Supporting Information for

Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing

Wentao Cao^{1, 2}, Zheng Wang¹, Xiaohao Liu¹, Zhi Zhou¹, Yue Zhang¹, Shisheng He^{1, *}, Daxiang Cui^{1, 2, 3, *}, Feng Chen^{1, *}

¹Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China

²National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China

³Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

*Corresponding authors. E-mail: <u>fchen@tongji.edu.cn</u> (Feng Chen); <u>tjhss7418@tongji.edu.cn</u> (Shisheng He); <u>dxcui@sjtu.edu.cn</u> (Daxiang Cui)

Supplementary Figures

Fig. S1 Schematic for the synthesis of Ti_3C_2 MXene

Fig. S2 SEM images of (a) Ti_3AlC_2 and (b) accordion-like multilayered MXene

Fig. S3 (a) XPS survey, (b) Ti 2p, and (c) Al 2p spectra of Ti_3AlC_2 precursor and Ti_3C_2 MXene nanosheets

Fig. S4 (**a**) Schematic of the TEMPO oxidation process to prepare CNFs. (**b**) FTIR spectra, (**c**) AFM image, and (**d**) height profiles of CNFs

Nano-Micro Letters

Fig. S6 Histograms and estimated densities of the distance between the atoms of glucose and the surface of CNT at (**a**) 0, (**b**) 5, and (**c**) 20 ns

Fig. S7 (**a**) Definition of the parameters between glucose and CNT. Evolution of (**b**) the distance and (**c**) the angle between glucose and CNT

Nano-Micro Letters

Fig. S8 Digital photographs of CNTs, CNTs/CNFs, and CCM dispersion

Fig. S9 EDS elemental mapping image of the CCM film

Fig. S10 (a) Top-view and (b) cross-sectional c \$ S4 /S7

Fig. S11 The GF and linear behavior of (**a**) CNFs/CNTs, (**b**) CCM-0.5, (**c**) CCM-1, and (**d**) pristine MXene e-skin

Fig. S12 Typical relative resistance changes versus applied strain curves under one stretch and release cycle for the CCM-0.5 e-skin at a frequency of 1 Hz under 100% strain

Nano-Micro Letters

Fig. S13 Relative resistance changes of the CCM-0.5 e-skin under a quasi-transient step strain of 0.5%

Fig. S14 Responsive curves of the CCM-0.5 e-skin on the knee under motions of (**a**) walking and (**b**) running

Fig. S15 Responsive curve recorded during speaking "sensor"

Fig. S16 (a) Photographs of a sample with black and blue pigments that change color in response to an applied voltage of 20 V. (b) Photographs of a sample with black and purple pigments that change color in response to an applied voltage of 20 V. (c) Photographs of a sample with purple pigments that change color in response to various applied voltage

Fig. S17 (a) Temperature variations of the CCM e-skin with gradually bending of wrist. (b) Photographs and corresponding temperature mapping of wrist under different states of motion in a) (scale bar: 2 cm)