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Supplementary Figures 

 

 

Fig. S1 Size and structure characterization of h-BN particles (PT110), (a) SEM image, (b) 

size distribution, (c) TEM image, (d) selected area electron diffraction (SAED) 
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Fig. S2 The lateral view (a) and top view (b) of the mold drawing. (c) Photograph of the mold 

(0.2-2) including positive and negative molds fabricated by the 3D printing technique 

 

Fig. S3 Cross-sectional SEM images of the prepared strips filled with, (a, b) 30 wt% CF by 

0.4-2.4 mold, (c, d) 10 wt% CF and 50 wt% BN by the 0.2-2 mold 

CFD simulation 

The computational fluid dynamics (CFD) analysis was conducted by the COMSOL 5.5 

software by calculating the steady, single-phase and laminar flow in the expanded mold [S1, 

S2]. Figure S4 shows the geometry of 2D longitudinal section of the 0.2-2 mold. The relative 

tolerance of 10-3 was set as the convergence criterion in solving the continuity and momentum 

equations. Due to the non-Newtonian behavior of BN inks, the steady viscosity was measured 

as a function of shear rate from 10-4 to 10-1. As shown in Fig. S5, the Carreau model was used 

to obtain the relevant parameters, including zero-shear viscosity (μ0), time constant (λ), infinite-

shear viscosity (μ∞), and power-law index (n). These parameters listed in Table S1 were input 

as the fluid property considering the shear-thinning behavior. The inlet velocity with variable 

speed from 0.0006 to 0.0256 m s-1, zero pressure outlet, and a non-slip condition on other walls 

were used. 
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Fig. S4 The geometry of the longitudinal section of the expanded mold (0.2-2) in CFD 

simulation 

 

Fig. S5 The plot of viscosity as a function of shear rate and the fitting curve by the Carreau 

model 

 

Table S1 Material properties used in the simulation 

CFD Parameters Non-Newtonian 

Flow rate ml/min 1.5 

Flow speed, m/s 6.25 10-4 

Zero-shear viscosity, Pa ·s 3.41 107 

Infinite-shear viscosity, Pa ·s 121.7 

Internal relaxation time, s 48774 

Power-law exponent 0.0242 

Density, Kg·m -3 1480 
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Fig. S6 Velocity field of 60 wt% BN/SG inks calculated by CFD simulation. (a) Comparison 

of velocity distribution at x= 10.1, 10.5, 12 mm. (b) Comparison of calculated velocity profile 

at x=12 mm with flow velocity from 0.0006 to 0.0256 m s-1. Comparison of the calculated shear 

rate (c) and expansion rate (d) at x=10.1 mm, for different mold shapes 

 

Fig. S7 The calculated rate ratio higher than 0.14 with the location along y-axis 
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Fig. S8 (a) Uncured BN/SG strips filled with different contents, (a1) 40 wt% (30 μm), (a2) 50 

wt% (30 μm), (a3) 55 wt% (30 μm), (a4) 48 wt% (15 μm). (b) Diagram for extrusion ability of 

inks with various BN sizes and contents 

 

Fig. S9 Cross-sectional SEM images of the extruded wavy-like strips 

 

Fig. S10 2D WAXS patterns of, (a) pure SG, (b) side plane and (c) front plane of 60V-

BN/SG (0.2-2) strip 
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Fig. S11 (a) The powder X-Ray diffraction (XRD) of h-BN powder (PT110). Integration of 

WAXS patterns of (b) pure SR, (c) 60V-BN/SG (0.2-2) strip (the x-y plane) 

 

 

Fig. S12 The azimuthal angel (φ) plots and fitting curves of the x-y plane of strips by, (a) 0.2- 

2mm, (b) 0.4-2, (c) 0.2-2 molds 
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Fig. S13 The cross-sectional SEM images of the 60V-BN/SG (0.2-1) strip 

 

Fig. S14 (a) The TG curve of V-BN/SG (0.2-2) strips. (b) The compressive property of the 

60V- BN/SG (0.2-2) strip 

 

Fig.S15 Photographs of discharging and charging setup of the battery pack with BN strips as 

TIMs 
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Finite element simulation of heat conduction: 

The finite element simulation was carried out by the COMSOL 5.5 software to compare the 

heat conduction capability of three BN assembled structures. Fig. S16 shows the simulative 

models and coordinate systems of BN sheets in composites with randomly dispersed, vertically 

aligned and ladder-like aligned structures. The calculated coordinate systems enabled the 

definition of anisotropic thermal conductivity of BN. Localized heat source (0.05 mm length) 

with a constant temperature of 100 °C was applied to the bottom of the simulation box (0.5×0.5 

mm2). The boundary condition of top surface was external natural convection with an ambient 

temperature (25 °C), and others were thermally insulated. The thermal conductivity of silicone 

rubber and BN were set to be 0.2 and 600 (in-plane) /30 (through-plane) W m -1 K -1, 

respectively (Fig. S16)) [S3, S4]. 

 

 

Fig. S16 (a) Finite element simulation models (the top three images) and calculated coordinate 

system of each BN sheet in composites with randomly dispersed, vertically aligned and ladder-

like aligned BN structures from left to right. (b) major parameters of SG and BN in the 

simulation analysis 
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Table S2 The calculated thermal conductivity of samples 

Samples 
Thickness 

(mm) 
α (mm2 s-1) ρ (g cm-3) Cp (J g -1 K -1) TC (W m -1 K -1) 

40R-BN/SG 2 0.49 1.271 1.195 0.74 

50R-BN/SG 2 0.676 1.362 1.113 1.02 

60R-BN/SG 2 0.777 1.494 1.128 1.31 

40V-BN/SG(0.2-2) 2 0.726 1.269 1.277 1.18 

50V-BN/SG (0.2-2) 2 1.646 1.383 1.129 2.57 

60 V-BN/SG (0.2-2) 2 2.253 1.484 1.138 3.80 

60V-BN/SG (0.2-2) 1.5 2.536 1.482 1.138 4.28 

60V-BN/SG (0.2-2) 1 2.704 1.480 1.138 4.55 

60V-BN/SG (0.2-2) 0.5 3.453 1.482 1.138 5.82 

60V-BN/SG (0.4-2) 1 2.661 1.491 1.124 4.50 

60V-BN/SG (0.4-2) 0.5 2.675 1.473 1.124 4.43 

60V-BN/SG (0.2-1) 1 1.495 1.49 1.128 2.51 

60V-BN/SG (0.2-1) 0.5 2.485 1.516 1.128 4.25 

50V-BN/CF/SG (0.2-2) 2 3.369 1.488 1.107 5.55 

50V-BN/CF/SG (0.2-2) 1.5 3.399 1.484 1.107 5.58 

50V-BN/CF/SG (0.2-2) 1 3.999 1.477 1.107 6.54 

Table S3 Through-plane thermal conductivity of BN, BNNS based composites measured by 

LFA 

Materials Method Loading 
Through-plane TC 

(W m -1 K -1) 
References 

BNNS/HDPE Injection molding 23.2 vol% 1.34 [S5] 
PS@BN Hot pressing 33.3 wt% 0.94 [S6] 

PP/6wt%PF@B N 
 

Hot-pressing 

 

40 wt% 

 

3.85 
[S7] 

BNNS/BNMS/ 

epoxy 
Direct mixing 30 wt% 1.148 [S8] 

Spherical 

BN/PDMS 
Direct mixing 50 wt% 2.32 [S9] 

BNNS/epoxy 
Bidirectional 

freezing 
15 vol% 6.07 [S10] 

3D BN/epoxy Ice-templating 34 vol% 4.42 [S11] 
 

3D BN/epoxy 
NH4HCO3 

templating 

 

60 vol% 

 

6.11 
[S12] 

BN/epoxy Magnetic field 60 vol% 7.28 [S13] 
 

BNNS/PS 
Foaming assembly 

 

30 wt% 
 

1.28 
[S14] 

V-BN/SR Stacking-cutting 60 wt% 5.4 [S15] 
BN/MVQ Rolling-cutting 60 wt% 6.3 [S16] 

BN rod 3D printing 50 wt% 5.65 [S17] 
BN/TPU 3D printing 60 wt% ~6 [S18] 
V-BN/SG This work 60 wt% 5.65  
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