polarization loss and that with a straight 
line and a large ε′ value is related to the conduction loss 
(Fig. 7c). The conduction loss is ascribed to the migration 
of electrons in the 3D interconnected network structure [2, 
40] and the carbon shells of the nanocapsules [34, 42, 43]. 
The multiple polarization relaxations in the  Fe3O4@C/rGO 
and Ni-doped  Fe3O4@C/rGO aerogels include the dipolar 
polarizations caused by the defects and functional groups 
on the rGO skeleton and multiple heterogeneous interfacial 
polarizations among  Fe3O4@C or Ni-doped  Fe3O4@C nano-
capsules, small ferromagnetic nanoparticles, and rGO sheets 
[44, 45]. Moreover, based on doping engineering, the crystal 
structure of Ni-doped  Fe3O4 can be modified and additional 
heterogeneous interfaces can be formed [46]. Compared 
with the pea-like  Fe3O4@C nanocapsules, the cocoon-like 
Ni-doped  Fe3O4@C nanocapsules shows highly maximized 
interfacial areas, reinforcing interfacial effects.

Because of the uniform incorporation of a ferromagnetic 
component from MIL-88A to the dielectric rGO aerogels, 

Fig. 5  a‑b XRD patterns and c–f high-resolution XPS spectra of c, e C 1 s and d, f Fe 2p of  Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO aero-
gels
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Fig. 6  a RL − f curves, b 2D, and c 3D representations of the RL values. d RLmin and e EAB values at different thicknesses. f Selected RL–f 
curves at different wavebands. g, h Comparison of the EMA performance considering the RLmin, filler content, and EAB with reported spinel 
structured  MFe2O4 (M = Fe and Ni) composites. i TLSW values of the reported representative EMA materials
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magnetic loss is also instrumental in the microwave attenu-
ation capacity of both the aerogels. The µ′ and µ″ values 
of both the aerogels stable in the range of 0.91–1.12 and 
fluctuate in the range of − 0.05–0.15 (Fig. 7a). The nega-
tive μ″ value indicates that the magnetic energy from the 
induced magnetic field of the materials is transformed into 
the electric energy. Similar results have been observed in 

other magnetic carbon absorbers [47]. Generally, the mag-
netic loss is attributed to the eddy current and magnetic reso-
nance loss (natural and exchange resonances) [3]. The eddy 
current loss is evaluated using Eqs. 5 and 6 [11].

(5)��� ≈
2

3
��0�

�2�d2f

Fig. 7  a Complex permittivity and permeability, b dielectric and magnetic loss tangents (tanδε and tanδμ, respectively), c Cole–Cole curves 
(ε′–ε″ plots), d C0–f curves, e attenuation constant (α), f, g impedance matching (Zin/Z0) and h, i RL/tm/Z − f curve for the prepared  Fe3O4@C/
rGO and Ni-doped  Fe3O4@C/rGO aerogels
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where μ0 denotes the vacuum permeability. C0 is positively 
correlated with d2 and σ (conductivity). The C0 value is 
almost stable in the range of 14–18 GHz in the C0 − f curves 
(Fig. 7d), indicating a magnetic loss from the eddy cur-
rent loss. Alternatively, the large vibration area (blue dot-
ted frame) of C0 at low frequencies of 2–7 GHz and low 
fluctuation area (red dotted frame) at high frequencies of 
8–14 GHz are dominated by natural and exchange reso-
nances, respectively [3]. Furthermore, the increased weight 
ratio of MOFs and rGO (3:2) induces the agglomeration of 
MOF derivatives (Fig. 12), affording reduced magnetic loss 
(Fig. S11c, d).

In addition to the intrinsic microwave attenuation capac-
ity (Fig.  7e), impedance matching is another factor for 
evaluating the prepared high-efficiency absorbers [11, 12]. 
Impedance matching is used to characterize the degree of 
matching between the input impedance of the material and 
the impedance of a free space. If the impedance matching 
value (Z =|Zin/Z0|) is ~ 1, additional electromagnetic waves 

(6)C0 = �����−2f −1 =
2

3
��0�d

2 enter the absorbers; otherwise, electromagnetic waves are 
reflected from the material surface. The impedance match-
ing values in a moderate region of 0.8–1.2 for both aerogels 
increased (Fig. 7f, g), affording improved electromagnetic 
wave loss performance.

The relation between the RL, thickness, and frequency 
can be obtained using the one-quarter wavelength model. 
The simulated thickness (tm) of an absorber at 2–18 GHz is 
estimated using Eq. 7 [15]:

where n and fm denote the refractive index of the material 
and the matched frequency, respectively. When the tm value 
is approximately consistent with the experimental thickness 
of a material, the resulting MA shows practical applications. 
Figure 7h, i show the typical RL–f, tm–f, and |Zin/Z0|–f curves 
of the  Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO aerogels 
at thicknesses of 2.50 and 2.85 mm, respectively. The  RLmin 
values are obtained at a frequency where |Zin/Z0|= 1 and the 
tmexp values exactly falls in the λ/4 curves.

(7)
tm =

nc

4fm

√
|
|�r

|
|
|
|�r

|
|

Fig. 8  a, b, d, e 3D radar wave scattering signals, c, f RCS simulated curves of the prepared  Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO aero-
gels
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Figure  8 presents the CST simulation results for the 
 Fe3O4@C/rGO and Ni-doped  Fe3O4@C/rGO aerogels 
at 10 and 15 GHz, which reflect the real far-field condi-
tions of MA performance [48]. At 10 GHz, both the aero-
gels exhibit weak scattering signals (Fig. 8a, b). The RCS 
value of the Ni-doped  Fe3O4@C/rGO aerogel with a coating 
thickness of 3.5 mm is less than − 10 dB sm in the range 
of − 72° < θ < 72°, which is lower than that of the  Fe3O4@C/
rGO aerogel (Fig. 8c). The difference in the RCS values of 
the two aerogels is 15.1 dB sm at θ = 0°. At 15 GHz, the 
Ni-doped  Fe3O4@C/rGO aerogel shows a stronger scatter-
ing signal than the  Fe3O4@C/rGO aerogel (Fig. 8d, e). The 
RCS value of the  Fe3O4@C/rGO aerogel is less than − 10 dB 
sm over the range of − 37° < theta < 37° at a coating thick-
ness of 2.5 mm. These simulated results further confirm the 
enhanced MA performance of the Ni-doped  Fe3O4@C/rGO 
aerogel in the X band. Furthermore, the  Fe3O4@C/rGO aero-
gel is superior to the Ni-doped  Fe3O4@C/rGO aerogel in 
terms of scattering signal at high frequencies, correspond-
ing well with the MA properties of the former summarized 
in Fig. 6f.

3.3  MA Mechanism

Based on the aforementioned experiments and simulation 
analysis, the MA mechanism of the MOF/rGO-derived mag-
netic and dielectric aerogels is attributed to the synergistic 

effects of impedance matching and microwave attenuation 
capability (Fig. 9). At the macroscopic level, a 3D porous 
structure promotes the entry of electromagnetic microwaves 
into the aerogels instead of being reflected from the surface. 
Multiple random reflections and scatterings of electromag-
netic waves occur repeatedly in microcellular free spaces, 
affording excellent impedance matching [40]. At the micro-
scopic level, the synergistic dielectric and magnetic losses 
are crucial in the absorption attenuation mechanism of the 
MOF/rGO-derived magnetic and dielectric aerogels. The 
incident electromagnetic microwaves are captured and atten-
uated by the 3D multicomponent walls composed of the rGO 
nanosheets,  Fe3O4@C or Ni-doped  Fe3O4@C nanocapsules, 
and small ferromagnetic nanoparticles [18]. The multiple 
polarization relaxations in the aerogels include the dipolar 
polarizations caused by the defects and functional groups 
on the rGO skeleton and multiple heterogeneous interfacial 
polarizations of  Fe3O4@C or Ni-doped  Fe3O4@C nano-
capsules, small ferromagnetic nanoparticles, and graphene 
sheets [12]. Moreover, the interconnected and conductive 
structure of the aerogels effectively promote the conduction 
loss. Furthermore, spatially dispersed ferromagnetic nano-
particles suspended within highly porous 3D frameworks 
afforded a multiscale magnetic network and could consider-
ably contribute to the enhanced magnetic responding capac-
ity [19].

Fig. 9  Schematic of the associated microwave absorption mechanism of the proposed MOF/rGO-derived magnetic and dielectric aerogels
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4  Conclusions

We demonstrated a green and convenient route for synthe-
sizing MOF/rGO hybrid aerogels based on the gelation of 
GO in an aqueous dispersion directly initiated using MOF 
crystals. The gelation mechanism involves the elimination of 
the electrostatic repulsive forces at the joining sites provided 
by the free metal ions exposed on the surface of the MIL-
88A nanorods, initiating the assembly of the sheets into a 
3D network under moderate heating conditions. Such a gela-
tion process is easy to achieve without complicated synthetic 
steps and additional chemicals or reagents. Furthermore, the 
compositions of the as-prepared aerogels can be precisely 
controlled by adjusting the initial concentrations of the 
MOF suspensions. Because of the good impedance match-
ing and microwave attenuation capability, the proposed 
MOF/rGO-derived magnetic and dielectric aerogels show 
impressive MA performance. The  Fe3O4@C/rGO and Ni-
doped  Fe3O4@C/rGO aerogels achieve strong  RLmin (− 58.1 
and − 46.2 dB, respectively) and broad  EABmax (6.48 and 
7.92 GHz, respectively) with thicknesses of 2.5 and 2.8 mm 
and ultralow filling contents of 0.7 and 0.6 wt%, respec-
tively. The CST simulation results also demonstrate that 
the prepared Ni-doped  Fe3O4@C/rGO aerogel effectively 
suppresses the reflection and scattering of electromagnetic 
waves in the X band. Further, the  Fe3O4@C/rGO aerogel 
shows good microwave attenuation capacity at high frequen-
cies, thus providing a theoretical basis for practical far-field 
applications of the synthesized absorbers. Our findings pro-
vide guidance and inspiration for the design and fabrication 
of hierarchically porous MOF/rGO hybrid aerogels as MA 
materials for use in various fields.
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