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Supplementary Figures and Tables 

 

Fig. S1 Digital images of the as-prepared 0PEG and 50PEG electrolyte 

 

Fig. S2 Digital image of the pH strips after immersion in a 0PEG and b 50PEG electrolyte 
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Fig. S3 (a) Full XPS spectrum of V2O3/C nanosheets. High-resolution XPS spectra of (b) V 

2p, (c) O 1s and (d) C 1s of V2O3/C nanosheets 

 

Fig. S4 Raman spectrum of V2O3/C nanosheets 
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Fig. S5 The cycling performance of V2O3/C electrode in the 0PEG and 50PEG electrolyte at 

the current density of 0.5 A g-1 

 

Fig. S6 (a) XRD patterns of the commercial V2O5 cathode. The cycling performance of the 

V2O5 electrode in the 0PEG and 50PEG electrolyte at the current density of (b) 0.5 A g-1 and 

(c) 5 A g-1 
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Fig. S7 (a) XRD patterns of the as-prepared VO2 cathode. The cycling performance of the 

VO2 electrode in the 0PEG and 50PEG electrolyte at the current density of (b) 0.5 A g-1 and 

(c) 5 A g-1, respectively 

 

Fig. S8 Digital image of in-situ electrochemical Raman spectroscopy device 
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Fig. S9 The corresponding enlarged spectra in Fig. 4b 

 

Fig. S10 Digital image of in-situ XRD device 
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Fig. S11 EDS elemental mapping of V2O3/C electrode after 200 cycles at the current density 

of 0.5 A g-1 in the 0PEG electrolyte 

 

Fig. S12 EDS elemental mapping of V2O3/C electrode after 200 cycles at the current density 

of 0.5 A g-1 in the 50PEG electrolyte 
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Fig. S13 In-situ XRD analysis of VO2 in 0PEG electrolyte with a current of 0.3 mA and 

voltage window of 0.4-1.4 V from 1st to the 3rd cycles 

 

Fig. S14 In-situ XRD analysis of VO2 in 50PEG electrolyte with a current of 0.3 mA and 

voltage window of 0.4-1.4 V from 1st to the 3rd cycles 
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Fig. S15 In-situ XRD analysis of the (-601) plane of VO2 in (a) 0PEG and (b) 50PEG 

electrolytes. (c) Lattice-expand ratio evolution derived from In-situ XRD of (-601) plane 

 

Fig. S16 In-situ XRD analysis of V2O5 in 0PEG electrolyte with a current of 0.3 mA and 

voltage window of 0.2-1.6 V from 1st to the 3rd cycles 
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Fig. S17 In-situ XRD analysis of V2O5 in 50PEG electrolyte with a current of 0.3 mA and 

voltage window of 0.2-1.6 V from 1st to the 3rd cycles 

 

Fig. S18 In-situ XRD analysis of the (301) plane of V2O5 in (a) 0PEG and (b) 50PEG 

electrolytes. (c) Lattice-expand ratio evolution derived from In-situ XRD of (301) plane 
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Fig. S19 (a) The comparison of galvanostatic Intermittent Titration Technique (GITT) and (b) 

corresponding zinc-ion diffusion coefficient (DZn
2+) of V2O3/C electrode cycled in 0PEG and 

50PEG electrolyte at a pulse current density of 0.2 A g -1, 5 min pulse time and 30 min 

relaxation time 

 

Fig. S20 (a) CV curves of V2O3/C electrode at scan rates ranging from 0.2 to 1 mV s−1 in 

50PEG electrolyte. (b) The relationship of log (i) versus log (v) curves for peak (1-6) at 

shown in (a). (c) Capacitive controlled capacities contributions ratio at various scan rates 

from 0.2 to 1 mV s−1. (d) Cyclic voltammogram showing capacitive controlled (blue region) 

contribution at 1 mV s−1 
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Fig. S21 Digital image of in-situ optical observation device 

 

Fig. S22 The thickness of Zn||Zn symmetric cell before cycling 

 

Fig. S23 The comparison of XRD patterns of Zn metal anodes after cycling in 0PEG and 50PEG 

electrolyte 
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Fig. S24 FESEM image and the corresponding elemental mapping images of Zn metal anode 

after cycling at the condition of 2 mA cm−2 and 2 mAh cm−2 for 200 h in the 0PEG electrolyte 

Table S1 The comparison of electrochemical performance between our V2O3/C cathode with 

other previously reported cathode materials applied for aqueous Zn-ion batteries 

Cathodes 
Voltage 

window 
Storage capability Storage reversibility Refs. 

V2O3/C nanosheets 0.2-1.7 V 

358.8 mAh g-1 at 0.5 A g-

1 

121.8 mAh g-1 at 20 A g-1 

99% retention after 

18000 cycles at 20 A g-

1 

This 

work 

Od-MnO2 1.0-1.8 V 
345 mAh g-1 at 0.2 A g-1 

60 mAh g-1 at 30 A g-1 

84% retention after 

2000 cycles at 5 A g-1 
 [S1] 

MoS2/graphene 0.2-1.5 V 
285.4 mAh g-1 at 0.05 A g-1 

141.6 mAh g-1 at 5 A g-1 

88.2% retention after 

1800 cycles at 1 A g-1 
 [S2] 

NaCa0.6V6O16·3H2O 0.4-1.5 V 
347 mAh g-1 at 0.1 A g-1 

154 mAh g-1 at 5 A g-1 

94% retention after 

2000 cycles at 2 A g-1 
 [S3] 

VS2 0.4-1.0 V 
190.3 mAh g-1 at 0.05 A g-1 

115.5 mAh g-1 at 2 A g-1 

98% retention after 

200 cycles at 0.5 A g-1 
 [S4] 

Zn3V3O8 0.2-1.6 V 
232 mAh g-1 at 0.2 A g-1 

141 mAh g-1 at 5 A g-1 

72.6% retention after 

2000 cycles at 5 A g-1 
 [S5] 

H11AlV6O23.2 0.5-1.7 V 
288.4 mAh g-1 at 0.1 A g-1 

163.4 mAh g-1 at 5 A g-1 

88.6% retention after 

7000 cycles at 5 A g-1 
 [S6] 

Na3V2(PO4)3@rGO 0.6-1.8 V 
107 mAh g-1 at 0.05 A g-1 

82 mAh g-1 at 2 A g-1 

75% retention after 

200 cycles at 0.5 A g-1 
 [S7] 

KV2O4PO3·2H2O 0.2-1.8 V 
226 mAh g-1 at 0.02 A g-1 

135 mAh g-1 at 9 A g-1 

75% retention after 

3000 cycles at 3 A g-1 
 [S8] 

MoO3−x/MXene 
0.25-1.3 

V 

369.8 mAh g-1 at 0.2 A g-1 

110.6 mAh g-1 at 4 A g-1 

46.7% retention after 

1600 cycles at 4 A g-1 
 [S9] 

MoS2-x 
0.25-1.25 

V 

138.6 mAh g-1 at 0.1 A g-1 

80.6 mAh g-1 at 2 A g-1 

87.8% retention after 

1000 cycles at 1 A g-1 
[S10] 

LiV2(PO4)3 0.2-1.9 V 
150 mAh g-1 at 0.15 A g-1 

122 mAh g-1 at 9 A g-1 

83.3% retention after 

4000 cycles at 1.5 A g-1 
[S11] 

H2V3O8/graphene 0.2-1.6 V 
336 mAh g-1 at 0.1 A g-1 

215 mAh g-1 at 3 A g-1 

87% retention after 

2000 cycles at 6 A g-1 
[S12] 

δ-Ni0.25V2O5·nH2O 0.3-1.7 V 
381 mAh g-1 at 0.2 A g-1 

147 mAh g-1 at 5 A g-1 

95.7% retention after 

1200 cycles at 6 A g-1 
[S13] 

VO2·xH2O 0.4-1.4 V 
366 mAh g-1 at 0.05 A g-1 

88 mAh g-1 at 50 A g-1 

89.73% retention after 

1000 cycles at 10 A g-1 
[S14] 

LixV2O5·nH2O 0.4-1.4 V 
470 mAh g-1 at 0.5 A g-1 

170 mAh g-1 at 10 A g-1 

63% retention after 

1000 cycles at 10 A g-1 
[S15] 

V2O5·nH2O/graphene 0.2-1.6 V 
372 mAh g-1 at 0.3 A g-1 

248 mAh g-1 at 30 A g-1 

71% retention after 

900 cycles at 6 A g-1 
[S16] 
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