
Vol.:(0123456789)

1 3

A Multifunctional Anti‑Proton Electrolyte 
for High‑Rate and Super‑Stable Aqueous 
Zn‑Vanadium Oxide Battery
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HIGHLIGHTS

• The introduction of PEG 400 additive in the aqueous electrolyte enables regulating the  Zn2+ solvation structure and inhibiting the 
ionization of free water molecules.

• Such anti-proton electrolyte can not only reduce the lattice expansion of cathode hosts and inhibit the associated by-products, but also 
guide the uniform Zn deposition and inhibit the hydrogen evolution reaction.

• A high-rate Zn-V2O3/C battery with 18,000-cycle shelf-life can be demonstrated via the integrated synergetic modification mechanism.

ABSTRACT Large volumetric expansion of cathode hosts and 
sluggish transport kinetics in the cathode–electrolyte interface, 
as well as dendrite growth and hydrogen evolution at Zn anode 
side are considered as the system problems that cause the elec-
trochemical failure of aqueous Zn-vanadium oxide battery. In this 
work, a multifunctional anti-proton electrolyte was proposed to 
synchronously solve all those issues. Theoretical and experimental 
studies confirm that PEG 400 additive can regulate the  Zn2+ solva-
tion structure and inhibit the ionization of free water molecules of 
the electrolyte. Then, smaller lattice expansion of vanadium oxide 
hosts and less associated by-product formation can be realized by 
using such electrolyte. Besides, such electrolyte is also beneficial to 
guide the uniform Zn deposition and suppress the side reaction of 
hydrogen evolution. Owing to the integrated synergetic modifica-
tion, a high-rate and ultrastable aqueous Zn-V2O3/C battery can be constructed, which can remain a specific capacity of 222.8 mAh  g−1 
after 6000 cycles at 5 A  g−1, and 121.8 mAh  g−1 even after 18,000 cycles at 20 A  g−1, respectively. Such “all-in-one” solution based on 
the electrolyte design provides a new strategy for developing high-performance aqueous Zn-ion battery. 

KEYWORDS Zn-vanadium oxide battery; Multifunctional anti-proton electrolyte; Integrated synergetic modification; “All-in-one” 
solution

(I) Reinforced structural stability

(II) Enhanced interfacial transport kinetics

e−e−
Corrosion HER

By-products

Zn2+ Zn2+
Non-

electrochemically
active by-product

Cathode
materials

Sluggish transport Efficient transport

H+/Zn2+ insertion Zn2+ insertion

Repulsion

Large volumetric strain Small volumetric strain

Zn dendrite

Zn

Zn

(IV) Inhibiting side reactions

(III) Guide smooth deposition

+ −
e− e−

H+ Zn2+ H2O OTf PEG chain-CH2-

  e-ISSN 2150-5551
      CN 31-2103/TB

ARTICLE

Cite as
Nano-Micro Lett. 
         (2022) 14:154 

Received: 18 May 2022 
Accepted: 3 July 2022 
© The Author(s) 2022

https://doi.org/10.1007/s40820-022-00907-4

 * Dingtao Ma, mdt2500@szu.edu.cn; Peixin Zhang, pxzhang@szu.edu.cn
1 College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
2 Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-022-00907-4&domain=pdf


 Nano-Micro Lett.          (2022) 14:154   154  Page 2 of 18

https://doi.org/10.1007/s40820-022-00907-4© The authors

1 Introduction

The increasing energy crisis and environmental pollution 
promote the continuous exploration of green energy storage 
solution. Rechargeable aqueous zinc-ion batteries (AZIBs) 
are supposed to be the potential next-generation candidate 
benefited from the low cost, intrinsic safety and high theo-
retical capacity, which have received extensive attention 
in the recent years [1–3]. To develop high-rate and long 
shelf-life AZIBs, many kinds of cathode materials have 
been successively demonstrated, which mainly includes the 
manganese-based oxides [4–7], vanadium-based compounds 
[8, 9], Prussian blue analogues (PBAs) [10, 11] and organic 
materials [12]. Among them, vanadium oxides (such as 
 V2O5,  VO2,  V2O3) are considered as the promising storage 
host due to the abundant valence state to achieve high spe-
cific capacity, and open-frameworks assembled by various 
coordination polyhedral to facilitate the efficient ion storage 
during the electrochemical cycling [13, 14]. However, it has 
been found that such aqueous zinc-vanadium oxide battery 
in the acidic electrolyte usually suffers from insufficient rate 
performance and poor cycle lifespan (< 3000 cycles) in the 
research, which greatly hinders their practical applications 
[15, 16].

Generally, it should be a system problem that causes the 
electrochemical failure of aqueous zinc-vanadium oxide 
battery, as shown in Scheme 1, the adverse factors can be 
mainly divided into the following two concerns. For Zn 

metal anode side, on one hand, the uneven deposition would 
lead to the rapid growth of Zn dendrite and produce the risk 
of puncturing the glass fiber (GF) separator [17, 18]. Besides 
that, the side reactions especially for hydrogen evolution 
reaction (HER) would lead to a sharp increment of internal 
pressure in battery [19–21]. While for the vanadium oxide 
cathode side, from the perspective of storage mechanism, 
the co-embedding of  Zn2+/H+ into vanadium oxide host 
and accompanying with the generation of alkali by-product 
in the cathode/electrolyte interface is the most commonly 
acknowledged storage mechanism especially in the acidic 
electrolyte (Zn(OTf)2/H2O) system [22, 23]. Note that such 
low conductive by-product would not only consume the zinc 
ions in the electrolyte, but also block the interfacial ion/
electron transport during cycling [24]. In this case, sluggish 
interfacial transport and low storage reversibility should be 
the most critical issues. Therefore, how to simultaneously 
solve all these faced issues is the key point to develop high-
performance zinc-vanadium oxide battery yet still to be a 
research challenge.

Reviewing the research progress, most of the previous 
reports only focus on either the cathode side or anode side, 
while less attention has been paid for the integrated syner-
getic modification of both of them. For example, in order to 
improve the storage reversibility and interfacial transport 
kinetics of vanadium oxide cathode materials, a series of 
modification strategies such as surface coating [25], compos-
ite formation [26], ions intercalation [27], and morphological 

H+ Zn2+ H2 HO 2anion by-product Zn dendrite

Hydrogen evolution issueInterfacial transport issue

Storage
reversibility issue

in the acidic electrolyte
Zn metal anode

Dendrite
growth issue

Vanadium
oxide cathode

(V2O5, VO2, V2O3)

+ −

e− e−

Scheme 1  Illustration of the electrochemical failure model of aqueous zinc-vanadium oxide battery
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design [28] have been previously proposed. However, those 
approaches usually require the complex process; moreover, 
it is also being difficult for those simplex modifications path-
way to concurrently ensure the rapid interfacial transport 
kinetics and highly reversible ions insertion/extraction for 
host framework. This is because the repulsion of  H+ and 
 Zn2+ during insertion process would induce the large lat-
tice expansion and the accumulation of volumetric strain 
after long-term cycling would damage the host framework. 
Meanwhile, the residual by-product covered the surface of 
active materials would still impede the ion transport and 
electron transfer and finally weaken the storage performance 
of battery. Considering the adverse chain effect caused by 
proton participation during storage reactions, the suppress 
of proton electrochemistry should be the fundamental way 
to solve the above questions. To the best of our knowledge, 
only few published reports were focused on this research 
area and more deep works are still desirable. Besides, the 
exploration of brand-new “all-in-one” solution as universal 
way to enabling high-performance aqueous zinc-ion battery 
is also highly eager.

Herein, for the first time, we report the strategy of multi-
functional anti-proton electrolyte to enabling high-rate and 
ultralong shelf-life aqueous zinc-vanadium oxide battery. 
Experimental and molecular dynamics studies confirmed 
that the electrochemical activity of proton in the modified 
electrolyte can be effectively inhibited through trap and iso-
late the free water molecules by the PEG molecular chain. 
On this basis, in-situ XRD and in-situ EIS research further 
reveals that the proton insertion behavior and the formation 
of by-product can be maximally inhibited in such anti-proton 
electrolyte, thus significant decreasing the lattice expansion 
of host framework and facilitating the interfacial transport 
kinetics. Moreover, such electrolyte is also beneficial to 
inhibit the  H2 evolution and guide the smooth Zn deposi-
tion. As a result, benefited from the integrated synergetic 
modification mechanism enabled by such multifunctional 
anti-proton electrolyte, the assembled aqueous Zn-V2O3/C 
battery performs a significantly enhanced rate performance, 
and the cyclic stability can be even extended up to 18,000 
cycles with the coulomb efficiency of nearly 100% at the 
ultrahigh current density of 20 A  g−1.

2  Experimental Section

2.1  Materials Preparation

V2AlC (11 technology co.,LTD.), 30%  H2O2 (XILONG 
SCIENTIFIC), Zn(OTf)2 (> 98%, TCI), LiF (99.9% Mack-
lin), 12 mol  mL−1 HCL (38 wt% Hushi reagent),  H2C2O4 
(> 99.5%, Tianjin Baishi Chemical),  V2O5 (99%, Xiya 
reagent), polyethylene glycol 400 (PEG 400, TCI), poly-
vinylidene fluoride (PVDF, arkema), acetylene black (KJ 
MTI), and 1-Methyl-2-pyrrolidinone (NMP, > 98%, Alad-
din) were purchased and directly used without further 
purification.

2.2  Materials Synthesis

2.2.1  Synthesis of V2CTx MXene Nanosheets

V2CTx nanosheets were prepared via etching the  V2AlC 
powder by using lithium fluoride (LiF)/hydrochloric acid 
(HCl) solution. In detail, 1.0 g of  V2AlC powder was slowly 
added into LiF/HCl solution (2.0 g LiF dispersed into 30 mL 
of 12 M HCl) within 10 min, which was continuously stirred 
for 0.5 h at 25 °C. Afterward, the turbid suspension was 
transferred to a 50 mL teflon-lined stainless-steel autoclave 
and sealed at 120 °C for 36 h. The turbid suspension was 
centrifuged to collect the sediments, followed by washing 
with deionized water for several times until the pH turned 
neutral. The sediments were further rinsed by ethanol for 
three times before vacuum-drying at 60 °C for 12 h, and 
finally receiving the  V2CTx nanosheets.

2.2.2  Synthesis of V2O3/C Nanosheets

2 mL of 30 wt%  H2O2 diluted into 20 mL of 3 wt%  H2O2 
was dropwise added into 100 mL of ~ 2.0 mg  mL−1  V2CTx 
suspension under vigorous stirring. The mixture was kept 
stirring for 10 min, and subsequently immersed into liquid 
nitrogen. After the dispersion was completely frozen, it was 
subjected to a vacuum freeze drier for at least 36 h. The 
obtained powder was annealed at 800 °C for 2 h with a ramp-
ing rate of 5 °C  min−1 under Ar/H2 (95/5, vol/vol) flow, 
resulting in the  V2O3/C nanosheets.
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2.2.3  Synthesis of VO2

V2O5 (1.2 g) and  H2C2O4⋅2H2O (2.5 g) were initially added 
into deionized water (40 mL), and then the above mixture 
was reacted at 75 °C under magnetic stirring for 60 min to 
obtain a dark blue dispersion. Then, the above dispersion 
was transferred into a 50 mL teflon-lined autoclave and kept 
at 180 °C for 180 min. Finally, the product was collected and 
washed with ethanol and deionized water.

2.2.4  Preparation of Anti‑Proton Electrolyte

A certain amount of Zn(OTf)2 (> 98%, TCI) was dissolved 
in deionized water to prepare 3 M Zn(OTf)2 electrolyte 
(denoted as 0PEG electrolyte). Correspondingly, a certain 
amount of Zn(OTf)2 was dissolved in the co-solvent of 50 
wt% PEG 400 and 50 wt% deionized water to obtain the anti-
proton electrolyte (denoted as 50PEG electrolyte).

2.3  Materials Characterization

Surface morphology and energy-dispersive spectroscopy 
(EDS) elemental mapping were examined by field emis-
sion scanning electron microscopy (FESEM, JEOL, JSM-
7800F) equipped with an energy-dispersive X-ray spectrom-
eter (EDS) (Ametek,TEAM Octane Plus) at an accelerating 
voltage of 15 kV. Transmission electron microscopy (TEM) 
was performed using a JEM-2100 & X-Max80 microscope 
under an accelerating voltage of 200 kV. X-ray diffraction 
(XRD) measurement was performed using a PANalytical, 
Empyrean, CuKa radiation (λ = 1.54065 Å) Generator at 
45 kV and 40 mA. Atomic force microscopy (AFM) was 
carried out using a Bruker dimension icon microscope with 
ScanAsyst. Raman spectra were recorded using Thermo 
Fisher Renishaw inVia spectrometer with excitation wave-
length λ = 532 nm. XPS measurement was performed using 
the Thermo Fisher Scientific K-Alpha spectrometer (Al Kα 
radiation) with a scanning rate of 0.05 eV per step. Operando 
optical observation was carried out on Motic BA310Met 
coupling with a CHI760e electrochemical workstation. For 
the calculation of lattice expansion ratio, this value (Δd/d) 
can be calculated using the parameter of the initial state (d) 
as a reference.

2.4  Electrochemical Measurements

To prepare the cathode, active materials  (V2O3/C,  VO2 and 
commercial  V2O5), acetylene black, and PVDF with a mass 
ratio of 7:2:1 were mixed in NMP under stirring. Then, the 
slurry was uniformly casted on the Ti foil, and immediately 
vacuum-drying at 60 ℃ for 12 h to thoroughly remove NMP. 
The as-fabricated cathode was further punched out into cir-
cular disks with a diameter of 12 mm to match the zinc foil 
anode, 3 M Zn(OTf)2/H2O and 3 M Zn(OTf)2 in  H2O/PEG 
400 with the mass ratio of 1:1 were employed as electrolyte, 
glass microfiber filter (Whatman GF/D) was punched out 
into circular disks with a diameter of 17 mm as separator.

CV test was performed at various scan rate from 0.1 to 
1 mV  s−1. Electrochemical impedance spectroscopy (EIS) 
was tested using 1470E electrochemical workstation (Solar-
tron Analytical, Ametek). Galvanostatic intermittent titra-
tion technique (GITT) measurement was also executed on 
CT3001A cell testing system, before the GITT measure-
ment, the assembled cells were first charged and discharged 
at 0.2 A  g−1 for three cycle to stabilize the cells. The current 
pulse lasted for 5 min at 0.2 A  g−1, and then the cell was 
relaxed for 30 min to make the voltage reach the equilibrium. 
The  DZn

2+ value was calculated by formula (1):

where τ was the constant current pulse time;  mB, MB and Vm 
represent the mass, molar mass and molar volume of cathode 
material, respectively. S was the effective area of the working 
electrode. ΔEτ and ΔEs represent the difference between 
the current flux and the steady-state voltage as the voltage 
changes during the constant current pulse, respectively.

2.5  Molecular Dynamic Simulation

Atomistic molecular dynamics simulations have been per-
formed in the GROMACS (version 2020.6) simulation 
package, using the general amber force field (gaff2) and 
the TIP3P water model. The amorphous polymer was built 
in the materials studio software and 150 Zn ions and 300 
 OTf− molecules were randomly placed in a cubic box of 
around 5 nm with or without the polymer matrix. After 
solvation with 2778 water molecules, the systems were 
equilibrated through thousands of steps of energy minimi-
zation and 20 ns equilibration before the production runs of 
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another 20 ns under the NPT ensemble. The temperature was 
coupled to 298 K using the Nose–Hoover method and the 
pressure was coupled to 1 atm using the Parrinello–Rahman 
method. The cutoff scheme of 1.2 nm was implemented for 
the non-bonded interactions, and the Particle Mesh Ewald 
method with a Fourier spacing of 0.1 nm was applied for the 
long-range electrostatic interactions. All covalent bonds with 
hydrogen atoms were constraint using the LINCS algorithm.

3  Results and Discussion

3.1  Solvation Structure Reorganization of Anti‑Proton 
Electrolyte

To explore the influence of PEG 400 additive (Fig. S1) on 
tuning the  Zn2+ solvation structure as well as the electro-
chemical activity of free water molecules in the electrolyte, 
molecular dynamics (MD) simulation was carried out. As 
can be seen, the solvation structure of  Zn2+ is mainly coor-
dinated to 2  OTf− and 4  H2O in 0PEG electrolyte (Fig. 1a), 
whereas the  Zn2+ solvation shell typically includes 4 OTf 
− and 2  H2O in 50PEG electrolyte (Fig. 1b). Besides that, as 
confirmed from the radial distribution functions in Fig. 1b–d, 
the coordination distance of  H2O and  Zn2+ is shorter than 
OTf – in the 0PEG electrolyte, and the coordination distance 
between PEG and  Zn2+ is extremely short in 50PEG electro-
lyte, manifesting the PEG molecular chain has the strongest 
interaction with the  Zn2+ ions compared to  OTf− and  H2O. 
Then, the snapshot of the content of free water molecules 
and the structure in 0PEG and 50PEG electrolyte are shown 
in Fig. 1e–f. It is obvious that the content of free water mol-
ecules in the 50PEG electrolyte is significantly less than that 
in the 0PEG electrolyte. Moreover, the snapshot of 50PEG 
electrolyte (Fig. 1g) reveals that the PEG molecular chain 
would aggregate to form the PEG-rich regions. Note that 
such PEG-rich regions exhibit strong adsorption capability 
to the free water molecules rather than  Zn2+, which implies 
that the PEG molecular chains would change the hydrogen-
bond structure among free water molecules owing to the 
strong interaction with free water molecules, thereby greatly 
reducing the electrochemical activity of the free water mol-
ecules in the electrolyte.

Subsequently, Fourier-transform infrared spectroscopy 
(FTIR) was further performed to analysis the structural 
change of water molecules in the electrolyte after PEG 400 

additive modification (Fig. 1h). Compared with the 0PEG 
system, both H–O bending and H–O stretching vibration 
modes of water molecules would shift to higher wavenumber 
and accompany with the increasing strength of C-H bending 
and C-H stretching vibration in the 50PEG system [29, 30]. 
Such phenomenon should be attributed to the perturbation 
of water hydrogen-bond network by the as-formed  H2O-PEG 
hydrogen-bond interaction [31, 32]. A lower content of ion-
ized  H+ in 50PEG electrolyte also can be revealed by the 
pH test (Fig. S2). In addition, the electrochemical stability 
window of 0PEG and 50PEG electrolyte was determined by 
linear sweep voltammetry (LSV), as shown in Fig. 1i. The 
result shows that the 50PEG electrolyte has a wider stable 
window (0.08–1.98 V) and lower corrosion current density 
than that of the 0PEG electrolyte (0.17–1.65 V), imply-
ing it a stronger tolerance for HER. Throughout the above 
research, in 50PEG electrolyte system, excepting the regula-
tion of the solvation structure of  Zn2+, the free water mol-
ecules would be trapped and isolated by the PEG molecular 
chain through forming the new hydrogen bond, especially 
in the PEG-rich regions, thus suppressing the ionization of 
free water molecules (Fig. 1j).

3.2  Characterizations of the  V2O3/C Nanosheets 
Cathode

V2CTx MXene-derived  V2O3/C nanosheets were fabricated 
via pre-oxidation and subsequent reduction calcination. 
X-ray diffraction pattern (Fig. 2a) confirms the well match 
of as-synthesized  V2O3/C with rhombohedral  V2O3 phase 
(JPCDS NO. 71–0345) and no any other impurity peak is 
detected [33]. Note that such  V2O3/C composite enables 
inheriting the morphology characteristics of  V2CTx MXene 
sheet (Fig. 2b) and possessing an ultrathin thickness of 
nearly 5 nm (Fig. 2c). TEM image (Fig. 2d) and correspond-
ing HRTEM images (Fig. 2e–f) and selected-area electron 
diffraction (SAED) pattern (Fig. 2g) further demonstrate 
the formation of composite of amorphous carbon and high 
crystallinity  V2O3. EDS elemental mapping (Fig. 2h) also 
confirms the homogeneous distribution of C, O, and V ele-
ments of  V2O3/C nanosheets. Moreover, the fitted result of V 
2p XPS peak (Fig. S3) indicates the dominant valence state 
of + 3 in  V2O3/C with the  V3+/V2+ ratio of 1.9. On the other 
hand, Raman spectrum (Fig. S4) of  V2O3/C composite mani-
fests the main existence of five kinds of vibration modes. 
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Among them, the low-frequency signal peaks located at 142 
and 265  cm−1 could be, respectively, interpreted as bending 
vibration of vanadium-based bonds in  [VO6] octahedra and 
V = O bonds, while the signal peaks at 501 and 686  cm−1 
should be attributed to the stretching vibration of the V–O 
bond, and the peak located at 1000  cm−1 corresponds to the 
stretching mode of V = O bond [34, 35].

3.3  Electrochemical Performance of Aqueous 
Zn‑V2O3/C Battery

To reveal the influence of such anti-proton electrolyte on 
storage capability of  V2O3/C cathode, Zn-V2O3/C battery 
was assembled to test the electrochemical performance. 
First, the rate performance test was depicted in Fig. 3a, 
which indicates the significantly enhanced rate capability 

after the electrolyte modification. In detail, compared with 
the low specific capacity achieved in the 0PEG system, the 
electrode in 50PEG electrode can harvest the high reversible 
capacities of 358.8, 298.6, 253.2, 220.6, 192.5, 170.3, 148.5, 
and 95.5 mAh  g−1 at 0.5, 1, 2, 4, 6, 8, 10, and 20 A  g−1, 
respectively, and the specific capacities can be fully recov-
ered when the applied current density turns back. Moreo-
ver, the corresponding discharge–charge curve (Fig. 3b–c) 
also confirms the well-retained voltage plateau of electrode 
in modified electrolyte even at the ultrahigh current den-
sity. Note that such storage capability is also superior to 
many other kinds of cathode materials reported previously 
(Fig. 3d). While for the storage reversibility, the cycling per-
formance of  V2O3/C electrode was tested at 0.5, 5, and 20 A 
 g−1, respectively. Although the electrode in 0PEG electro-
lyte enables delivering a higher specific capacity of 473.2 
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mAh  g−1 in the initial cycle at 0.5 A  g−1; however, it would 
quickly decay to 175.3 mAh  g−1 after 200 cycles (Fig. S5). 
In contrast, although the electrode in the 50PEG electrolyte 
would also undergo an activation process during initial few 
cycles, it can maintain a high discharge capacity of 341.1 
mAh  g−1 after 600 cycles. Besides, similar result also can 
be observed when the current density was improved to 5 A 
 g−1, the electrode can steadily work and retain the discharge 

capacity of 222.5 mAh  g−1 after 6000 cycles (Fig. 3e). More 
surprisingly, an excellent cyclic stability at the ultrahigh cur-
rent density of 20 A  g−1 also can be realized in the modified 
electrolyte, even after 18,000 cycles with the retained capac-
ity of 121.8 mAh  g−1 and nearly 100% coulombic efficiency 
(Fig. 3f). As described in Fig. 3g, such ultrastable cyclic 
performance is also significantly higher than that of many 
previous reports, such as  V2O5·nH2O/graphene [36],  MoS2/
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graphene [37],  LiV2(PO4)3 [38], and  KV2O4PO4·3.2H2O 
[39]. Notably, excepting the  V2O3/C electrode, our results 
demonstrated that such anti-proton electrolyte is also con-
ducive to improve the storage capability and cyclic stability 
of  V2O5 (Fig. S6) and  VO2 electrodes (Fig. S7), implying 
it as a general modification strategy to develop the high-
performance aqueous Zn-vanadium oxide batteries.

3.4  Energy Storage Mechanism of Aqueous Zn‑V2O3/C 
Battery

Next, in order to study the storage mechanism of  V2O3/C 
electrode and further reveal the influence of such anti-
proton electrolyte on tuning the ion storage behavior, the 
structural evolution of electrode was initially investigated 
by in-situ electrochemical Raman spectrum (Fig. S8). As 
shown in Fig. 4a–b, during the charge process of the first 

cycle, the intensity of all the vibration peaks would gradu-
ally weaken and broader. TEM and corresponding HRTEM 
images (Fig. 4c) reveal the lattice distortion of  V2O3 after 
initially charged to 1.7 V. It is believed that such lattice 
distortion (Fig. 4d) would weaken the strong binding of 
vanadium–oxygen bonds and leading to the above change 
of vibration peaks [40]. Then, no large change of vibration 
peaks was observed in the subsequent second cycle (Fig. 
S9). Excepting that, ex-situ XPS spectra of V 2p and Zn 2p 
of  V2O3/C electrode during the first cycle were also inves-
tigated. As shown in Fig. 4e, the ratio of  V3+/V2+ would 
increases from 1.9 (at initial state) to 4.43 when charged 
to 1.7 V; however, this value only decreases back to 3.81 
after subsequently discharged to 0.2 V. Such result implies 
the irreversible transformation of lattice distortion of  V2O3. 
While in the high-resolution Zn 2p XPS spectra (Fig. 4f), 
no Zn signal peak was detected at the initial state; however, 
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Zn 2p2/3 and Zn 2p1/2 signal peaks would appear after dis-
charged to 0.2 V, this should be mainly ascribed to the inser-
tion of  Zn2+ into the distorted  V2O3 framework.

In-situ XRD technique (Fig. S10) was also adopted to fur-
ther investigate the phase evolution of  V2O3/C electrode. In 
detail, Fig. 5a–b depicts the in-situ XRD patterns of  V2O3/C 
electrode in 0PEG and 50 PEG electrolyte of the first three 
cycles. Before cycling, several strong diffraction peaks 
located at 32.97°, 35.95°, 41.01°, 49.58°, 53.85°, 62.75°, 
and 64.63° can be detected, which should be corresponding 
to the (104), (110), (113), (024), (116), (214), and (300) 
crystal plane of rhombohedral  V2O3 phase, respectively [33]. 
However, during the charge process in the first cycle, all 
those diffraction peaks would gradually weaken, and even 
completely disappear till charged to 1.7 V. Note that only the 
(024) plane was shifted to the right (point A in Fig. 5c–d) in 
both two kinds of electrolyte, this process should be attrib-
uted to the lattice distortion of  V2O3, combining with the 
above in-situ Raman and HRTEM characterizations [40]. 
With the following discharge process continues, the (024) 
crystal plane would gradually shift to the left point (B), cor-
responding to the lattice expansion owing to the ions inter-
calation. Moreover, a high reversibility of ions intercalation/
extraction can be achieved in the subsequent two cycles. 
Interestingly, it also can be found that the degree of lattice 
expansion in 0PEG electrolyte is much larger than that in 
50PEG electrolyte, as shown in Fig. 5e. In detail, the lattice 
expansion ratio of (024) crystal plane reaches 5.57 when 
discharged to 0.2 V in 0PEG electrolyte, much larger than 
that of 2.40 in 50PEG electrolyte. It is no doubt that a large 
lattice expansion is not conducive to structural stability [41, 
42]. In addition, an impurity peak located at 33.31° also 
can be observed in 0PEG electrolyte system (Fig. 5f), but 

cannot find in 50PEG electrolyte (Fig. 5g). According to the 
previous reports, this diffraction peak should be ascribed 
to the alkali-type by-product of  Znx(OTf)y(OH)2x−y·nH2O 
[43]. Note that the formation of such side reaction should 
be originated from the dramatical increasing concentra-
tion of  OH− near the cathode–electrolyte interface owing 
to the  H+ insertion into the host [44]. Besides, the FESEM 
image of  V2O3/C electrodes after 200 cycles at 0.5 A  g−1 
also shows large amount of flaky precipitate attached to 
the surface of electrode in 0PEG electrolyte (Fig. 5h). Cor-
responding EDS mapping (Figs. 5j and S11) reveals the 
strong signal of F and S elements, further confirming it is 
the  Znx(CF3SO3)y(OH)2x−y·nH2O [45, 46]. On the contrary, 
a relative clean surface without obvious formation of flaky 
by-product can be seen for the cycled  V2O3/C electrode 
in 50PEG electrolyte (Figs. 5i, k and S12). Therefore, it 
is demonstrated that the  H+ intercalation behavior can be 
significantly inhibited in 50PEG electrolyte. Accordingly, 
the formation of by-product also can be effectively allevi-
ated. Indeed, both of the in-situ XRD research and ex-situ 
FESEM characterizations are in good agreement with the 
result of MD simulation. To demonstrate the possibility of 
such anti-proton electrolyte as universal strategy, in-situ 
XRD investigations of  VO2 electrode (Figs. S13–S15) and 
 V2O5 electrode (Figs. S16–S18) in both 0PEG and 50PEG 
electrolyte were also carried out. Interestingly, similar 
results of smaller lattice expansion and less by-product for-
mation also can be achieved in the  VO2 and  V2O5 case when 
applied the modified electrolyte. This can be explained the 
significant improvement of their cyclic stability in 50PEG 
electrolyte in the section of electrochemical performance 
test. As depicted in Fig. 5l, benefited from the anti-proton 
electrolyte, the  Zn2+ and  H+ co-intercalation mechanism of 
 V2O3/C electrode in acidic electrolyte can be regulated to the 
 Zn2+-dominated intercalation mechanism. In fact, although 
the dual ions insertion can bring a higher specific capacity, 
the inhibition of proton insertion could avoid the large repul-
sion between  H+ and  Zn2+, which usually leads to the large 
lattice expansion and damage the host framework. Besides, 
the formation of non-electrochemically active by-product 
in the cathode–electrolyte interface would also hinder the 
interfacial transport kinetics, which will be discussed in the 
next section.

Fig. 5  In-situ XRD patterns of  V2O3/C electrode in the first three 
cycles in a 0PEG and b 50PEG electrolyte. High-resolution contour 
maps of in-situ XRD pattern between 46° and  52o in the c 0PEG and 
d 50PEG electrolyte. e Lattice-expand ratio evolution of (024) plane 
derived from the in-situ XRD data. High-resolution contour maps of 
in-situ XRD pattern between 32° and  35o in the f 0PEG and g 50PEG 
electrolyte. FESEM image and corresponding EDS elemental map-
ping of  V2O3/C electrode after 200 cycles at the current density of 
0.5 A  g−1 in (h, j) 0PEG and (i, k) 50PEG electrolyte. l The evolu-
tion of storage mechanism of  V2O3 host modified by the anti-proton 
electrolyte

◂
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3.5  Transport Kinetics Investigation of Aqueous 
Zn‑V2O3/C Battery

Since the by-product formation in the cathode–electrolyte 
interface would greatly influence the ion transport and 
charge transfer, it is also necessary to clarify the influ-
ence of such anti-proton strategy on the transport kinetics 
of electrode. To demonstrate that, in-situ electrochemical 
impedance spectroscopy (EIS) and galvanostatic intermittent 
titration technique (GITT) were performed to explore the 
evolution of transport kinetics of electrode during cycling. 
On one hand, Fig. 6a–b shows the EIS plots of  V2O3/C 
electrode in 0PEG and 50PEG electrolyte during cycling. 
Note that all the Nyquist plots consist of a semicircle in the 
high frequency region and a linear part in the low-frequency 
region, where the semicircle region represents the charge 
transfer impedance (Rct). Obviously, the Rct in the 0PEG 
electrolyte system shows a gradual increasing trend along 
with the cycling proceeds. Such result should be resulted 
from the generation of non-electrochemically active and low 
electronic conductive by-product in the cathode–electrolyte 
interface, which not only consumes the  Zn2+ of electrolyte 
but also impedes the efficient ion/electron transport during 
cycling. In sharp contrast to that, in 50PEG electrolyte sys-
tem, only a slight increment of Rct in the initial two cycles, 
and it can retain stable in the subsequent cycles, represent-
ing it an efficient and stable interfacial transport kinetics. 
As shown in Fig. 6c, the GITT curve of  V2O3/C electrode 
in 0PEG electrolyte indicates that the specific capacity of 
battery continues to decline and even appear the overvoltage 
region during charge and discharge process, as marked in 
the shaded area. Such overvoltage region usually represents 
a sluggish ion diffusion, which perhaps due to the sponta-
neous pre-intercalation of  H+ or competitive intercalation 
of  H+/Zn2+, and the generation of by-product in the cath-
ode–electrolyte interface [47, 48]. Differently, the electrode 
in 50PEG electrolyte (Fig. 6d) shows a stable specific capac-
ity without any overvoltage region. Corresponding zinc-ion 
diffusion coefficient  (DZn

2+) is calculated and shown in 
Fig. S19. Compared with the  DZn

2+ stabilize in the range 
of  10−10–10−11  cm2  s−1 achieved in the 50PEG electrolyte, 
additionally, there exhibits ultralong relaxation region in the 
0PEG electrolyte, with a lower ion diffusion coefficient of 
 10−11–10−13  cm2  s−1. Therefore, combined with the results 
of in-situ EIS and GITT studies, we demonstrate that the for-
mation of by-product would leads to the sluggish interfacial 

ion/electron transport, as illustrated in Fig. 6e. Such adverse 
effect will further reduce the utilization of active material 
and thus sharply attenuating the rate performance and cyclic 
stability of electrode. Fortunately, all those issues can be 
effectively addressed through anti-proton electrochemistry, 
and a fast storage kinetics also can be achieved (Fig. S20).

3.6  Electrochemical Performance of Zn||Zn Symmetric 
Cell

Since Zn metal anode also plays a critical role in influenc-
ing the electrochemical performance of AZIBs, herein, the 
influence of such anti-proton electrolyte on regulating the 
Zn plating/stripping behavior and HER phenomenon are 
also investigated. In-situ optical microscopy (Fig. S21) was 
adopted to reveal the morphology evolution of Zn metal 
anode upon continue deposition. When in the 0PEG elec-
trolyte (Fig. 7a), rapid growth of dendrite on the metal anode 
surface can be clearly observed along with the deposition 
extending to 20 min. On the contrary, a smooth and dense 
deposition surface can be achieved in the 50PEG electrolyte 
even after 20 min (Fig. 7b). Such result indicates that the 
PEG molecular chain is beneficial to guide the uniform Zn 
deposition. Then, the cyclic stability of Zn||Zn symmetric 
cell was tested. Unlike the rapid short circuit in the 0PEG 
electrolyte, the reversibility of Zn plating/stripping can be 
significantly enhanced in the 50 PEG electrolyte. In detail, 
the cell can steadily work for nearly 2000 and 600 h at the 
testing conditions of 0.5 mA  cm−2, 0.5 mAh  cm−2 (Fig. 7c) 
and 2 mA  cm−2, 2 mAh  cm−2 (Fig. 7d), respectively, com-
pared with short circuit after cycling for 354 and 210 h for 
the unmodified cell. Besides, taking the initial thickness of 
assembled cell (3.21 mm, Fig. S22) as the reference, the 
thickness of cell with 0PEG electrolyte would dramatically 
increase to 3.69 mm after cycling for 200 h at 2 mA  cm−2 and 
2 mAh  cm−2; however, only a minor change was observed 
for the modified cell (3.26 mm, Fig. 7e). Such swollen phe-
nomenon should be mainly due to internal expansion caused 
by hydrogen evolution [49]. Meanwhile, the digital images 
of corresponding GF separator and FESEM images of cycled 
Zn metal anode further demonstrate the dendrite growth and 
even piercing separator in the 0PEG electrolyte (Fig. 7f–g). 
Unlike that, smooth deposition without obvious dendrite 
formation can be observed in the 50PEG electrolyte case 
(Fig. 7h and i). Subsequently, the characterizations of XRD 
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pattern (Fig. S23) and EDS elemental mapping (Fig. S24) 
also confirm the function of inhibiting side reactions by the 
anti-proton electrolyte. Therefore, in regard to the Zn metal 
anode side, we demonstrate that such anti-proton electrolyte 
is beneficial to not only guide the uniform Zn deposition, but 
also inhibit the HER and by-product generation.

4  Conclusion

In summary, in order to simultaneously address the system 
problems that cause the electrochemical failure of zinc-
vanadium oxide battery, we propose the strategy of anti-
proton electrolyte as the “all-in-one” strategy for designing 
high-performance aqueous zinc-vanadium oxide battery. 
The investigations of molecular dynamics simulation and 
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experiments indicate that the PEG 400 additive can not only 
regulate the solvation structure of  Zn2+ but also suppress the 
ionization of free water molecules. Then, take the  V2O3/C 
cathode as research target, coupling with the in-situ XRD 
and in-situ EIS studies, we demonstrate that such anti-proton 
electrolyte enables inhibiting the  H+ insertion and corre-
sponding associated side reactions, thus realizing the small 
lattice expansion of  V2O3 host and stable interfacial ion/
electron transport of electrode. Besides that, in regarding 
to the Zn metal anode, in-situ optical observation and ex-
situ structural characterizations further confirm that such 
anti-proton electrolyte is conductive to guide the uniform 
Zn deposition and inhibit the HER. As a result, benefited 
from the integrated synergetic modification mechanism of 
such multifunctional anti-proton electrolyte (Scheme 2), the 

as-assembled Zn-V2O3/C battery possesses a significantly 
enhanced rate performance, which can deliver the revers-
ible capacities of 358.8, 298.6, 253.2, 220.6, 192.5, 170.3, 
148.5, and 95.5 mAh  g−1 at the current density of 0.5, 1, 
2, 4, 6, 8, 10, and 20 A  g−1, respectively. Representatively, 
at the ultrahigh current density of 20 A  g−1, such modified 
battery can retain a high specific capacity of 121.8 mAh 
 g−1 even after 18,000 cycles with a nearly 100% coulombic 
efficiency, showing an ultrastable cycle reversibility. This 
research uncovers a brand-new integrated synergetic modi-
fication mechanism of aqueous Zn-vanadium oxide battery, 
which is highly expected to lay a foundation for developing 
high-performance AZIBs.
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