Supporting Information for

A Multifunctional Anti-Proton Electrolyte for High-Rate and Super-Stable Aqueous Zn-Vanadium Oxide Battery

Yangwu Chen¹, Dingtao Ma^{1, 2, *}, Kefeng Ouyang¹, Ming Yang¹, Sicheng Shen¹, Yanyi Wang¹, Hongwei Mi¹, Lingna Sun¹, Chuanxin He¹, Peixin Zhang^{1, *}

¹College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China

²Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China

*Corresponding authors. E-mail: <u>mdt2500@szu.edu.cn</u> (D.T. Ma), <u>pxzhang@szu.edu.cn</u> (P.X. Zhang)

Supplementary Figures and Tables

Fig. S1 Digital images of the as-prepared 0PEG and 50PEG electrolyte

Fig. S2 Digital image of the pH strips after immersion in a 0PEG and b 50PEG electrolyte

Fig. S3 (a) Full XPS spectrum of V_2O_3/C nanosheets. High-resolution XPS spectra of (b) V 2p, (c) O 1s and (d) C 1s of V_2O_3/C nanosheets

Fig. S4 Raman spectrum of V₂O₃/C nanosheets

Fig. S5 The cycling performance of V_2O_3/C electrode in the 0PEG and 50PEG electrolyte at the current density of 0.5 A g⁻¹

Fig. S6 (a) XRD patterns of the commercial V_2O_5 cathode. The cycling performance of the V_2O_5 electrode in the 0PEG and 50PEG electrolyte at the current density of (b) 0.5 A g⁻¹ and (c) 5 A g⁻¹

Fig. S7 (a) XRD patterns of the as-prepared VO₂ cathode. The cycling performance of the VO₂ electrode in the 0PEG and 50PEG electrolyte at the current density of (b) 0.5 A g^{-1} and (c) 5 A g^{-1} , respectively

Fig. S8 Digital image of in-situ electrochemical Raman spectroscopy device

Nano-Micro Letters

Fig. S9 The corresponding enlarged spectra in Fig. 4b

Fig. S10 Digital image of in-situ XRD device

Fig. S11 EDS elemental mapping of V_2O_3/C electrode after 200 cycles at the current density of 0.5 A g⁻¹ in the 0PEG electrolyte

Fig. S12 EDS elemental mapping of V_2O_3/C electrode after 200 cycles at the current density of 0.5 A g⁻¹ in the 50PEG electrolyte

Fig. S13 In-situ XRD analysis of VO_2 in 0PEG electrolyte with a current of 0.3 mA and voltage window of 0.4-1.4 V from 1st to the 3rd cycles

Fig. S14 In-situ XRD analysis of VO_2 in 50PEG electrolyte with a current of 0.3 mA and voltage window of 0.4-1.4 V from 1st to the 3rd cycles

Fig. S15 In-situ XRD analysis of the (-601) plane of VO_2 in (**a**) 0PEG and (**b**) 50PEG electrolytes. (**c**) Lattice-expand ratio evolution derived from In-situ XRD of (-601) plane

Fig. S16 In-situ XRD analysis of V_2O_5 in 0PEG electrolyte with a current of 0.3 mA and voltage window of 0.2-1.6 V from 1st to the 3rd cycles

Fig. S17 In-situ XRD analysis of V_2O_5 in 50PEG electrolyte with a current of 0.3 mA and voltage window of 0.2-1.6 V from 1st to the 3rd cycles

Fig. S18 In-situ XRD analysis of the (301) plane of V_2O_5 in (a) 0PEG and (b) 50PEG electrolytes. (c) Lattice-expand ratio evolution derived from In-situ XRD of (301) plane

Fig. S19 (a) The comparison of galvanostatic Intermittent Titration Technique (GITT) and (b) corresponding zinc-ion diffusion coefficient (D_{Zn}^{2+}) of V₂O₃/C electrode cycled in 0PEG and 50PEG electrolyte at a pulse current density of 0.2 A g⁻¹, 5 min pulse time and 30 min relaxation time

Fig. S20 (a) CV curves of V₂O₃/C electrode at scan rates ranging from 0.2 to 1 mV s⁻¹ in 50PEG electrolyte. (b) The relationship of log (i) versus log (v) curves for peak (1-6) at shown in (a). (c) Capacitive controlled capacities contributions ratio at various scan rates from 0.2 to 1 mV s⁻¹. (d) Cyclic voltammogram showing capacitive controlled (blue region) contribution at 1 mV s⁻¹

Fig. S21 Digital image of in-situ optical observation device

Fig. S22 The thickness of Zn||Zn symmetric cell before cycling

Fig. S23 The comparison of XRD patterns of Zn metal anodes after cycling in 0PEG and 50PEG electrolyte

Fig. S24 FESEM image and the corresponding elemental mapping images of Zn metal anode after cycling at the condition of 2 mA cm⁻² and 2 mAh cm⁻² for 200 h in the 0PEG electrolyte

Cathodos	Voltage	Storage conshility	Storago rovorsibility	Dofe
Cathoues	window	Storage capability	Storage reversionity	Kels.
V ₂ O ₃ /C nanosheets	0.2-1.7 V	358.8 mAh g^{-1} at 0.5 A g^{-1}	99% retention after 18000 cycles at 20 A g ⁻	This work
Od-MnO2	1.0-1.8 V	345 mAh g ⁻¹ at 0.2 A g ⁻¹ 60 mAh g-1 at 30 A g ⁻¹	84% retention after 2000 cycles at 5 A g ⁻¹	[S1]
MoS ₂ /graphene	0.2-1.5 V	285.4 mAh g ⁻¹ at 0.05 A g ⁻¹ 141.6 mAh g-1 at 5 A g ⁻¹	88.2% retention after 1800 cycles at 1 A g ⁻¹	[S2]
$NaCa_{0.6}V_6O_{16}{\cdot}3H_2O$	0.4-1.5 V	347 mAh g ⁻¹ at 0.1 A g ⁻¹ 154 mAh g ⁻¹ at 5 A g ⁻¹	94% retention after 2000 cycles at 2 A g ⁻¹	[S3]
VS_2	0.4-1.0 V	190.3 mAh g ⁻¹ at 0.05 A g ⁻¹ 115.5 mAh g ⁻¹ at 2 A g ⁻¹	98% retention after 200 cycles at 0.5 A g ⁻¹	[S4]
$Zn_3V_3O_8$	0.2-1.6 V	232 mAh g ⁻¹ at 0.2 A g ⁻¹ 141 mAh g ⁻¹ at 5 A g ⁻¹	72.6% retention after 2000 cycles at 5 A g ⁻¹	[S5]
$H_{11}AIV_6O_{23.2}$	0.5-1.7 V	288.4 mAh g ⁻¹ at 0.1 A g ⁻¹ 163.4 mAh g ⁻¹ at 5 A g ⁻¹	88.6% retention after 7000 cycles at 5 A g ⁻¹	[S6]
Na ₃ V ₂ (PO ₄) ₃ @rGO	0.6-1.8 V	107 mAh g ⁻¹ at 0.05 A g ⁻¹ 82 mAh g ⁻¹ at 2 A g ⁻¹	75% retention after 200 cycles at 0.5 A g ⁻¹	[S7]
$KV_2O_4PO_3{\cdot}2H_2O$	0.2-1.8 V	226 mAh g ⁻¹ at 0.02 A g ⁻¹ 135 mAh g ⁻¹ at 9 A g ⁻¹	75% retention after 3000 cycles at 3 A g ⁻¹	[S8]
MoO _{3-x} /MXene	0.25-1.3 V	369.8 mAh g ⁻¹ at 0.2 A g ⁻¹ 110.6 mAh g ⁻¹ at 4 A g ⁻¹	46.7% retention after 1600 cycles at 4 A g ⁻¹	[S9]
MoS _{2-x}	0.25-1.25 V	138.6 mAh g ⁻¹ at 0.1 A g ⁻¹ 80.6 mAh g ⁻¹ at 2 A g ⁻¹	87.8% retention after 1000 cycles at 1 A g ⁻¹	[S10]
$LiV_2(PO_4)_3$	0.2-1.9 V	150 mAh g ⁻¹ at 0.15 A g ⁻¹ 122 mAh g ⁻¹ at 9 A g ⁻¹	83.3% retention after 4000 cycles at 1.5 A g ⁻¹	[S11]
$H_2V_3O_8/graphene$	0.2-1.6 V	336 mAh g ⁻¹ at 0.1 A g ⁻¹ 215 mAh g ⁻¹ at 3 A g ⁻¹	87% retention after 2000 cycles at 6 A g ⁻¹	[S12]
$\delta\text{-Ni}_{0.25}V_2O_5{\cdot}nH_2O$	0.3-1.7 V	381 mAh g ⁻¹ at 0.2 A g ⁻¹ 147 mAh g ⁻¹ at 5 A g ⁻¹	95.7% retention after 1200 cycles at 6 A g ⁻¹	[S13]
VO ₂ ·xH ₂ O	0.4-1.4 V	366 mAh g ⁻¹ at 0.05 A g ⁻¹ 88 mAh g ⁻¹ at 50 A g ⁻¹	89.73% retention after 1000 cycles at 10 A g^{-1}	[S14]
$Li_xV_2O_5 \cdot nH_2O$	0.4-1.4 V	470 mAh g ⁻¹ at 0.5 A g ⁻¹ 170 mAh g ⁻¹ at 10 A g ⁻¹	63% retention after 1000 cycles at 10 A g ⁻¹	[S15]
V_2O_5 ·nH ₂ O/graphene	0.2-1.6 V	372 mAh g ⁻¹ at 0.3 A g ⁻¹ 248 mAh g ⁻¹ at 30 A g ⁻¹	71% retention after 900 cycles at 6 A g^{-1}	[S16]

Supplementary References

- [S1] T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygendeficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9(14), 1803815 (2019). <u>https://doi.org/10.1002/aenm.201803815</u>
- [S2] S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao et al., Sandwich-like heterostructures of MoS₂/graphene with enlarged interlayer spacing and enhanced hydrophilicity as highperformance cathodes for aqueous zinc-ion batteries. Adv. Mater. **33**(12), 2007480 (2021). <u>https://doi.org/10.1002/adma.202007480</u>
- [S3] K. Zhu, T. Wu, K. Huang, NaCa_{0.6}V₆O₁₆·3H₂O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V₃O₈ layer. Adv. Energy Mater. 9(38), 1901968 (2019). <u>https://doi.org/10.1002/aenm.201901968</u>
- [S4] P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS₂ nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). <u>https://doi.org/10.1002/aenm.201601920</u>
- [S5] J. Wu, Q. Kuang, K. Zhang, J. Feng, C. Huang et al., Spinel Zn₃V₃O₈: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Mater. 41, 297-309 (2021). <u>https://doi.org/10.1016/j.ensm.2021.06.006</u>
- [S6] T. Wei, Y. Liu, G. Yang, C. Wang, Aluminum vanadate hollow spheres as zero-strain cathode material for highly reversible and durable aqueous zinc-ion batteries. Energy Storage Mater. 30, 130-137 (2020). <u>https://doi.org/10.1016/j.ensm.2020.04.039</u>
- [S7] P. Hu, T. Zhu, X. Wang, X. Zhou, X. Wei et al., Aqueous Zn//Zn(CF₃SO₃)₂//Na₃V₂(PO₄)₃ batteries with simultaneous Zn²⁺/Na⁺ intercalation/deintercalation. Nano Energy 58, 492-498 (2019). <u>https://doi.org/10.1016/j.nanoen.2019.01.068</u>
- [S8] X. Yang, W. Deng, M. Chen, Y. Wang, C.F. Sun, Mass-producible, quasi-zero-strain, lattice-water-rich inorganic open-frameworks for ultrafast-charging and long-cycling zinc-ion batteries. Adv. Mater. 32(45), 2003592 (2020). <u>https://doi.org/10.1002/adma.202003592</u>
- [S9] J. Shi, Y. Hou, Z. Liu, Y. Zheng, L. Wen et al., The high-performance MoO_{3-x}/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 91, 106651 (2022). <u>https://doi.org/10.1016/j.nanoen.2021.106651</u>
- [S10] W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal et al., Defect engineering activating (boosting) zinc storage capacity of MoS₂. Energy Storage Mater. **16**, 527-534 (2019). <u>https://doi.org/10.1016/j.ensm.2018.09.009</u>
- [S11] F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn²⁺-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168-3175 (2018). <u>https://doi.org/10.1039/c8ee01883a</u>
- [S12] Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H₂V₃O₈ nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high-rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- [S13] J. Li, K. McColl, X. Lu, S. Sathasivam, H. Dong et al., Multi-scale investigations of δ-Ni_{0.25}V₂O₅·nH₂O cathode materials in aqueous zinc-ion batteries. Adv. Energy Mater. **10**(15), 2000058 (2020). <u>https://doi.org/10.1002/aenm.202000058</u>

- [S14] N. Liu, X. Wu, L. Fan, S. Gong, Z. Guo et al., Intercalation pseudocapacitive Zn²⁺ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv. Mater. **32**(42), 1908420 (2020). <u>https://doi.org/10.1002/adma.201908420</u>
- [S15] Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li⁺ intercalated V₂O₅·nH₂O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157-3162 (2018). <u>https://doi.org/10.1039/c8ee01651h</u>
- [S16] M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V₂O₅·nH₂O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. **30**(1), 1703725 (2018). <u>https://doi.org/10.1002/adma.201703725</u>