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Quantum Dots Compete at the Acme of MXene 
Family for the Optimal Catalysis
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HIGHLIGHTS

• All the synthesis routes and surfaced-modified strategy of MXene-derived quantum dots (MQDs), the synthesis of MQDs-based 
nanocomposites, and advanced characterization techniques of MQDs are fully covered.

• Catalytic application is classified and discussed by judging the roles of MQDs.

• Current challenge and prospect are proposed for promoting the development and catalytic application of MQDs.

ABSTRACT It is well known that two-dimensional (2D) MXene-derived quan-
tum dots (MQDs) inherit the excellent physicochemical properties of the parental 
MXenes, as a Chinese proverb says, “Indigo blue is extracted from the indigo plant, 
but is bluer than the plant it comes from.” Therefore, 0D QDs harvest larger surface-
to-volume ratio, outstanding optical properties, and vigorous quantum confinement 
effect. Currently, MQDs trigger enormous research enthusiasm as an emerging star 
of functional materials applied to physics, chemistry, biology, energy conversion, and 
storage. Since the surface properties of small-sized MQDs include the type of surface 
functional groups, the functionalized surface directly determines their performance. 
As the Nobel Laureate Wolfgang Pauli says, “God made the bulk, but the surface was 
invented by the devil,” and it is just on the basis of the abundant surface functional 
groups, there is lots of space to be thereof excavated from MQDs. We are witnessing 
such excellence and even more promising to be expected. Nowadays, MQDs have 
been widely applied to catalysis, whereas the related reviews are rarely reported. 
Herein, we provide a state-of-the-art overview of MQDs in catalysis over the past five years, ranging from the origin and development of 
MQDs, synthetic routes of MQDs, and functionalized MQDs to advanced characterization techniques. To explore the diversity of catalytic 
application and perspectives of MQDs, our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing 
high-performance MQDs-based catalysts.
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1 Introduction

In 1836, the terms of catalyst and catalysis were firstly 
defined by the Swedish scientist Jöns Jakob Berzelius 
(Fig. 1a), describing “the catalyst was a new matter that can 
produce chemical activity,” and Pt catalyzing the conversion 
of ethanol to acetic acid witnessed this magical discovery 
[1, 2]. Thereafter, considerable various catalytic reactions 
were applied to an industrial production, largely promot-
ing the development of chemistry and human society. Until 
1910 [3], synthesis of ammonia promotes the development 
of agricultural cultivation, fuel production, and industrial 
manufacture, and thereof becomes a landmark in the history 
and development of catalytic technologies [4, 5]. Further-
more, converting water, carbon monoxide (CO), and carbon 
dioxide  (CO2) electrocatalytically to clean fuels (e.g.,  H2, 
 CH3OH) for replacing the limited fossil fuels is an important 
production route to confront the energy crisis. Currently, 
the catalytic reactions are mainly classified into electroca-
talysis, photocatalysis, and photoelectrochemical reaction in 
dependence of various external energy devices.

Nowadays, the precious metal catalysts are crucial, e.g., 
Pt-based [11, 12], ruthenium oxide  (RuO2) [13], and iridium 
oxide  (IrO2) nanomaterials [14, 15] are listed as the most 
effective catalysts for driving CO oxidation, hydrogen evolu-
tion reaction (HER),  NH3 synthesis, and oxygen evolution 

reaction (OER). However, their high-cost and limited 
reserves hinder a large-scale utilization in industry. There-
fore, many researchers focus on reducing the contents of 
noble-metal (e.g., Au, Pt, Ru, and Pd) loading on a support 
[16–18], or decreasing size for increasing amounts of active 
ingredients (single atoms, nanoclusters, and quantum dots 
(QDs)) [19–21], or coupling noble-metal with non-metal to 
regulate electron structure for preparing highly active cata-
lysts (RhB,  Pt3Ni, and  Pd2B) [22–24], or searching for the 
replaceable non-precious metals (e.g., transition metal (TM) 
Fe, Co, and Ni) and their alloys [25, 26]. Presently, TM 
oxides (MoO,  MnO2,  Co3O4) [27, 28], Co, Ni, and Cu binary 
oxides (NiO/CuO,  Co3O4/NiO, and CuO/Co3O4) [29, 30], 
and layered double hydroxide systems (FeNi-LDH, NiCo-
LDH, and CoAl-LDH) have been widely investigated in the 
catalytic fields [31, 32]. Particularly, some TM-based cata-
lysts (Bi, Cu, Mo, Cr, and W) have made great progress [33]. 
Furthermore, TM and non-metallic single atoms, carbon-
based hybrid, perovskite, and MOF-derived nanomaterials 
become also the research hotspots of catalytic fields. There-
fore, it is witnessing the flourishing landscape to long-term 
explore low-cost, highly effective, and durable catalysts.

In 2004, the exfoliation for graphene opened the door 
of low dimensional materials, trigging great enthusiasm 
for exploring a wide range of 2D layered materials, such 
as graphitic carbon nitride (g-C3N4) [34, 35], hexagonal 

Fig. 1  a Jöns Jacob Berzelius (1779–1848) [1]. Copyright @1948, American Chemical Society. b Schematic illustration of the energy band 
structure of materials with different sizes, and typical images of MAX and MXene from 3D multilayer to 2D nanosheets to 1D nanowires to 
0D nanodots [6]. Copyright @2021, The American Association for the Advancement of Science. The morphology was obtained by field emis-
sion scanning electron microscopy [7–10], Copyright @2011, WILEY–VCH, @2019, WILEY–VCH, @2018, Elsevier and @2018, American 
Chemical Society
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boron nitride (h-BN) [36, 37], transition metal dichalco-
genides (TMDs) and transition metal oxides (TMOs) [38, 
39]. Among a variety of 2D materials, graphene holds the 
highest flexibility, conductivity  (106 S  cm−2), and transmit-
tance (97.7%) so far [40]. In 2011, the 3D bulk  Ti3AlC2 
was immersed in hydrofluoric (HF) acid solution by Gogotsi 
group. As a result,  Ti3C2Tx (T represents functional groups 
such as hydroxyl (–OH), oxygen (–O), fluorine (–F) or chlo-
rine (–Cl), and x is the contents of groups) was stripped, 
called as MXene with a layered structure similar to gra-
phene, and the excellent conductivity (6000–8000 S  cm−2) 
well comparable to graphene [41–43]. As a new 2D layered 
material, MXenes have the merits of other 2D materials; 
more importantly, surface functionalization renders them 
easily achieve the improved properties. Therefore, the appli-
cation covers biomedical [44], energy storage devices (bat-
tery, supercapacitor) [45, 46], sensors [47], catalysis [48], 
and electromagnetic interference shielding [49].

Usually, MXenes can be prepared by selecting removal of 
“A” layers of MAX phases or with the similar compositions, 
and the forces include either mechanical or chemical exfo-
liations [50]. However, the wet-chemical etching method is 
most of the facile and high-production yield processes. Bulk 
MAX is referred to as a hexagonal layered ternary transition 
metal carbide, nitride, or carbonitride, where M is an early 
transition metal, A is a group IIIA or IVA element, X is C or/
and N, which can be described by the formula as  Mn+1AXn 
(n = 1, 2 or 3). The stronger M–X bond is a mixture of cova-
lent, metallic, and ionic ones, but the M–A metallic bond 
is weaker. Therefore, the  Mn+1XnTx is usually prepared by 

etching “A” layer of the specific solvent, such as HF,  NH4HF, 
and HCl/LiF [51].

Moreover, preparing fluorine-free (F-free) MXenes has 
attracted serious concern for meeting the requirements 
of specific functions and avoiding the corrosive reagents. 
[52–54] After etching, MXenes nanosheets were obtained 
by using intercalation agent such as dimethyl sulfoxide 
(DMSO), tetrabutylammonium hydroxide (TBAOH), tetra-
methylammonium hydroxide (TMAOH), alcohols, choline 
hydroxide, or n-butylamine through centrifugation or soni-
cation method. However, when the lateral size of MXenes 
nanosheets is further reduced to nanometer size that is 
smaller than Bohr radius of the exciton (lateral size < 10 nm), 
shows strong photoluminescence, called zero-dimensional 
semiconductor nanomaterials—MXenes QDs (MQDs), 
which is an emerging branch of QDs (Fig. 2) [55]. In 2017 
[56], Wang et al. firstly reported the  Ti3C2 fluorescent ultr-
asmall monolayers MXene sheets by concurrent intralayer 
cutting and interlayer delamination. The method was also 
extended to prepare  Ti2C and  Nb2C ultrasmall sheets. The 
 Ti3C2 ultrasmall sheet has the lateral dimension of 2–8 nm 
and the average thickness of 1 nm. Furthermore, similar to 
the carbon dots,  Ti3C2 monolayers sheets showed the strong 
and tunable photoluminescence and excitation-dependent 
behavior with the change of pH. Although they were not 
defined as  Ti3C2 QDs, both their size and the fluorescence 
behavior are typical of QDs. MXene-derived MQDs not only 
inherit the merits of low toxicity, heavy metal-free ones, 
natural hydrophilicity, metallic conductivity, flexibility, and 
abundant active catalytic sites of the parental MXene [40, 

Fig. 2  The classification of quantum dots
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57], but also afford the characteristics likes other QDs, such 
as best dispersibility, unique photoluminescence (PL) prop-
erties, quantum confinement effects, and small-size effects. 
Such diverse properties expand their applications for energy 
storage, catalysis, optoelectronic device, environmental 
monitoring, biomedical, and sensors.

To date, the publications of MQDs have been increasing 
dramatically, and the focused fields include optoelectronic 
device, sensors, catalysis, energy storage, and biomedical 
applications. In this review, we highlight systematically the 
research status of MQDs on catalysis, rather than covering 
all the respects of other promising application. Also, the 
research progress of MQDs, ranging from their synthesis 
and modification to advanced characterization techniques 
are summarized. Finally, their perspectives in catalytic field 
are discussed briefly (Fig. 3a). Expectedly, we hope this 
review will contribute to guide a rational design of high-
performance MQDs-based catalysts in catalytic applications.

2  Development of MQDs

Since the MXene was discovered in 2011 by Gogotsi [7], 
achieving the soaring development from 3D layered bulk 
materials to 2D nanosheets, 1D nanowires, 0D QDs. Mean-
while, physical and chemical properties of materials change 
with the decrease in the lateral size, which can effectively 
enrich the surface areas, increase amounts of active sites that 
are particularly relevant to the homogeneous–heterogeneous 

catalysis. Especially, as the size of materials is reduced and 
smaller than its exciton Bohr radius, they show strong pho-
toluminescence, endowing small-size effect and quantum 
confinement effect (Fig. 1b). However, the shortcoming is 
obvious since the required harsh synthesis condition and 
accompanied high surface energy leads to easy agglomera-
tion. The photoluminescent  Ti3C2 MQDs first synthesized by 
a facile hydrothermal method for imaging in 2017. The aver-
age size of MQDs can be regulated by controlling the reac-
tion temperature. However, the product is strictly dependent 
on the reaction conditions, when the reaction temperature 
surpasses 100 °C, the hybrid structures are obtained and 
even phase transition may occur [58, 59]. Afterward, some 
researches involve in synthesis of the MQDs, but an increas-
ing number of efforts were devoted toward preparing the 
multifunctional MQDs. We summarized the number of pub-
lications and application fields about MQDs. As described 
in Fig. 3b, over the past five years, the number of articles 
about MQDs has an obvious increase, and the application 
covers catalysis, energy storage, sensors, biomedical, and 
optoelectronic devices, especially in sensors, catalysis, and 
biomedical applications. Until now, the research enthusiasm 
of MQDs continues growing, and the application in the field 
of catalysis gradually becomes a hot topic.

Timeline recording the development of MQDs is listed for 
the fields of photocatalysis, electrocatalysis, and photoelec-
trochemical (Fig. 4). However, other applications such as 
electrocatalytic hydrogen evolution reaction (HER) and oxy-
gen evolution reaction (OER) require to be mechanistically 

Fig. 3  a State of the art and prospect of 0D MQDs. b Number of journal publications related to publication time and applications science 2017 
(Source: Web of Science)
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explored, and various catalysts of MQDs such as  Ti2C, 
 V2N, and  Mo2C worth to be thereof prepared. For instance, 
the HER activities of 2D  Ti2C,  Ti3C2,  Nb2C,  Nb3C4, and 
 V2C MXene with O* or/and OH* terminals calculated by 
using density functional theory [60]. Their result shows 
that  Ti2CO2 MXene has optimized Gibbs free energy of 
hydrogen adsorption (ΔGH*), which is regarded as an ideal 
candidate of electrocatalysts. Furthermore, some literatures 
report that  Ti2CTx MXene catalyst has achieved excel-
lent HER performance under acidic conditions, whereas 

570 mV@-10 mA  cm−2 was afforded for the HER activity 
affords under alkaline conditions [54, 61, 62]. Additionally, 
the excellent HER activity of MQDs is also beneficial to 
achieve outstanding catalytic dehydrogenation ability, as 
most studies show that the strong H adsorption ability of 
MXene leads to easier dehydrogenation [63–65]. Anyhow, 
the ongoing efforts are needed toward the ultimate ideal 
commercial alkaline water splitting electrocatalyst. Thus, 
it is very necessary to optimize the performance of  Ti2C 
MXene catalyst under alkaline conditions, and exploring the 

Fig. 4  The timeline showing the development of MQDs in catalysis in the past few years. Reproduced with permission from Refs. [66–79]. 
Copyright @2019, Elsevier, @2019, WILEY–VCH, @2020, Elsevier, @2020, American Chemcial Society, @2020, WILEY–VCH, @2020, 
American Chemical Society, @2020, WILEY–VCH, @2021, American Chemical Society, @2021, Elsevier, @2021, Elsevier, @2022, The 
Royal Society of Chemistry, @2022, Elsevier, @2022. MDPI and the author, @2022, Zhengzhou University and Wiley



 Nano-Micro Lett.          (2022) 14:158   158  Page 6 of 47

https://doi.org/10.1007/s40820-022-00908-3© The authors

HER performance of 0D  Ti2C MQDs or other analogues is 
worthy for pondering in the future.

3  Preparation of MQDs

Over the past decade, various methods have been adopted 
to synthesize two-dimensional inorganic derivatives such as 
graphene [80], phosphorene [81], 2D layered carbides-based 
QDs [82], and TMOs-based QDs [83]. Due to the similar 
layer structures (the strong covalent or ionic bonds in layers, 
the weak van der Waals forces in interlayers), the synthesis 
of 2D MXene-derived QDs is quite similar to other inorganic 
QDs. Up to now, there are different types of MQDs that 
have been prepared by top-down synthesis methods, such as 
 Ti3C2 QDs,  V2C QDs,  Nb2C QDs,  Ti2N QDs, TiCN QDs, 
MXene-derived  TinO2n-1 and  TiO2/C-QDs [84–90]. Further-
more, various surface modifications were used to improve 
the properties for further catalytic applications. A summary 
on the synthesis is classified into pure MQDs, and MQDs 
with surface modifications in the following.

3.1  Synthesis of Pure MQDs

Generally, the synthesis of MQDs consists of two steps, 
including the chemical exfoliations of 2D MXenes from 
3D bulk MAX for the first step, or the homogeneous 2D 
MXene can be obtained by bottom-up route such as chemi-
cal vapor deposition (CVD) growth [91, 92]. The next step 
is the preparation of MQDs mainly by top-down methods. 
Figure 5a shows all the synthesis methods in the current 
reports. Hydrothermal method with low energy consump-
tion is regarded as the most common approach (Fig. 5b), 
and thereof MQDs have the advantages of morphology, size 
control, high crystallinity, high yield, etc. In the process, the 
formation mechanism assisted with high temperature and 
pressure enables 2D MXenes for easy cracking and assem-
bling. The base or acid as medium with the controlled pH 
value 6–9, which reacts with metal hydroxides, accelerating 
the reaction process and promoting the formation of QDs 
[93–95]. Simultaneously, the inert gas such as argon (Ar) 
must be introduced into the reactors for avoiding oxidation 
of MQDs. However, considering the surface of MXenes cov-
ered by oxygen-containing groups (–OH, –O), higher reac-
tion temperature or longer reaction time can lead to surface 
oxidation due to the dissolution of oxygen groups. Xue et al. 

[58] pointed the connection between reaction temperature 
and final product; when it is above 150 °C, the MXene-
derived carbon quantum dots (CQDs) was formed due to the 
dissolution of metallic Ti. Also, the crystallinity of MQDs 
decreases with the increasing temperature (Fig. 5c-h), con-
firmed by X-ray diffraction (XRD) (Fig. 5i).

The mechanism of solvothermal reaction is the same as 
the aforementioned technique, but the solvent is organic, 
such as N, N-Dimethylformamide (DMF), Dimethyl sul-
foxide (DMSO), and ethanol. Therefore, the formation of 
MQDs is related to the boiling point, and oxidation ability of 
solvents. The  Ti3C2 MQDs was prepared by using different 
organic solvent, showing that MQDs prepared by DMSO 
have a reduced quantum yield and photoluminescence prop-
erties, attributed to high boiling point and oxidation ability 
of DMSO (Fig. 5j-k) [96]. Moreover, as the reaction temper-
ature determines the size of MQDs due to the solubility dif-
ference of MXene in the solvent, MQDs usually show excel-
lent solubility in both the water and ethanol [97]. Also, the 
strong quantum confinement of MQDs induced by size effect 
further affects photoluminescence (PL) behavior. Similar to 
other QDs, the PL undergoes blue shifts as the size of MQDs 
decrease, which is one of the viewpoints in the mechanism 
of luminescence. However, the products of MQDs vary with 
the reaction temperature. As a consequence, it results in dif-
ferent surface composition, further affecting fluorescence 
behavior. Currently, it remains a challenge for clarification 
of the fluorescence mechanisms of MQDs [98].

Moreover, the mechanics-assisted methods (e.g., sonic 
tip, bath sonication, and agitation) have become alternative 
to the hydrothermal or solvothermal methods. The process 
can bypass the necessity of the high temperature and high 
pressure, but an inert gas protection is required. The mecha-
nism of mechanics-assisted preparation relies on the layer 
cutting and stacking cleavage. MXene materials are sensi-
tive to surface functional groups. The functional groups 
(e.g., –O, –OH, –F, and –Cl) cannot avoid being introduced 
into the surface due to the intrinsic liquid-phase exfoliation 
process [99–101]. Many reports have confirmed the type of 
groups impact on the electrochemical performance of the 
MXene-based materials [40, 102, 103]. Furthermore, it is 
important for synthesis F-free MXenes, which contributes 
to improve the electrochemical activity [104]. Jang et al. 
prepared oxygen-functionalized MXenes by alkalized and 
heat process for hydrogen evolution reaction (HER), and 
the result is consistent with the previous calculation, oxygen 
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sites as catalytic active sites provide ideal Gibbs free energy 
for hydrogen adsorption (△GH*) [105, 106]. Compared to 
2D MXenes, the F-free 0D MQDs have the same property. 
The  Ti3C2(OH)2 MQDs with hydroxyl groups modifica-
tion prepared by the alkalization treatment and mechani-
cal agitation method for electrochemical  N2 reduction [70]. 
The experiment combines with computational findings 
confirmed that the –OH functional groups and abundant Ti 

edges contributed to the obtained outstand ammonia produc-
tion performance. Such method expects to be extended to a 
wide range of MQDs-based catalytic systems.

However, the probe sonication depends on high power 
probe to break MXene nanosheet into small-sized MQDs 
(Fig. 6a) [108]. The probe of sonic tip is selective to the 
size and hardness of raw MXene materials. Thus, it is 
important for establishing the correlation to prepare our 

Fig. 5  Development of synthesis methods and synthesis of MQDs. a Number of synthesis methods publications on MQDs. (Source: Web of 
science, 2017 to 2022s). b Scheme of hydrothermal synthesis method [107]. Copyright @2021, American Chemical Society. c-h Morphology 
of MQDs at different reaction temperature of 100, 120, and 150 °C. The data was obtained by transmission electron microscopy; i XRD charac-
terization of MQDs [58]. Copyright @2017, WILEY–VCH. j Scheme of synthesis MQDs at different solvents of DMSO, DMF, and ethanol; k 
XRD characterization of MQDs [96]. Copyright @2018, WILEY–VCH
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expected MQDs. The discipline is yet to be explored. In 
addition, the bath sonication needs the protection of low 
temperature for preventing surface oxidation caused by 
overheating (Fig. 6b) [109]. The method of bath soni-
cation is time-consuming. Therefore, the choice of the 
appropriate intercalation solvent affects the subsequent 
preparation, and the parameters of power and time affect 
the production yield and size of MQDs. Furthermore, the 
size and concentration of MQDs are also related to the 
amount of solution and final centrifugation speed due 
to the quality difference between MXene nanosheet and 
MQDs [110]. Sometimes, it is more convenient and safer 
to prepare MXene QDs by F-free probe sonication com-
bined with bath sonication (Fig. 6c). Mechanical stirring 
has attracted extensive attention due to the advantages 
of simple and low cost (Fig. 6d) [111]. There are merely 
three articles that reported the method so far. In addition, 
there are some methods for the synthesis of MQDs. For 
example, the  Ti3C2 MQDs have been prepared through 
reflux [112], ball-milling, and microwave-assisted method 
[113, 114]. The emerging technologies such as ultrafast 
shaped laser [115], micro-explosion [87], potential static 
and acoustomicrofluidic method remain in an exploratory 
stage [116, 117].

Generally, the preparation of QDs is either top-down 
or bottom-up. Although the former has been wieldy used, 
the disadvantage of the complicated synthetic process, 
time-consuming and low yield requires to develop highly 
efficient methods. Compared to the top-down, the main 
synthesis mechanism of the latter lies at the cross-link-
ing and polymerization through small molecules, thereof 
leading to controllable structure, size, composition, and 
morphology of QDs. So, the atomic utilization is max-
imized, thus obtaining the desired type of QDs [118]. 
However, there are seldom reports that MQDs were pre-
pared by using bottom-up methods, mainly due to the 
issue that MQDs must simultaneously satisfy two points: 
(1) inheriting the structure of MXenes; (2) holding the 
physicochemical properties of QDs. It is worth men-
tioning that the composites of both  Mo2C QDs/carbon 

nanosheets and  Mo2C QDs/carbon polyhedron were pre-
pared via bottom-up style, i.e., molten salt method and 
pyrolysis method, respectively [119, 120]. Although they 
are not clearly defined as the MQDs, such simple, low-
cost, and high-yield method is expected to a successful 
preparation of MQDs.

Currently, the production yield of MQDs is rarely 
referred, and the reported technique applied for further 
improving the yield remains a challenge. In addition, there 
is a key issue that the process of preparation produces small 
amount of metal oxidation in the surface of MQDs. There-
fore, more efforts will be made and explored for preparing 
MQDs of the high purity.

3.2  Synthesis of Surface-modified MQDs

MQDs inherit abundant surface functional groups of the 
MXenes, including oxygen (–O), hydroxyl (–OH), chlorine 
(–Cl), or fluorine (–F) [121]. Gogotsi group reported the 
 Ti3C2 MXene containing the aforementioned groups was 
synthesized in water solution, which shows the ζ-potential 
of about −40 mV [90], indicating the groups are negatively 
charged. Therefore, various of organic/inorganic molecules, 
ions, and atoms were used as surface modification/function-
alization [122–125] of the MQDs through the electrostatic 
interaction or physical adsorption to improve the stability, 
selectivity, conductivity, quantum yield, and photolumines-
cent properties [126–128]. Furthermore, 2D MXenes pos-
sess the excellent flexible, natural hydrophilicity, and the 
MQDs with the same structure are easily combined with 
other functional materials to form composites, producing 
a heterogeneous material by integrating their advantages. 
Also, MQDs possess strong quantum confine effect com-
pared to 2D MXenes, and the MQDs can be as co-catalyst 
to control the energy band structure. Based on the differ-
ent modifiers, the synthesis of surfaced-modified MQDs is 
summarized in Table 1. However, there are a few articles 
to address the surface chemical of MQDs on the catalytic 
research, so we only emphasize the common synthesis 
methods.

3.2.1  MQDs Modified by Single/Dual Heteroatoms

MQDs have been applied to biomedical [129, 130], opti-
cal device [131–133], energy storage [134–138], and sensor 

Fig. 6  Schematic illustration for the synthesis of MQDs by using 
different methods. a Probe ultrasound [108]. Copyright @2020, 
Wiley–VCH. b Bath sonication [109]. Copyright @2020, American 
Chemical Society. c A combination of probe sonication and bath son-
ication [110]. Copyright @2017, The Royal Society of Chemistry. d 
Mechanical stirring method [111]. Copyright @2021, Wiley–VCH

◂
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fields [112, 139, 140] due to that they possess the advantages 
of non-toxicity, metal conductivity, excellent chemical sta-
bility and low cost. Currently, the research of pure MQDs 
cannot meet the development needs of practical applica-
tion. The surface-modified MQDs by heteroatoms, still in 
its infancy stage, have intrigued great research enthusiasm. 
It can be seen from Table 1 that such heteroatoms are almost 
all non-metallic such as nitrogen (N) [139, 141, 142], phos-
phorus (P) [114], sulfur (S) [133] and chlorine (Cl) [117, 
143]. The common synthesis methods are hydrothermal. 
However, the improvement of properties of MQDs modi-
fied by using metal atoms is just on the beginning.

Generally, the strong electronegativity of non-metallic 
atoms is beneficial to passivate the active sites of MQDs, 
leading to the change of electronic structure, and thereof 
producing surface defects. Thus, some obvious changes will 
occur for the physicochemical properties of MQDs [86]. As 
shown in Fig. 7a, Guan et al. prepared N, P-doped  Ti3C2 
MQDs with green fluorescence and size of 2.93 nm by 
hydrothermal method, and density functional theory (DFT) 
calculation reveals the electron transfer from P to N facili-
tates to improve the fluorescence (Fig. 7b-d). Compared to 
pure MQDs and single-atom-doped MQDs, the favorable 
electron transfer can enhance the photoluminescence quan-
tum yield (PLQY) of 20.1% [144].

Likewise, The PLQY is an important parameter for 
judging the performance of QDs in the fields of biologi-
cal, sensing, and optoelectronic devices. The S, N-Nb2C 
MQDs with an average size of 2.66 nm was synthesized, 
enhancing the QY of  Nb2C and the stability by optimizing 
the PL properties. It is known the PL properties of QDs 
are related to size, surface composition, and pH. The non-
metal doping often occurs at carbon sites with a larger 
shrinkage of the defect-induced bond of MQDs, leading 
to a variety of fluorescence [130]. In addition, in 2019, 
the S, N-doped  Ti3C2 MQDs prepared by hydrothermal 
method (Fig. 7e), achieving the multiple-color emissive 
from blue to orange light (Fig. 7f-h) [133], which will 
benefit for the mankind in the field of energy storage, 
photocatalysis, medicine and biology. MXenes are easily 
oxidized due to the dissolved oxygen and oxygen-contain 
groups, especially in the high temperature and pressure 
condition [58]. Therefore, this heteroatoms modification 
can also enhance the antioxidant capacity of MQDs. For 
example, the ethylenediamine (EDA) was introduced into 
the surface of MQDs as the additive, forming the surface 

electron-rich N-Ti3C2 MQDs (Fig. 7i) [145]. The method 
not only avoids the surface oxidation of MQDs, and retains 
the intrinsic structure of MXenes, but also enhances the 
antioxidant ability, enabling N-Ti3C2 MQDs as effective 
reductants (Fig. 7j-k). Apart from the above-mentioned 
issue, S, N co-doped  Ti3C2 MQDs [133], Cl, N co-doped 
 Ti3C2 MQDs [117], and N, B co-doped  Ti3C2 MQDs [142] 
have been prepared by using the same method to improve 
their physical–chemical properties. Furthermore, the  Ti3C2 
MQDs modified by metal atom also contribute to enhance 
energy transfer process, leading to enhance the sensitive 
of detector [146].

Apart from non-metallic elements as the dopants to con-
trol the functional application, the metal atom modification 
is helpful to adjust the energy level structure of MQDs, 
thereby achieving highly catalytic active sites. Tang et al. 
synthesized Co-Ti3C2 MQDs with a Janus-structured style 
by using Co ion thermal-anchoring reaction and ammonia-
assisted hydrothermal method [72]. The introduction of Co 
constructs the Schottky junction, produces the rectifying 
effect, promoting effectively the photogenerated carrier 
separation/injection efficiency. It shows the excellent pho-
toelectrochemical water oxidation capability.

Although the doped MQDs have made great progress, the 
application prospect in the catalytic field is still unknown, 
whether the MQDs make the breakthroughs like other inor-
ganic QDs (e.g., CQDs, GQDs, and  MoS2 QDs) in the future 
is something worth investigating. Except for such finding, 
whether the modification of organic molecules also brings 
the considerable improvement of properties?

3.2.2  MQDs Modified by Organic Molecules

Organic molecules have been applied to modify the surface 
of QDs to improve the fluorescence responses in aqueous 
solution, enhanced the application in biological and optical 
fields [166–168]. However, such molecules modified MQDs 
have little application in catalysis. Compared to the non-
metal and metals, organic molecules have the advantages 
of low toxicity, low cost, easily biodegradability and bet-
ter biocompatibility and so on. It was reported that such 
molecules are usually adsorbed to the surface of MQDs by 
physical absorptions or electrostatic interactions, contribut-
ing to improve the compatibility of MQDs, leading to the 
enhancement of dispersion, mechanical, and fire retarded 
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Table 1  Synthesis routes of surface-modified MQDs

Surface-modified 
MQDs

Sample Synthesis Solvents/reaction 
atmosphere

Size (nm) Applications Refs.

Surface-modified 
MQDs

MQDs modified by 
heteroatoms

N-Ti3C2 Hydrothermal Ethylenediamine 2–7 Environmental/
biomedical

[147]

N, P-MQDs Hydrothermal Phosphate (DAP) 2.73 ± 0.50 Cu2+ detection [144]
S, N-Ti3C2 Hydrothermal Na2S2O3  NH3·H2O 50 Light-emitting 

diodes
[133]

N-Ti3C2 Solvothermal oPD 7.5 Detection of ARS [148]
N-Ti3C2 Solvothermal DMF 6.2 Cu2+ detection [149]
S, N-Nb2C Hydrothermal L-cysteine 2.6–4.7 Biological sensing [86]
S, N-Nb2C Hydrothermal L-cysteine, urea 3.54 Cells imaging [130]
N, B-Ti3C2 Hydrothermal Boric acid, ammo-

nia
2.25 ± 0.55 Testing of tetracy-

cline
[142]

N-Ti2C Hydrothermal EDA - Antioxidants [145]
N-Ti3C2 Solvothermal DMF 3.09 ± 0.04 Sensor [150]
Cl, N-Ti3C2 Potential static Ammonium 

hydroxide
3.45 Hydroxyl Radical 

Scavenging
[117]

N-Ti3C2 Hydrothermal Ethylenediamine 4 Fluorescence 
imaging

[23]

N-Ti3C2 Hydrothermal Tetramethylammo-
nium hydroxide

- H2O2 Detection [107]

Co-Ti3C2 Hydrothermal NH3·H2O 6.66 Photoelectro-
chemical Water 
Oxidation

[72]

Eu-Ti3C2 Hydrothermal NH3·H2O 2.81 detector [146]
MQDs-based 

heterostructure
MQDs modified 

by organic mol-
ecules

Amino-Ti3C2 Hydrothermal NH4·H2O 2.73 Diagnosing his-
tidine

[140]

N-Ti3C2 Hydrothermal Ethylenediamine 3.32 Mucin 1 detection [141]

PLL-Ti3C2 Hydrothermal ε-Poly-L-lysine 3 Fluorometric 
determination 
of cytochrome c 
and trypsin

[151]

Glutathione–Ti3C2 Hydrothermal Glutathione, 
deionized water

2.5 Fluorescence 
probe

[152]

N-Ti3C2 @DAP Solvothermal 2,3-diaminophena-
zine  NH3·H2O

3.4 ± 0.5 Detect  H2O2 [153]

Uric acid–Ti3C2 Microwave Water 50 ± 0.5 Fluorescence 
probe

[112]

BSA@Ti3C2 Hydrothermal Bovine serum 
albumin

2 Fluorescence 
probe

[154]

MQD-PVP Hydrothermal Polyvinylpyrro-
lidone

3 Nonvolatile 
Memory Devices

[155]

0D MQDs/0D 
heterostructure

CsPbBr3QD/
Ti3C2x QD

Hot-injection Ar - Photoluminescence 
probe/photode-
tector

[156]

Ni@Ti3C2 Hydrothermal ethylene glycol 5.96 Cr (VI) reduction [77]

0D MQDs/1D 
heterostructure

Au NRs/  Ti3C2 
QDs

Hydrothermal 1% trisodium 
citrate

1–6 Photoelectro-
chemical water 
splitting

[157]

Ti3C2/Au NB Microwave TMAOH 4.13 Sensor [158]

Ti3C2 QDs/Cu2O 
NWs/Cu

Self-assembly Ar – Electrocatalytic 
 CO2

[67]
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properties [169, 170]. For instance, the glutathione function-
alized  Ti3C2 MQDs prepared by hydrothermal method, the 
MQDs of surface passivated by glutathione show outstand-
ing fluorescence stability regardless of any pH value or time, 
which is a promising fluorescence probe [152]. Such surface 
modification facilitates to the stabilization of surface energy 

traps, leading to surface state luminescence with excitation 
independence [84]. Furthermore, MQDs have excellent sta-
bility of the PL intensity at different pH values, so MQDs-
based nanomaterials are an ideal sensor [58].

Additionally, uric acid (UA) was used as ligand to 
enhance photophysical property. Wang et al. [112] prepared 

Table 1  (continued)

Surface-modified 
MQDs

Sample Synthesis Solvents/reaction 
atmosphere

Size (nm) Applications Refs.

WO3/TQDs/In2S3 ethylene glycol 1,66 ± 0.04 Environmental 
remediation

[74]

0D MQDs/2D 
heterostructure

BiVO4 @ZnIn2S4 /
Ti3C2 QDs

Ultrasonication-
stirring

Water 10 Photocatalytic 
water splitting

[68]

TiO2/C3N4/Ti3C2 Self-assembly NH3·H2O 3 Photocatalytic  CO2 [159]

Ti3C2 QDs/SiC Self-assembly ultrapure water – Photocatalytic NO [71]

NiFe LDH/  Ti3C2 
QDs/NG

Urea-assisted co-
precipitation

N-methylpyrro-
lidone

5 Zinc–air batteries [136]

Ti3C2 QDs/WS2 Dry Transfer 
Technique

- 5 - [111]

g-C3N4@Ti3C2 
QDs

Self-assembly Vacuum – Photocatalytic 
hydrogen pro-
duction

[160]

Ti3C2 QDs/N–C electrostatically 
adsorb

Deionized water 5–6 Li–O2 Batteries [137]

S, N-Ti3C2 QDs/
SnO2

ultrasonication Deionized water – Perovskite solar 
cells

[138]

MoOx/Ti3C2 QDs spin-coating – – Photoelectro-
chemical water 
splitting

[161]

Ti3C2 QDs/Cu 
nanosheet

– CuSO4 aqueous 
solution

4.97 N2 Electroreduc-
tion

[79]

Ti3C2 QD/LRGO – Ar 1.5–4.5 Transparent super-
capacitors

[115]

Ti3C2Cl2@NiAl-
LDHs

Electrostatic 
assembly

N–N-dimethylfor-
mamide

4–10 Pseudocapacitor [143]

Ti3C2 QD/Ni-
MOF

Ultrasonic ethanol, DMF, 
TEA

4.19 N2 Photoreduction [69]

NiCo-LDH @
Ti3C2 QDs

Hydrothermal DI water 3.06 ± 0.78 Supercapacitor [162]

0D MQDs/3D 
heterostructure

Ti3C2 QDs/g-C3N4 Self-assembly DI water 2–10 Photocatalytic 
 H2O2

[73]

Ti3C2 QDs/  TiO2 Laxly self-organ-
ized

Water 8.2 Photoelectrochem-
ical biosensing

[163]

Ti2COx QDs/
Cu2O/Cu foam

Electrostatic 
assembly

hydrochloric acid 2.98 ± 0.62 Electrocatalytic 
hydrogen pro-
duction

[164]

C3N4/r-Ti3C2 Self-assembly Ar 5.2 ± 0.97 N2 photofixation [76]

Ti3C2-QDs/
ZnIn2S4/Ti

Impregnation DI water 2–5 Photocatalytic [78]

Ti3C2/watermelon 
peel aerogels

Soak DI water  < 10 Hydrogen Evolu-
tion

[165]
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UA@Ti3C2 MQDs by facile microwave-assisted strategy. 
2D  Ti3C2 MXene was broken into 0D MQDs based on the 
acid etching and the high power. The UA as reaction solvent 

forming the large molecules that encase  Ti3C2 MQDs. The 
method is not only easily operation, but also enhanced the 
oxidation resistance and highly quantum yield of MQDs. 

Fig. 7  Schematics, structural and optical behavior characterizations of MQDs modified by single/dual heteroatoms. a Schematic illustration 
of the synthesis of N, P-Ti3C2 MQDs; b Charge density difference of N, P functionalized  Ti3C2 MQDs; c Fluorescence emission spectra of N, 
P-Ti3C2 MQDs; d Photoluminescence decay spectra of the N-Ti3C2 MQDs, P-Ti3C2 MQDs, N, P-Ti3C2 MQDs [144]. Copyright @2019, The 
Royal Society of Chemistry. e Schematic illustration of the synthesis of S-Ti3C2 MQDs, N-Ti3C2 MQDs, S, N-Ti3C2 MQDs; f–h UV–Vis adsorp-
tion spectra of S-Ti3C2 MQDs, N-Ti3C2 MQDs, S, N-Ti3C2 MQDs [133]. Copyright @2019, Elsevier. i Schematic illustration of the synthesis of 
N-Ti2C MQDs; j Antioxidants performance test at  KMnO4 solutions; k Mechanism of antioxidants [145]. Copyright @2021, American Chemi-
cal Society
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Apart from the above-mentioned molecules, the 2,3-diami-
nophenazine (DAP), ε-Poly-L-lysine (PLL), polyvinylpyr-
rolidone (PVP), and bovine serum albumin (BSA) were 
used to synthesis functionalized MQDs, thereby promoting 
the MQD in application to biomedical and physical fields 
[151, 153–155]. Furthermore, MQDs possess abundant 
hydrophilic functional groups. To avoid the self-aggrega-
tion of MQDs, improving the stability during the synthesis 
and reaction, the organic molecules were introduced onto 
the surface of MQDs, as possibly an effective method to 
increase the yields.

3.2.3  MQDs‑based Heterostructures

Like single atoms and other 2D inorganic QDs, the MQDs 
with small-size affect easily the aggregation due to their high 
surface energy during synthesis and reaction process [96, 
171]. For catalysts, we not only pursuit excellent conductiv-
ity, low cost, environmentally friendly, and outstanding per-
formance, but also the durability of operation. Constructing 
the MQDs/support heterostructure is an effective strategy. 
Such hierarchical heterostructures contributes to adjusting 
the band structure, achieving the excellent Catalytic activity. 
We will introduce the routine synthesis routes of hetero-
structure between 0D MQDs and different dimension sup-
port in the following section.

3.2.3.1 0D MQDs/0D Nanomaterials The electronic 
coupling at the interface is essential for regulating the 
electronic structure and producing efficient charges trans-
fer, which contributes to an improved electrochemical 
reaction process and device performance [172, 173]. 0D 
nanomaterials has the lateral size range of 0.1 ~ 100 nm. 
Currently, there are few reports on the composite of 
MQD with other 0D nanomaterials, and such improving 
physical chemical properties is expected to be further 
explored. In 2020, the  CsPbBr3 QDs-Ti3C2Tx MQD het-
erostructure was constructed by facile ultra-sonicating 
method (Fig.  8a) [156]. XRD of CPB-MXene QD/QDs 
composites retain the crystal structure of  CsPbBr3 QDs 
and MQDs, and no impurity phase was found (Fig. 8b). 
The morphology of nanocomposite is shown in Fig.  8c, 
and the corresponding high-resolution transmission elec-
tron microscopy (HRTEM) image is displayed in Fig. 8d. 
The local magnification of “U” and “V” represent the 
lattice fringes of  CsPbBr3 QDs and MQDs, respectively. 
The interface (orange dashed line) relies on the strong 

interaction between the functional groups on the surface 
of MQDs and  Cs+, causing the photoluminescence (PL) 
quenching due to the charge transfer from  Cs+ to MQDs. 
However, when  Cs+ was introduced into the heterostruc-
ture again, the PL will recovery. Therefore, the 0D/0D 
heterostructure is expected to apply to ion detection and 
photodetector.

Currently, there are reports for the introduction of single 
atoms (SAs), nanoparticles into inorganic QDs such as 
cadmium–zinc sulfide quantum dots (ZCS QDs), carbon 
quantum dots (CQDs), graphene quantum dots (GQDs), 
and so on [174–177]. Compared to the bulk support, the 
exposure of specific crystalline planes can be precisely 
controlled, contributing to the synergistic effect between 
the SAs and coordinating elements, and the coordination 
environment of SAs can be regulated for increasing the 
selectivity of products [178]. Interestingly, MQDs pos-
sess the same properties as other inorganic QDs, but were 
endowed with the abundant surface groups (–OH, –O, –Cl, 
or –F). Therefore, MQDs are a promising support catalyst. 
The  Ti3C2 MQDs coated Ni nanoflowers were synthesized 
by using facile reduction reaction for wastewater treatment 
(Fig. 8e), the transmission electron microscopy (TEM) and 
HRTEM images confirmed the core–shell structure (the 
core: Ni flowers, the shell: MQDs), and the correspond-
ing lattice fringes (Fig. 8f-g) [77]. The elemental mapping 
shows that the Ti/C/O/Ni were uniformly distributed in 
the surface of nanocomposites (Fig. 8h). Such interfacial 
interaction not only avoids any aggregation of Ni nano-
particles, but also lowers the catalytic reaction activation 
energy of Cr (VI). It is of great interests to extend 0D/0D 
heterostructures to other catalytic fields.

3.2.3.2 0D MQDs/1D Nanomaterials 1D nanomaterials 
allow electrons-dominating transfer, mainly including nano-
tubes, nanowires, nanorods, and nanobelts [10, 179]. Transi-
tion metal oxides are commonly used as ideal photocatalyst 
due to their adequate optic bandgap. However, the regula-
tion of bandgap facilitates to hinder the photogenerated car-
riers’ recombination, achieving an efficient surface redox 
reaction. Zeng et  al. [67] prepared  Ti3C2 MQDs/Cu2O 
nanowire composite by using electrostatic self-assembly 
strategy for highly efficient photocatalytic  CO2 conversion 
(Fig. 9a). TEM image confirmed the MQDs dispersed in the 
surface of  Cu2O nanowires, and the corresponding HRTEM 
characterization confirmed the formation of heterogeneous 
interface (Fig. 9b-c), and 0.216 nm and 0.219 nm of lattice 
fringes are attributed to  Ti3C2 MQDs (0110) and  Cu2O (200), 
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respectively. In addition, the energy dispersive X-ray (EDX) 
spectra displayed the Ti/C/O/Cu dispersed uniformly in the 
surface of  Cu2O (Fig. 9d-g). Combined the DFT and experi-
ment shows that the MQDs as co-catalyst to promote the 
separation of carriers and decrease the band bending edge, 
enhancing the light adsorption capability and the transport 
of carriers of  Cu2O. Furthermore, the 1D nanowires not 
only provide long light adsorption path and short charge 
transport distance, but also enable quickly collecting the 
separated photogenerated carriers.

Likewise, the  WO3/Ti3C2 QDs/In2S3 with Z-scheme 
heterostructure was fabricated by using facile solution 
method (Fig. 9h). TEM and HRTEM images confirmed 
that the  In2S3 nanosheet and MQDs with an average size 
of 1.66 ± 0.04 nm were uniformly dispersed on surface of 

 WO3 nanorods (Fig. 9i), and the  WO3 was coated by  In2S3 
nanosheets (Fig. 9k), corresponding to the interface between 
the  Ti3C2 MQDs and  WO3 (or  WO3 and  In2S3) shown in 
Fig. 9j (Fig. 9l). This report shows that MQDs is an ideal 
co-catalyst to promote the separation of the photogeneration 
carriers, achieving efficient Cr (VI) reduction and photocata-
lytic oxidation of the BPA [74]. In addition, the MQDs were 
used as co-catalyst to promote photocatalytic water splitting 
due to their broader photoresponse and excellent conductiv-
ity. In 2021 [157], the Au nanorods/Ti3C2 MQDs hetero-
structure was prepared via electrostatic interaction (Fig. 9m). 
TEM image showing the plasmonic gold nanorods (NRs) 
were distributed in the  Ti3C2 MXene QDs-interspersed 
 Ti3C2 nanosheet (TDTS) (Fig. 9n), and the corresponding 

Fig. 8  Schematic and morphological and structural characterizations of 0D MQDs/0D nanocomposite. a Schematic illustration of the synthesis 
of  CsPbBr3–Ti3C2Tx MQD/QD; b XRD patterns of  CsPbBr3 QDs,  Ti3C2Tx MQD,  CsPbBr3–Ti3C2Tx MQD/QD; c TEM image of  CsPbBr3–
Ti3C2Tx MQD/QD; d HRTEM image of  CsPbBr3–Ti3C2Tx MQD/QD [156]. Copyright @2020, American Chemical Society. e Schematic of the 
formation of Ni@Ti3C2 MQDs; f-g TEM image of Ni@Ti3C2 MQDs. insets of A and B represent HRTEM image of Ni and MQDs, respectively; 
h EDS of Ni@  Ti3C2 MQDs [77]. Copyright @2022, Elsevier
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HRTEM image of Au (200) is displayed in the inset of Fig. 9n. 
In addition, the  Ti3C2 MQDs @Au nanobones were also 
prepared by using the seed-mediated growth method and 
self-assembly for exploring the improving performance in 
the biomedical application.

3.2.3.3 0D MQDs/2D Nanomaterials Compared to 0D 
and 1D support materials, 2D nanomaterials are referred to 
as that the electrons motion is unrestricted in two directions, 
which has lager planar size. As a result, it provides the abun-
dant basal plane that is active with a number of anchored 
sites [128, 180, 181]. Currently, many reports address the 
preparation of 2D few-layer or monolayer nanosheets by 
using chemical vapor deposition, organic solvent interca-

lation, liquid-phase exfoliation strategy and electrospin-
ning, and so on [182–184], The introduction of intrinsic 
defects such as vacancies, lattice distortions and adatoms 
on the surface of graphene, g-C3N4 and MoS [185–187], is 
beneficial to improve the physical properties of materials 
such as electronic conductivity. In 2020, the MQDs were 
used as co-catalyst to enhance the photocatalytic activity 
of 2D metal–organic framework (MOF). The  Ti3C2 MQD/
Ni-MOF catalyst was prepared by self-assembly strategy 
(Fig.  10a) [69]. SEM image revealed the 2D nanosheet 
morphology of Ni-MOF (Fig. 10b), and the HRTEM image 
confirmed the MQDs with an average size of 4.19 nm that 
were uniformly dispersed on the surface of Ni nanosheet 
(Fig.  10c). The presence of MQDs helps to enhance the 
light absorption and interface charge transfer ability, pro-

Fig. 9  Schematic and morphological and structure characterizations of 0D MQDs/1D nanomaterials heterostructure. a Synthesis process of 
 Ti3C2 QDs/Cu2O NWs/Cu heterostructure; b TEM image of the  Ti3C2 QDs/Cu2O NWs heterojunction; c HRTEM image of the interface in 
 Ti3C2 QDs and  Cu2O; d-g EDX elemental mapping of  Ti3C2 QDs/Cu2O NWs [67]. Copyright @2019, WILEY–VCH. h Schematic illustra-
tion of  WO3/TQDs/In2S3 heterostructure; i TEM image of  WO3/TQDs; j HRTEM image of  WO3/TQDs; k TEM image of  WO3/TQDs/In2S3; 
l HRTEM image of  WO3/TQDs/In2S3 [74]. Copyright @2021, Elsevier. m Schematic for the preparation of Au NRs/Ti3C2 MQDs/Ti3C2 
nanosheets; n TEM image of Au NRs/TDTS. Inset illustration is HRTEM image of  Ti3C2 MQDs [157]. Copyright @2021, Elsevier
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moting an efficient  N2 photoreduction reaction. Besides, 
the 0D/2D heterostructure is also applied to energy storage. 
Moreover, the defect-rich MQDs cluster/N-doped carbon 
nanosheet nanocomposites were prepared by using electro-
statically self-assembly for Li–O2 batteries (Fig. 10d) [137]. 
TEM image shows the uniform distribution of MQDs in the 
N–C nanosheets (Fig. 10e). However, as shown in inset of 
Fig. 10e, the quantum size effect MQDs contributes to the 
poor crystal quality of MQDs/N–C nanocomposites. This 
result can be proved by using HRTEM (Fig. 10f). Combin-
ing the experiment and DFT reveals the MQDs with abun-
dant grain boundaries and edge defects as the active origins 
for increasing the adsorption of  O2 molecules and interme-
diates  LiO2. Controlling the number of interfaces is of great 

significance for improving the structure of photocatalyst and 
enhancing the performance. The 2D/2D/0D  (TiO2/C3N4/
Ti3C2 MQDs) hierarchical structure was engineered by van 
der Waals and electrostatic interactions (Fig.  10g) [159]. 
The  TiO2/C3N4 exhibits core–shell structure, and the MQDs 
decorated on the surface of  C3N4 nanosheet in three to four 
layers, and the corresponding HRTEM image is shown in 
Fig. 10h. Such ultrathin three-phase interface and the intro-
duction of MQDs help to increase the transport channels 
of charges, providing the abundant photogenerated carries. 
In addition, g-C3N4 nanosheets [160], nanofilms [138], SiC 
[71], and graphene [115] 2D nanomaterial have been pre-
pared for loading 0D MQDs, improving the performance in 
electrocatalysis, photocatalysis, and supercapacitors.

Fig. 10  Schematic and morphological and structure characterizations of 0D MQDs/2D nanosheets heterostructure. a Schematic diagram of 
 Ti3C2 MQDs/Ni-MOF; b SEM images of  Ti3C2 MQDs/Ni-MOF; c TEM images of  Ti3C2 MQDs/Ni-MOF. The inset illustration is the size dis-
tribution of  Ti3C2 MQDs. Reproduced with permission [69]. Copyright @2020, American Chemical Society. d Synthesis process schematic of 
 Ti3C2 QDC/N-C nanocomposites and e TEM image of  Ti3C2 QDC/N-C, inset illustration is SAED pattern; f HRTEM image of  Ti3C2 QDC/N-C 
[137]. Copyright @2021, Wiley–VCH. g Schematic preparation of  Ti3C2 MQDs/TiO2/C3N4 hierarchical structure; h HRTEM image of T-CN-
TC heterostructure [159]. Copyright @2020, Elsevier



 Nano-Micro Lett.          (2022) 14:158   158  Page 18 of 47

https://doi.org/10.1007/s40820-022-00908-3© The authors

3.2.3.4 0D MQDs/3D Nanomaterials Compared to other 
dimensional nanomaterials, 3D nanomaterials with porous 
structure provides the abundant gas diffusion channel and 
interface sites, and favorable for reactant diffusion direction 
[188, 189]. MQDs have served as co-catalyst to avoid the 
recombination between the photogenerated electrons and 
photogenerated holes. Recently, constructing 0D/3D het-
erostructure has been reported to make MQDs as electron 
acceptor to promote surface redox reaction. In 2022, the 
 Ti3C2 MQDs with the surfaces detect-rich/3D mesoporous 
 C3N4 were prepared by electrostatically self-assembly strat-
egy (Fig. 11a) [76]. TEM image confirmed that the MQDs 
were uniformly dispersed on the surface of hollow  C3N4 
(Fig. 11b), and the HRTEM image gives the corresponding 
lattice spacing of 0.329 and 0.261 nm, attributed to the plane 

of  C3N4 (002) and  Ti3C2 (0110), respectively, indicating the for-
mation of Schottky junction (Fig. 11c). The XRD analysis 
for the weak signal of MQDs correlate with the low content 
(Fig. 11d). Meanwhile, such MQDs-induced Schottky junc-
tion catalyst was used to promote the photocatalytic  H2O2 
production.

Lin et  al. [73] prepared the  Ti3C2 MQDs decorated 
defective inverse opal g-C3N4 (TC/CN) by using electro-
static self-assembly method (Fig. 11e). SEM image shows 
the microstructure of porous g-C3N4 with a long-range 
order (Fig. 11f), and the corresponding HRTEM confirmed 
the formation of the interface between MQDs and g-C3N4 
(Fig. 11g). Such bonding contributes to achieve the car-
rier separation. In addition, the  Ti3C2 MQDs/ZnIn2S4/Ti 

Fig. 11  Schematic and morphological and structure characterizations of 0D/3D heterostructure. a The prepared process diagram of 
 C3N4/r-Ti3C2 QDs; b TEM image of  C3N4/r-Ti3C2 QDs; c HRTEM image of  C3N4/r-Ti3C2 QDs; d XRD pattern of  C3N4,  C3N4/r-Ti3C2 QDs [76]. 
Copyright @2022, The Royal Society of Chemistry. e Schematic preparation of  Ti3C2 MQDs/3D Inverse Opal g-C3N4 heterojunction; f SEM 
image of TC/CN-20 after adding 20 mL of MQDs solution and 20 mL water; g HRTEM image of TC/CN-20 [73]. Copyright @2020, American 
Chemical Society. h Schematic illustration of  Ti3C2-QDs/ZnIn2S4/Ti(IV) heterostructure; i-k TEM image of  Ti3C2-QDs/ZnIn2S4/Ti(IV) at differ-
ent magnifications; l-p Elemental mappings of  Ti3C2-QDs/ZnIn2S4/Ti(IV) [78]. Copyright @2022, MDPI and the authors
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(IV) 3D hierarchical structure was constructed by impreg-
nation and self-assembly methods (Fig. 11h) [78]. TEM 
and HRTEM images show that the Ti (IV) and MQDs are 
uniformly dispersed on the surface of 3D nanoflowers 
microspheres (Fig. 11i-k). The EDX elemental mapping 
confirmed the elements were uniformly dispersed in the 
surface of microsphere (Fig. 11l-p). The nanocomposites 
were used as co-catalyst to promote long-term stability. 
In addition, various of MQDs-based heterostructure has 
been designed such as MQDs/3D bio-aerogels [165], and 
the  TiO2/MQDs [163] meet the growing needs of biomedi-
cal application, photoelectronic sensor, biosensor, and 
photocatalysis.

In summary, the properties difference of 0D MQDs-
based heterostructure (0D/0D, 0D/1D, 0D/2D, 0D/3D) are 
mainly rooted from the variation of the support properties 
with different geometric structures. Whereas the coordi-
nation environment between the MQDs and their support 
is flexible and controllable, independent of the dimension 
of the support, and it determines the optimal performance 
to be achieved. Furthermore, the MQDs as catalyst offers 
abundant catalytic active sites. In order to maximize the 
utilization of active sites, achieve the fast electron trans-
port channels, and ensure the efficient and stable working 
of catalysts, the support with different dimensions is often 
selected to optimize the overall performance. Also, the 
morphology of catalysts also needs to be considered to 
meet the application requirement.

3.3  Other MXene-Derived Inorganic QDs

According to the previous reports, the MXenes will expose 
inner carbon layer, or produce a small number of amor-
phous carbon due to the partial dissolution of external M 
metal atoms during etching process, which can be proved 
by using Raman spectrum [7, 190, 191]. In 2017, Sun et al. 
[192] prepared F-free  Ti2CTx via electrochemical etch-
ing under the HCl aqueous solution. The result shows that 
such method enables easily exfoliating Ti layers, producing 
carbide-derived carbon (CDC), which is related to voltage, 
etching time, and electrolyte concentration. Furthermore, 
most of MXenes are sensitive to oxygen atmosphere, facili-
tating the formation of transition metal oxides in the surface 
[193, 194]. Therefore, many inorganic QDs such as carbon 
dots (CDs), graphene quantum dots (GQDs), and transition 

metal oxide QDs can be prepared by using such material-
derivatives, which provides facile, safe, and environmentally 
friendly method to prepare inorganic QDs. In 2020, the  TiO2 
QDs supported on the surface of carbon layer were prepared 
by solvothermal method using small and fewer-layered  Ti3C2 
MXene nanosheets (Fig. 12a) [88].

The condition of high temperature and high pressure 
induced the oxidization of MXene surface via the dissolved 
oxygen in solution. TEM and HRTEM images confirmed the 
formation of  TiO2/C-QDs with an average of 5.23 ± 0.3 nm 
(Fig. 12b-c), and the UV–Vis adsorption spectrum shows 
that QDs have adsorption peak at 250 nm, and the inset of 
Fig. 12d corresponds to the optical photo-blue  TiO2/C-QDs 
in daylight under 365 nm excitation wavelength. Moreover, 
the oxygen-vacancy-rich  TinO2n−1 QDs (OV–TnQDs) were 
prepared by  H2O2 oxidation and subsequent quenching in 
liquid nitrogen (Fig. 12e) [90]. The quench process makes 
 TiO2 nanoparticles fast crystallization and downsized to 
quantum size. After that, the annealing process with  H2/Ar 
mixed gas promotes the generation of O vacancies. TEM 
image confirmed the uniform distribution of OV–Tn QDs 
(Fig. 12f). The corresponding HRTEM image exhibit that 
the OV–Tn QDs are made up of  Ti2O3 and  Ti3O5 (Fig. 12g-i).

We all know that the carbon dots are used in solar energy 
cell, optoelectronic, and biomedical applications due to low 
cost, environmentally friendly and non-toxic, and excellent 
biocompatibility. Currently, carbon dots are abundant in raw 
materials such as carbon nanotube [196], carbon-contain-
ing organic molecules [197], and biomass materials [198]. 
However, 2D MXene-derived CDs are rarely reported. In 
2021, the 2D  Ti3C2Tx MXene-derived (CDs) was prepared 
by hydrothermally [199]. Also, the GQDs were reported 
through controlling the alkalized time and concentration of 
2D MXenes treated by KOH (Fig. 12j) [195]. The previ-
ous articles reported that KOH has been used as activator 
to promote the formation of micropore in the carbon-based 
nanomaterials [99, 200]. Therefore, the Ti-C covalent can 
be broken under the alkaline condition, producing the Ti and 
C-based nanoparticles and finally with formation of the CDs, 
or a small amount of amorphous C, and the metal oxides. 
As shown in Fig. 12k, the GQDs/TiO2 nanoparticles with an 
average size of 1.5 nm. In addition, solvothermal strategy is 
also used to prepare GQDs [201]. Such carbon-based nano-
materials derived QDs possess low cost, excellent photolu-
minescence properties and stability, expect to apply in the 
fields of energy storage, devices, and imaging.
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4  Characterization Techniques of MQDs

Generally, structure determines the performance of the mate-
rials, which is important for design of the catalysts with 
the specific functions. The MQDs derived from 2D MXene, 
changing the synthesis routes of the MXenes, which will 
produce different kinds of functional groups, or removing 
the groups by some post-processing, thereby impacting on 
various properties of MQDs (conductivity, adsorption, and 
magnetic applications) [99, 105]. Furthermore, the MQDs 
with surface functional contribute to increase amounts of 
active sites, simultaneously, regulate the energy band struc-
ture. Such semiconductor engineering is challenging to hin-
der the recombination of electron and hole in the field of 
photocatalysis. Therefore, it is necessary to identify such 
materials by using basic characterization techniques, toward 
promoting their further development, the comprehensive 
characterization techniques of MQDs shown in Fig. 13.

4.1  Morphology Characterization

Compared to their 2D counterparts, the obvious difference of 
MQDs lies at a series of changes in physicochemical prop-
erties due to the small-size effect [85, 202]. At present, the 
size of the reported MQDs is usually less than 10 nm. The 
morphology of MQDs is generally spherical. Since the spa-
tial resolution of SEM usually insufficient to characterize the 
morphology. Therefore, TEM and atomic force microscopy 
(AFM) spectroscopy are often used to analyze the morphol-
ogy of MQDs. They provide lateral size and height profile 
information, respectively. TEM images of  Ti3C2 MQDs, 
TiCN MQDs,  Nb2C MQDs and  Ti2N MQDs show a size 
range of 4.2 ± 0.6, 2.7 ± 0.2, 1.6–4.0, and 4.83 ± 2.69 nm [87, 
89, 203]. Yu et al. prepared  Ti3C2 MQDs by using bath and 
probe sonication method [110]. TEM image shows the dot-
like uniform distribution of  Ti3C2 MQDs, with the average 
size of 4.9 ± 1.6 nm (Fig. 14a-b). HRTEM image can display 

Fig. 12  Schematic and morphological and structure characterizations of MXene-derived inorganic QDs. a Schematic of synthesis for 
 TiO2/C-QDs; b TEM image of  TiO2/C-QDs, the inset illustration is size distribution of  TiO2/C-QDs; c HRTEM image of  TiO2/C-QDs; d UV–
Vis adsorption spectra of  TiO2/C-QDs [88]. Copyright @2020, The Royal Society of Chemistry. e Illustration of preparation of oxygen-vacancy-
rich  TinO2n−1 QDs @PCN; f-g TEM image of OV–Tn QDs @PCN at different magnification; h-i HRTEM image of  TinO2n−1 QDs @PCN with 
different number of oxygen vacancies [90]. Copyright @2021, Wiley–VCH. j Schematic illustration of the preparation of graphene quantum dots 
(GQDs); k TEM image of GQDs, and the inset illustration is size distribution of GQDs [195]. Copyright @2020, Elsevier
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the lattice fringes with an inner plane spacing of 0.21 nm 
(Fig. 14c), and such clearly visible lattice fringes represent a 
good crystallinity of MQDs [109]. AFM image indicates that 
the thickness was 1.2 ± 0.3 nm (Fig. 14d-f). The size distri-
bution combined with AFM image confirms their spherical 
structure. Furthermore, some reports show that the lateral 
size of MQDs exceeds 10 nm, related to the synthesis meth-
ods, the molecular weight cut-off of the dialysis bag, and the 
centrifugation speed.

Currently, the aberration-corrected scanning transmis-
sion electron microscopy (STEM) (AC-STEM) has been 
used to identify the single atom, defects such as vacancies, 
atomic doping, and lattice distortions based on the super-
resolution in both space and energy space [206, 207]. For 
example, the atomically dispersed Ni was introduced into 
the cadmium–zinc sulfide QDs (ZCS QDs). AC-STEM 

can clearly distinguish the real position of atoms, and the 
corresponding fast Fourier transform (FFT) pattern further 
proves the favorable (111) plane of Ni atoms dispersion 
[174]. Analogously, the coordination of single Co with S 
edge and strain from lattice mismatch induced the phase 
transition from 2H-MoS2 to 1T-MoS2. Such atomically 
visualizing technique directly show the different phase 
coordination environment and the presence of Co atoms 
at the 5 Å scale [208]. Currently, such spectroscopy and 
imaging technique has not been used to characterize 0D 
MQDs due to the limited development of MQDs. It is 
expected to be applied to the MQDs and MQDs-based 
nanocomposites in the future. However, it is noted that the 
highly electron irradiation will result in knock-on effect, 
as well as other electron-beam damages and changes [206, 
209].

Fig. 13  Characterization techniques of MQDs
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4.2  Structure and Composition Identification

Identifying the composition and structure of matter through 
specific characterization techniques is essential for the devel-
opment of materials science. XRD is basic characterization 
of phase composition and structure. However, XRD shows 
different peak shapes due to the high surface energy-induced 
aggregates [210, 211]. For example, Fig. 14g-i mainly shows 

three XRD patterns of  Ti3C2 MQDs and  Nb2C MQDs. Com-
pared to 2D  Ti3C2 MXene, the (002) lattice spacing was 
further expanded due to the intercalation of TMA ions dur-
ing preparation. However, the reduced intensities of ((10 l)), 
(004), and (110) diffraction peaks indicate a good dispersion 
of the  Ti3C2 MQDs [204]. Besides, Lu et al. prepared  Ti3C2 
MQDs by hydrolyzing method; compared to the bulk  Ti3C2, 
the weaker peak intensity and broad width of MQDs indicate 

Fig. 14  Morphology and structure characterization of MQDs. a TEM image of  Ti3C2 MQDs; b Size distribution of  Ti3C2 MQDs; c HRTEM 
image of  Ti3C2 MQDs, the inset illustration is corresponded Fourier transform; d AFM image of  Ti3C2 MQDs; e The height distribution 
based on AFM; f Height profiles of  Ti3C2 MQDs along d image [110]. Copyright @2017, The Royal Society of Chemistry. g XRD patterns of 
 Ti3AlC2,  Ti3C2 MXene, and  Ti3C2 MQDs [204]. Copyright @2019, The Royal Society of Chemistry. h XRD patterns of bulk  Ti3C2 MXene, 
 Ti3C2 nanosheet, and  Ti3C2 MQDs [59]. Copyright @2019, WILEY–VCH. i XRD patterns of  Nb2AlC and  Nb2C MQDs [205]. Copyright 
@2020, Elsevier
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the grain refinement [59]. More importantly, in 2020, the 
 Nb2C MQDs were prepared by high-intensity ultrasonica-
tion strategy. Under the dual action of mechanical force 
and intercalation solvent, the strong layering effect leads to 
much smaller-sized MQDs without any obvious peaks and 
only showing the broad spreading, indicating the layered 
structure was completely broken down [205]. Therefore, the 
above results show that the peak intensity and peak width 
are closely correlated to the layer number and the lateral size 
and crystallinity of MQDs, which is across-validated with 
their TEM and AFM results.

The unique surface chemical of MQDs can be detected 
by X-ray photoelectron spectroscopy (XPS) [52, 212] and 
Fourier transform infrared spectroscopy (FTIR) [213, 214]. 
They provide the surface composition, valence state, and 
functional groups information, respectively. As shown in 
Fig. 15a, the survey XPS spectrum of  Ti3C2Tx MQDs pro-
vides all the composition elements of Ti 2p (457 eV), C 
1s (285 eV), O 1s (529 eV), and F 1s (684 eV) [215]. The 
detailed element valance state and coordination conditions 
can be identified by deconvolution of the constituent ele-
ment in high-resolution XPS spectra. For example, fitting 

the high-resolution spectrum of Ti2p by using the multi-
peak Gaussian method (Fig. 15b), the binding energy peaks 
of 457.38, 463.18, 455.68, 461.88, and 469.98 eV can be 
attributed to the bond of Ti–O, Ti-C, C-Ti–O, and Ti-F, 
respectively [204]. According to previous report, the Ti–O 
comes from surface oxidation, i.e., tetravalent. Whereas the 
C-Ti–O, C-Ti–OH, Ti-F belong to bivalent (II) and trivalent 
(III). In addition, the high-resolution spectrum of each ele-
ment was fitted by using the multi-peak Gaussian method. 
The element proportion on the surface of MQDs and the 
percentage of bonding were qualitatively determined accord-
ing to the peak area and element sensitivity.

FTIR is another important characterization techniques 
of functional groups. The surface of MQDs has oxygen-
containing groups due to that the synthesis is mostly solu-
tion-oriented method. For example, the vibration peak of 
–OH group at 3410   cm−1 and 1488   cm−1, is attributed 
to different vibration modes. Furthermore, the –F group 
has two different vibrations forms, Ti-F (830  cm−1) and 
C-F (1013  cm−1). The adsorption peaks of other groups 
such as Ti–O, Ti-C, C–C, and C = O at 701, 463, 917, and 
1650  cm−1 (Fig. 15c) [215]. It is noted that the signal C-F 

Fig. 15  Composition and optical spectral characterization of MQDs. a XPS survey spectra of  Ti3C2 MQDs; b High-resolution spectra of Ti 
2p [204]. Copyright @2019, The Royal Society of Chemistry. c FTIR spectra of  Ti3C2 MQDs [215]. Copyright @2018, The Royal Society of 
Chemistry. d Raman spectra of  Ti3C2(OH)2 MQDs [70]. Copyright @2020, WILEY–VCH. e UV–Vis adsorption, PL, and PLE spectra of  Ti3C2 
MQDs; f PL spectra at different excitation wavenumbers [58]. Copyright @2017, WILEY–VCH
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and C = O originates from the breaking of the Ti-C bond 
during the MXene etching process, contributing to expose 
the inner carbon and adsorb the groups in solution [70].

Raman spectrum is also used to characterize the com-
position, layers, and defect intensity of QDs. For example, 
the 2D graphene-derived GQDs, the layers of GQDs can 
be judged by using characteristic G peak, the intensity, and 
shape of characteristic G´ peak, and the defect density of 
characteristic GQDs can be judged by the ratio of the D 
peak (1350  cm−1) to G peak (1580  cm−1) [176]. However, 
the present Raman characterization of MQDs elucidates 
the composition, while the defect states and amounts of 
layers remain to be further explained due to the uncer-
tainty or the possibility of carbon exposure in the inner 
layer during the synthesis. Compared to 2D  Ti3C2 MXene, 
the characteristic Raman bands of 147  cm−1, 260, 412, 
609  cm−1 correspond to Ti–O and Ti-C (Fig. 15d) [54, 
190, 216]. Furthermore, the D and G band comes from the 
exposure of inner C.

Apart from the above characterization techniques 
about structure and composition, other characterization of 
MQDs such as AC-STEM, X-ray synchrotron (XAS) [174, 
217–219]. The synchrotron radiation provides a detailed 
ingredient analysis, including local coordination environ-
ments, valance states, and coordination number. Further-
more, the soft X-ray emission spectroscopy (SXES) based 
on electron microscopy can be applied to investigate the 
chemical bonding state of MQDs, especially in the form of 
nanocomposites based on the MQDs [220–222]. Besides, 
constructing in situ electrochemical reaction based on the 
synchrotron radiation means to monitor the dynamic changes 
of various substances in the catalytic reaction process. As a 
result, it reveals the catalytic reaction mechanism at the sur-
face interface, which will help to promote the development 
of 0D MQDs in the field of catalysis.

4.3  Optical Characterization

Like other organic or inorganic QDs, optical spectroscopy 
characterization of MQDs is obviously strong evidence for 
the information of MQDs. Photoluminescence spectrum 
(PL), photoluminescence excitation spectrum (PLE), elec-
trochemiluminescence (ECL), and UV–Vis spectra can be 

used to characterize the luminous behavior of the MQDs 
[89, 223]. For example, the UV–Vis adsorption spectrum of 
 Ti3C2 MQDs shows the adsorption at 320 nm, correspond-
ing to two luminescence peaks of 250 and 320 nm in the 
PLE spectrum (Fig. 15e). Such UV–Vis spectra represent 
the different electronic transition (σ → σ*, n → σ*, π → π*) 
of groups. Furthermore, according to the PL spectrum at 
different excitation wavelengths (340–440 nm), the strong 
excitation-dependent PL behavior is correlated to the size 
effect (Fig. 15f) [58]. More importantly, the PL proper-
ties of MQDs is important for improving photocatalytic 
performance. It determines the light absorption range of 
the photocatalyst from ultraviolet to near-infrared (NIR) 
regions, affecting the amount of photogenerated carriers. 
Such PL properties are related to size, surface composition, 
and the pH of solution of MQDs [224].  Ti3C2 MQDs show 
white light, blue light in dimethyl sulfoxide (DMSO), N, 
N-Dimethylformamide (DMF), and ethanol, respectively, 
under the excitation wavelength of 365 nm [96]. Further-
more, other optical behavior should be concerned, which 
facilitate to understand the fluorescence mechanism of 
MQDs, and has great significance for promoting the devel-
opment of MQDs and application in the fields of bioimag-
ing [23, 129, 205], fluorescent probes [149, 153, 225], and 
optical devices [96, 108, 109].

In addition, the optical properties can also be further 
proved by using theoretical simulation. The size effect of 
MQDs enables the bandgap control, while the introduction 
of gap states after the surface modified by single/dual atom 
(N, P, S, etc.) can improve the free carrier lifetimes and pro-
mote charge separation (Fig. 16a-b) [147]. Also, the density 
of states (DOS) demonstrates that the N defect increased the 
energy gap and work function of MQDs, contributing to fast 
electron migration (Fig. 16c-e). Simultaneously, the fron-
tier orbitals are simulated by using DFT in the dual atoms 
modified MQDs (Fig. 16f-g) [86]. Compared to the pristine 
 Nb2CO2 MQDs, the weak electrons exchange interaction 
between Highest Occupied Molecular Orbital (HOMO) 
and Lowest Unoccupied Molecular Orbital (LUMO) of 
S, N-Nb2CO2 MQDs contributes to small △E, leading 
to enhance the emission of PL and improve the PLQY of 
MQDs. Such the combination of experiments and simula-
tion enables clarification of the fluorescence mechanism, and 
further designing highly efficient photocatalyst.
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5  Catalytic Applications

MQDs have been wildly applied to catalysis due to their 
unique physicochemical properties, especially quantum 
confinement effect. The way of catalysis can be classified 
into electrocatalysis, photocatalysis, and photoelectrochemi-
cal application. Currently, the application of MQDs mainly 
focused on photocatalysis due to their larger surface areas, 
tunable bandgap, and composition. The detailed application 
is summarized in Fig. 17a, including  H2 production, oxygen 
reduction reaction (ORR), pollutant degradation,  CO2 reduc-
tion,  NH3 production, and  H2O2 production.

5.1  Electrocatalysis

2D MXenes have been used to the field of electrochemical 
energy conversion, including hydrogen evolution reaction 
(HER) [10, 103], oxygen evolution reaction (OER) [226, 
227], and nitrogen reduction reaction (NRR) [228, 229] 
due to their highly tunable metal composition and surface 
functional groups, large specific surface area, good hydro-
philicity, and excellent electrical conductivity. However, 
2D MXene-derived MQDs are less reported in the field of 
electrocatalysis. Reducing the size of MXene to less than 
10 nm is beneficial to increase abundant edge sites, decrease 

Fig. 16  a-b Simulation diagram of energy levels and charge transfer processes in the MQDs and N-MQDs; c-d DOS calculation of MQDs and 
N-MQDs; e Work function of MQDs and N-MQDs [147]. Copyright @2018, The Royal Society of Chemistry. f-g DFT calculation of total and 
projected DOS of  Nb2CO2 QDs and S, N-doped  Nb2CO2 QDs [86]. Copyright @2020, The Royal Society of Chemistry
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electron diffusion length, expecting to become the high-per-
formance electrocatalyst candidates.

5.1.1  Electrocatalytic Ammonia Synthesis

Ammonia, as an important chemical raw material, plays 
an indispensable role in the development of agriculture, 
industry and energy storage [230, 231]. The traditional 
route of  NH3 production is Haber–Bosch process, but the 
conditions of high temperature and pressure increases the 
operating cost. Over the few years, electrocatalytic NRR 
has attracted attention due to the mild reaction conditions 
and abundant resources. However, the strong and stable 
N≡N bond, the sluggish adsorption of  N2 and competi-
tive HER side reaction lead to low NRR selectivity and 
ammonia production rate.

5.1.1.1 The –OH Functional Groups of MQDs as Active 
Sites MQDs as an emerging 0D nanomaterials, regarded 
as a promising NRR electrocatalyst due to their excellent 
conductivity, abundant surface catalytic active sites, and 
surface defects. For example, the  Ti3C2OH MQDs were first 
prepared by agitate-assisting for NRR catalysts. Figure 17b 
shows the reason why  Ti3C2OH acts as electrocatalyst for 
NRR with excellent performance: i)  N2 molecules adsorb 
at the edge of Ti with positive charge, which accelerates the 
N≡N bond length from 1.10 to 1.16 Å and activates nitrogen 
molecules; ii) Compared to both  Ti3C2F2 and  Ti3C2, there 
occur no side reactions of HER when  Ti3C2OH as catalyst 
to promote NRR, due to the free energy of the rate limiting 
step is 0.4 eV (the value of HER on the Ti edge of  Ti3C2OH 
is 0.79 eV) [70]. Therefore, the  Ti3C2OH MQDs with abun-
dant Ti edge and –OH functional groups were prepared. 
Experiment result shows that the  Ti3C2OH MQDs provides 
62.94 µg  h−1  mg−1

cat at − 0.50 V. Compared to 2D MXenes, 
it shows excellent NRR activity due to the offered more 

Fig. 17  Electrocatalytic performance of MQDs. a Number of journal publications on different catalytic aspects (Source: Web of Science). b 
Reaction mechanism of electrocatalytic  N2 reduction and free energy calculation on the Ti edge of  Ti3C2,  Ti3C2F,  Ti3C2OH MXene from the 
adsorption of  N2 to the reduction of  NH3; c The average  NH3 yield and faradaic efficiency of  Ti3C2OH MQDs at different applied voltages [70]. 
Copyright @2020, WILEY–VCH. d Charge density difference of  Ti3C2 MQDs/Cu; e The  NH3 yield of Cu, MQDs, MQDs/Cu at applied voltage 
of -0.5 V, inset diagram is chronoamperometry test [79]. Copyright @2022, Zhengzhou University and Wiley
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active sites, highlighting the unique advantages of size and 
surface functional groups of MQDs (Fig. 17c).

5.1.1.2 The Interface Design of  MQDs‑Based Compos‑
ites Apart from the surface terminal effect on the adsorp-
tion capability of  N2, the interface engineering is of great 
significance for promoting the adsorption and activation of 
 N2. Moreover, the synergistic catalysis has greater competi-
tive merit compared with pure catalyst, such as enhanced 
conductivity and hydrophilicity. Consequently, it farcicali-
ties improving the internal electron transport of catalyst or 
the catalyst-electrolyte interface, thereof further enhancing 
the catalytic activity, especially in semiconductor cata-
lyst. Therefore, the porous Cu nanosheets with high con-
ductivity were used as support to load  Ti3C2 MQDs for 
NRR, which were synthesized by chemical reduction. The 
electron coupling of MQDs-Cu promotes the electrons of 
MQDs are enriched in the interface (Fig. 17d) contributing 
to the improvement of electron conductivity [79]. The result 
shows that  Ti3C2 MQDs/Cu provides 78.5  µg   h−1   mg−1

cat 
at − 0.50  V, better than the pure MQDs, Cu, and other 
reported analogues (Fig. 17e). The result is superior to the 
NRR activity of 2D  Ti3C2 nanosheet (4.7  µg   h−1   mg−1

cat 
at − 0.20 V) under same condition [232].

5.1.2  Electrocatalytic Water Splitting

HER and NRR are a pair of competing reactions. The –OH 
functional groups offer favorable free energy with NRR 
for facilitating the cleavage of N≡N bonds, whereas the 
2D  Ti3C2 MXene with –O group has been demonstrated to 
be HER active sites with the minimum Gibbs free energy 
(△GH*). Demonstrably, to reduce the size of MXenes to less 
than 10 nm and thereof increase the contact areas between 
the surface of MQDs and react environment, enable high-
lighting the unique surface properties. As a result, it will 
contribute to promote more active sites to participate in the 
reaction.

The surface –O groups of MQDs as active sites: The 
support should be introduced into the MQDs based on 
the high surface energy. For instance, the  Ti2CTx MQDs/
Cu2O/Cu foam nanocomposite was prepared by self-
assembly method (Fig. 18a), and the  Ti2CTx MQDs with 
–Cl, –O, and –OH afford a spontaneous substantial pro-
cess from –Cl groups to –O groups during HER [164]. 
The increase in oxygen-containing groups of active sites, 
the conductivity of the Cu-based support, as well as  Cu2O 

nanoparticles as bridges providing the stability, contribute 
to the derived more excellent HER performance compared 
with 2D MXenes (Fig. 18b), attributed to the unique merit 
of MQDs. However, for the △GH* of O-terminated MQDs 
there is still a distance away from the theoretical value. 
Thus, some means such as the modification of transition 
metal atoms at the O sites enable weakening the binding 
energy of O–H bonding.

5.1.3  Electrocatalytic OER, ORR, and MOR

5.1.3.1 MQDs as  Electronic Conductor The MQDs also 
acting as co-catalyst to promote the ORR and methanol 
oxidation reaction (MOR) are of great significance for 
improving the commercial application of methanol fuel 
cells (DMFCs). However, there is only one report on the 
application MQDs in ORR and MOR. The internal electron 
transmission of electrocatalyst is enhanced due to the excel-
lent electronic conductivity of MQDs. So, the  MoS2QDs @
Ti3C2TxQDs@MWCNTs nanocomposites show excellent 
electrochemical performance due to the largest embedded 
area (Fig. 18c-d) [66]. Therefore, MQDs can be as electrons 
conductor to promote electrocatalytic reaction.

5.1.3.2 The Defect of MQDs as Active Sites The presence 
of surface defects can promote local charge distribution of 
active sites, control intermediate adsorption behavior. So, it 
leads to reducing the redox energy barriers during  Li2O2 for-
mation and decomposition, achieving enhanced electrocata-
lytic kinetics. Wang et al. [137] prepared  Ti3C2 MXene quan-
tum dot clusters  (Ti3C2 QDC) with rich grain boundaries and 
edge defects through hydrothermal thermal-shearing reaction 
method. The defects were firstly characterized by using AC-
STEM. Compared to perfect crystal of 2D MXene (Fig. 18e), 
the MQDs with defects show considerable grain boundary and 
unsaturated edge sites (Fig. 18f). Thus, MQDs exhibit better 
Li-O2 catalytic activity with high capacity and cycling stabil-
ity compared with 2D MXene (Fig. 18g-h). Such atomic-scale 
clarification of the catalytic reaction mechanism with multi-
ple defect-dominated MQDs provides a strategy for designing 
highly active catalysts.

5.2  Photocatalysis

Photocatalysis is a redox reaction based on the photocata-
lyst surface under visible light, which has been regarded as 
one of the potential green technologies to solve the prob-
lems of energy shortage and environmental problems [233]. 



 Nano-Micro Lett.          (2022) 14:158   158  Page 28 of 47

https://doi.org/10.1007/s40820-022-00908-3© The authors

Broadening the spectral response range, increasing the car-
rier concentration, and reducing the recombination of pho-
togenerated carriers are the keys to design efficient and stable 
photocatalysts [234]. MQDs have been considered as ideal 
co-catalysts due to their excellent conductivity, large surface 
areas, tunable bandgap, and strong quantum conferment effect, 
which has been successfully applied to photocatalytic hydro-
gen production, pollutant degradation (e.g., NO, heavy metal), 
 CO2 reduction,  NH3 production, and  H2O2 production.

5.2.1  Photocatalytic Water Splitting

Hydrogen  (H2) has been considered as one of the ideal 
fuel due to low densities, high calorific value, abundant 
raw materials, and non-polluting combustion products 
[235, 236]. The light-driven water splitting to obtain  H2 
is a promising conversion technology [237]. Over the past 
few years, transition metal oxides, transition chalcoge-
nides, and organic semiconductors have been developed 

Fig. 18  a Synthesis of  Ti2CTx MQDs/Cu2O/Cu foam nanocomposite (top), the evolution process of functional groups and Soft X-ray emis-
sion spectrum (SXES) image; b The LSV image [164]. Copyright @2022, Zhengzhou University and Wiley. c TEM image of  MoS2QDs @
Ti3C2TxQDs@MWCNTs and d ORR performance of sample [66]. Copyright @2019, Elsevier. e AC-STEM image of  Ti3C2 nanosheet; f AC-
STEM of  Ti3C2 MQDs; g Initial deep discharge–charge curves of the three samples at 200 mA  g−1; h Cycling stability and terminal discharge–
charge voltages of  Ti3C2 QDC/N–C electrode at 200 mA  g−1 [137]. Copyright @2021, Wiley–VCH
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for photocatalytic hydrogen production due to their suitable 
energy band structures. The high-performance photocata-
lysts need to meet the following conditions: (i) the semi-
conductor possesses broad light adsorption range to gener-
ate more photogenerated carriers; (ii) the adequate energy 
band structure meets the thermodynamic requirements of 
water splitting; (iii) photogenerated electron and holes can 
be effectively separated. Therefore, designing the structure 
of semiconductors is of great significance for realizing an 
efficient photocatalytic water splitting reaction.

5.2.1.1 MQDs as  Photoelectrons Acceptor Compared to 
the traditional  TiO2 photocatalyst, the layered g-C3N4 pos-
sesses narrow band gap (2.7 eV) and visible light activity, 
whereas low light response ranges from 450 to 460 nm, and 
high electron–hole pairs recombination rate results in poor 
photocatalyst performance [238]. Thus, the  Ti3C2 QDs with 
excellent conductivity were co-catalyst to improve it [160]. 
As shown in Fig. 19a, the conduction band of MQDs with 
abundant catalytic active sites is more positive than that 
of g-C3N4, which can capture electrons to facilitate sur-
face redox reactions [160]. Such behavior of low recom-
bination capability of photogenerated electron-holes pairs 

Fig. 19  Photocatalytic water splitting performances of MQDs-based heterostructure. a Schematic react mechanism of g-C3N4@Ti3C2 QD; b 
Steady photoluminescence spectra of g-C3N4, MQDs@g-C3N4; c Time-resolved fluorescence decay spectra under the 325 nm excitation wave-
length; d The transient photocurrent response; e Photocatalytic HER rate plot of catalyst [160]. Copyright @2019, American Chemical Society. f 
Schematic photocatalytic mechanism of BV@ZIS/TC QDs; g UV–visible diffuse reflectance spectra of BV@ZIS/TC QDs and control sample; h 
Photocatalytic gas production of BV@ZIS/TC QDs and control sample [68]. Copyright @2020, Elsevier



 Nano-Micro Lett.          (2022) 14:158   158  Page 30 of 47

https://doi.org/10.1007/s40820-022-00908-3© The authors

induced a low PL intensity. The time-resolved fluorescence 
decay spectra show that lifetime of carriers increased to 
10.1242  μs, further demonstrating the result (Fig.  19b-c). 
As a result, the photocurrent intensity of  Ti3C2 QDs/g-C3N4 
is higher than 2D g-C3N4 nanosheets (Fig.  19d). There-
fore, MQDs as electron acceptors to capture quickly the 
photogenerated electrons, facilitating the efficient carrier 
transfer. Finally, the  H2 production rate of  Ti3C2 QDs/g-
C3N4 (5111.8  μmol   g−1   h−1) is far higher than g-C3N4 
(196.8 μmol  g−1  h−1), Pt/g-C3N4 (1896.4 μmol  g−1  h−1) and 
2D MXene/g-C3N4 (524.3 μmol  g−1  h−1) at the same condi-
tions (Fig. 19e), highlighting the merit of MQDs.

5.2.1.2 Designing the  Z‑scheme structure of  MQDs‑ 
based photocatalyst For designing favorable energy 
band structure, the instruction of Schottky junction to 
increase the extraction of photoelectrons is an effective 
strategy. The MQDs as co-catalyst to construct Z-scheme 
structure of  BiVO4@ZnIn2S4/Ti3C2 (BV@ZIS/TC QDs) 
[68], forming the Schottky barrier at the interface. As 
described in Fig.  19f, the photogenerated electrons of 
conduction band in BV were injected into the valance 
band of ZIS. Then more abundant photogenerated elec-
trons were injected into the conduction band of MQD, 
achieving an effective carrier separation. The presence 
of MQDs broadens the light response range from visible 
light to near-infrared region, helping to produce more 
photoelectrons, and thereof promoting efficient  H2 and 
 O2 production rates (Fig. 19g-h). Also, the  Ti3C2-QDs/
ZnIn2S4/Ti(IV) heterojunction photocatalyst was pre-
pared for improving hydrogen production performance 
[78].

5.2.2  Photocatalytic CO2 Reduction

The goal of carbon neutrality is an inevitable choice based 
on the high-quality development of China’s economy and 
society. Photocatalytic  CO2 reduction is an efficient tech-
nology to achieve a low carbon economy [239]. Further-
more, methanol, the reduction product of  CO2, can also 
be used as a fuel. It is worth noting that the photocatalytic 
 CO2 reduction activity is related to the light adsorption 
ability, photogenerated carriers’ separation efficiency, and 
the activation ability of photocatalysts for  CO2 molecules 
[240]. Compared to 2D MXene, MQDs offer controllable 
bandgap due to size effect, abundant unsaturated sites to 
adsorb  CO2 molecules, contributing to the selectivity of 
reaction products.

Designing the S-scheme structure of MQDs-based pho-
tocatalyst: The semiconductor  Cu2O has narrow bandgap of 
2.2 eV, and the more negative potential of conduction band 
than reduction potential of  CO2, which is unfavorable photo-
catalytic  CO2 reduction. Therefore, it is important for design-
ing the energy band structure to suppress recombination of 
the carriers to promote effective reaction. In 2019 [67], Zeng 
et al. constructed S-scheme heterojunction by electrostatic 
self-assembly (Fig. 20a). The energy band structure shows 
that the photogenerated electrons of conduction band (CB) 
in  Cu2O transfer into CB of MQDs due to the Fermi level of 
MQDs lower than CB of  Cu2O, avoiding the recombination 
of carriers (Fig. 20b). The MQDs as co-catalyst to increase 
light adsorption capability of  Cu2O nanowires, and reduce 
the charge transfer resistance (Fig. 20c-d). Therefore, com-
pared to the 2D MXene, the  Ti3C2 MQDs/Cu2O/Cu contrib-
utes to high  CH3OH yield (Fig. 20e). Furthermore, since 
designing core–shell MQDs-coupled nanosheet  (TiO2/C3N4) 
with S-scheme heterojunction (Fig. 20f), the formation of 
band edge bending and internal electric field at the inter-
face enables balancing the Fermi level (Fig. 20g). Thus, the 
photoelectrons are accumulated on the conduction band of 
MQDs to achieve an efficient redox reaction for improving 
the selectivity of products (Fig. 20h). Such result shows the 
0D MQDs as electron acceptor to accelerate spatial migra-
tion of electrons compared with 2D MXene, which is an 
effective strategy to control the type and amount of hetero-
interface [159].

5.2.3  Photocatalytic NH3 and H2O2 Production

Compared to the traditional complex Haber–Bosch process, 
photocatalytic  NH3 production is a feasible method due to 
economy, environmentally friendly, and facile conditions 
[241]. There are three conditions to achieve high ammonia 
yield: (i) the weak bond energy of N≡N; (ii) the broad-spec-
trum response range for increasing the concentration of car-
rier; (iii) the efficient carrier separation rate. Among them, 
the recombination of photogenerated carries is a main obsta-
cle to hinder the activation of  N2 molecules. The MQDs 
with quantum confinement effect and good conductivity can 
promote the bandgap control and effective charge transfer.

5.2.3.1 Designing the  Band Structure of  MQDs‑Based 
Photocatalyst The MQDs as co-catalyst of Ni-MOF 
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were anchored on the surface of 2D nanosheets Ni-MOF 
(Fig.  21a) [69]. The energy theory shows the excellent 
energy level matching hinders the recombination of pho-
togenerated carrier under the simulated light irradiation, 
and more photogenerated electrons were accumulated 
on the CB of Ni-MOF (Fig. 21b), Compared to pure Ni-
MOF photocatalyst, the MQDs help to enhance the light 
adsorption ability, increasing the carrier concentration 
(Fig.  21c). Leading to high-yield ammonia production 
(Fig. 21d).

5.2.3.2 Constructing Defects of  MQDs for  Reactant 
Adsorption The defect sites with lower binding energy 
facilitate to promote the adsorption of  N2 molecules. In 

2022, Chang et  al. [76] engineered a photocatalyst with 
Schottky junction and defects. The  Ti3C2 MQDs with 
amount of oxygen vacancies (OV) and  Ti3+ sites were 
anchored on the surface of mesoporous  C3N4 hollow 
nanosphere (Fig. 21e). Such unique design has two advan-
tages: 1) the vacancy defects are beneficial to increase the 
adsorption and activation of  N2 molecules; 2) the quantum 
confinement effect of MQDs promotes the light adsorp-
tion intensity of  C3N4 (Fig.  21f-g), leading to high car-
rier concentration and excellent photocatalytic activity 
(Fig.  21h). This is of great significance for guiding the 
design of MQDs-based photocatalysts. In addition, the 
rich carbon vacancies of MQDs as bridge site induced the 
bonding MQDs with g-C3N4, forming Schottky junction 

Fig. 20  Photocatalytic  CO2 reduction performances of MQDs-based photocatalysts. a TEM image of  Ti3C2 MQDs/Cu2O/Cu; b Photocatalytic 
reaction mechanism of  Ti3C2 MQDs/Cu2O/Cu; c UV–Vis diffuse reflectance spectra (DRS) of samples; d Nyquist plots of samples; e Methanol 
yield of samples [67]. Copyright @2019, WILEY–VCH. f TEM of  TiO2/C3N4 with core–shell; g S-scheme heterojunction before and after con-
tact, and light irradiation; h Schematic diagram of structure of  TiO2/C3N4/Ti3C2 MQDs [159]. Copyright @2020, Elsevier
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at the interface. Thus, it increases the work function of 
energy band, promoting the photoexcited carrier separa-
tion [73]. Such optimized photocatalytic activity of  Ti3C2 
MQDs/g-C3N4 achieves a high yield of 560.7 μmol  L−1  h−1 
(Fig. 21i-k).

5.2.4  Photocatalytic Pollutant Degradation

The introduction of MQDs could improve the photocata-
lytic activity of photocatalysts, which is also reflected in 
the field of wastewater treatment and purification of air 

Fig. 21  Photocatalytic performances of  NH3,  H2O2 production. a SEM image of  Ti3C2 MQDs/Ni-MOF; b Energy band structure of  Ti3C2 
MQDs/Ni-MOF; c UV–Vis diffuse reflectance spectra of  Ti3C2 MQDs, Ni-MOF,  Ti3C2 MQDs/Ni-MOF nanocomposites with different loads of 
MQDs; d The  NH3 yield of  Ti3C2 MQDs/Ni-MOF [69]. Copyright @2020, American Chemical Society. e TEM image of  C3N4/r-Ti3C2 MQDs 
Schematic diagram of photocatalytic  N2 fixation; f Photocurrent test in Ar and  N2 of samples; g UV–Vis DRS spectra of  C3N4,  C3N4/r-Ti3C2 
MQDs; h Photocatalyst  NH3 production rate and side reaction of  H2 production [76]. Copyright @2022, The Royal Society of Chemistry. i 
Transfer of photogenerated electrons and holes near the carbon vacancies of  C3N4 and  C3N4/ r-Ti3C2 MQDs; j The energy band structure of 
 C3N4/ r-Ti3C2 MQDs; k The photocatalytic reaction mechanism diagram of  C3N4/r-Ti3C2 MQDs [73]. Copyright @2021, American Chemical 
Society
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pollutants. In 2021, the  Ti3C2 MQDs acted as co-catalyst 
of  Bi2O3 (BiO/TiC) to boost photocatalytic tetracycline 
(TC) degradation in water [75]. Compared to pure  Bi2O3, 
the MQDs/Bi2O3 nanocomposites show a broad vis-
ible light adsorption due to excellent metal conductivity 
of the MQDs (Fig. 22a). Furthermore, the band gap is 
reduced from 2.91 to 2.71 eV due to the quantum con-
finement effect of the MQDs (Fig. 22b). It is favorable 
to promote the photogenerated carrier separation, and 
the photoexcited electrons were thereof accumulated on 
the CB of MQDs (Fig. 22c). Thus, it leads to excellent 
photocatalytic tetracycline degradation effect (Fig. 22d). 
Compared to pure  Bi2O3 photocatalyst, the MQDs as co-
catalyst shows enhanced degradation efficiency by 5.85 
times, and far surpass precious metal Au, Pt nanoparticles 
co-catalysts (1.75, 2.18 times). Likewise, such strategy 
of introducing of MQDs to balance the interface contact 
energy levels further leads to separation of photogenerated 

electron–hole pairs, which has been used to prepare other 
types of heterostructures to facilitate pollutant degrada-
tion. For example, the  Ti3C2 MQDs have also been used 
as co-catalyst to prepare  Ti3C2 MQDs/SiC nanocomposite 
[71] (Fig. 22e), all-solid-state  WO3/TQDs/In2S3 Z-scheme 
heterostructure [74] and Ni@MQDs [77] nanocomposite 
photocatalyst, achieving the goal of photocatalytic removal 
of NO purification and pollutants in water.

5.3  Photoelectrocatalysis

Compared to photocatalysis and electrocatalysis, photo-
electrocatalysis is a stronger method to promote electro-
chemical reaction, which combines the advantages of both 
the catalysis methods [242]. Currently, MQDs have been 
used to research photoelectrochemical water splitting, and 
the progress was made.

Fig. 22  Photocatalytic pollutant degradation performances of MQDs-based heterojunction. a UV–Vis diffuse reflectance spectra (DRS) of sam-
ples; b Calculation of band gap of  Bi2O3, BiOTIC-75; c Photocatalytic reaction mechanism illustration of BiOTIC-75; d Photocatalytic degrada-
tion of TC by  Bi2O3,  Ti3C2 MQDs/Bi2O3 with different content of MQDs [75]. Copyright @2021, Elsevier. e Energy band structure of MQDs/
SiC, SiC, MQDs [71]. Copyright @2020, American Chemical Society
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5.3.1  MQDs as Photoanode

In 2020, the Janus-structure Co-Ti3C2 MQDs were prepared 
by thermal-cutting method, which was used as photoanode 
for water oxidation [72]. The Co nanoparticles were coupled 
with  Ti3C2 MQDs forms Schottky junctions that increase 
the extraction of photogenerated carriers. Compared to pure 
MQDs, the introduction of Co triggers the concomitant 

surface plasmon effects, thus showing that enhanced light 
adsorption (200–600 nm) and additional adsorption peak 
(380–520 nm) (Fig. 23a), attributed to increase the amount 
of photogenerated carrier. Furthermore, the enhanced 
steady-state PL intensity indicates good carrier migration, 
while MQDs with high loadings as carrier recombination 
center reduces quantum yield, resulting in low PL inten-
sity (Fig. 23b). As shown in Fig. 23c, the time-resolved 

Fig. 23  The photoelectrocatalytic performances of MQDs as co-catalyst. a UV–Vis adsorption spectra of  Ti3C2 MQDs, Co-MQDs with differ-
ent rates of Co/Ti; b Photoelectric conversion efficiency of  Ti3C2 MQDs, Co-MQDs with different rates of Co/Ti; c Time-resolved photolumi-
nescence (TRPL) spectra; d Photoelectrocatalytic water splitting mechanism under light irradiation; e Photocurrent test of  Ti3C2 MQDs, Co-
MQDs with different rates of Co/Ti [72]. Copyright @2020, WILEY–VCH. f Schematic illustration of the charge transfer process for NiFeOOH/
MoOx/MQD/BiVO4 photoanodes; g Photoelectrochemical water splitting device [161]. Copyright @2022, Wiley–VCH
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photoluminescence (TRPL) spectra show that Co coupled 
with MQDs can increase the average carrier lifetime, indi-
cating low carrier recombination rates, which is consistent 
with PL spectra result. Such Schottky hierarchical struc-
ture contributes to promote photogenerated electrons were 
extracted from the CB of Co to the CB of MQDs, promot-
ing high photoelectrochemical water oxidation performance 
(Fig. 23d-e).

5.3.2  MQDs as Hole Transfer Layers

The stability and charge separation of photoanode is impor-
tant for improving photoelectrochemical (PEC) water 
oxidation activity. The MQDs can be used as co-catalyst 
to construct the hole transfer layers of MoOx/MQDs for 
delaying carrier recombination (Fig. 23f), enhancing the 
light response range, leading to high activity and stability 
of PEC reaction (Fig. 23g) [161]. Such strategy broads the 
high-performance full-spectrum photoelectrochemical water 
splitting [157].

6  Summary and Perspectives

Since in 2017, 2D MXene-derived 0D MQDs have made 
great progress in proceeding into a variety of catalysis 
due to their improved and optimal physicochemical prop-
erties. Research has shown that the surface metal ions, 
functional groups, and abundant edge sites of MQDs can 
act as active sites to adsorb and activate the gas molecules, 
and the MQDs are also treated as co-catalyst to promote 
an efficient charge separation and enhance charge transfer 
kinetics. Consequently, it reveals that MQDs have promis-
ing potential in the field of catalysis. However, there are 
some problems upon MQDs remain to be resolved, such as 
low yield, easy aggregation, poor stability in preparation, 
and difficulty to precisely control the surface chemistry. 
Such disadvantages are not beneficial to the comprehen-
sive development of MQDs in the field of catalysis.

In this review, we update the recent research progress in 
catalysis, including the research status, involved with the syn-
thesis of pure MQDs and functional MQDs, and relevant char-
acterization techniques, in order to design high-performance 
MQDs-based catalysts. Meanwhile, the challenges must be 
confronted on the basis of synthesis, formation mechanism, 

wide application, surface defects, and advanced characteriza-
tion techniques of MQDs.

6.1  Synthesis Condition and Formation Mechanism 
of MQDs

Currently, the synthesis methods of MQDs are based on 
single-layer or multilayer MXene nanosheets as precursors, 
and MXene was prepared by F-containing etchant (e.g., HF, 
LiF + HCl). Many studies show that F terminal is unfavorable 
to electrochemical reaction process. Therefore, the prepara-
tion of F-free MQDs should be fully considered. Furthermore, 
since most of MQDs was prepared by hydrothermal strategy, 
the surface suffers from an easy oxidation in this process. So, 
it results in the difficulty to obtain high-purity MQDs. For 
such the irregularity of synthesis method, and the influence of 
impurities in the product, the formation mechanism of MQDs 
is not well clarified; it poses a challenge to precisely control 
the growth of MQDs. Also, for preparing high-quality MQDs 
(the desired structure, shape, size, distribution of functional 
groups, and types of surface defects), it is necessary to sys-
tematically study the composition of MQDs and various reac-
tion conditions (solvent, temperature, reaction time, power, 
and pH) effect on the performance of MQDs. Moreover, the 
introduction of in situ characterization techniques can contrib-
ute to elucidate the formation mechanism and nanostructure.

Furthermore, Bottom-up method has been used to synthe-
size other QDs due to the advantages of adjustable surface 
chemistry, morphology and size, and the precise controlling 
of synthesis conditions. Thus, such method can be considered 
for synthesizing MQDs with excellent crystallinity, monodis-
perses, and stability.

6.2  Synthesis of Novel MQDs

There are many kinds of MXenes reported so far experi-
mentally and in theoretical prediction, while the application 
focuses mainly on  Ti3C2 MQDs. The structure and proper-
ties of MQDs are correlated with the type, quantity, and 
arrangement of metallic elements, which affect the energy 
band structure. Therefore, exploring the performance of dif-
ferent types of MQDs in catalysis not only is beneficial to 
building the relationship between the composition, structure, 
and properties of MQDs, but also to searching for low-cost, 
high-activity, and high-stability catalysts.
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6.3  Role of MQDs in Electrochemical Reaction

Like other inorganic and organic QDs, MQDs tend to 
agglomerate due to surface effects during catalytic reactions. 
The choices of the support, and the study of the interac-
tion between MQDs and the support, especially the chemi-
cal properties at the interface are of great significance for 
improving the electrochemical performance. Furthermore, 
apart from the performance of MQDs as catalysts, MQDs 
can also be considered as the support of nanomaterials such 
as single atoms and metal nanoparticles, benefited from the 
abundant functional groups on the surface of MQDs that can 
directly serve as anchoring sites, avoiding additional surface 
modification steps such as carbon-based materials.

6.4  Novel Application of MQDs

On the basis of the progresses, the application of MQDs in 
electrocatalysis is undoubtedly in the infancy stage. Espe-
cially, there are still lots of space in the field of HER and 
OER. Currently, some fluorescent QDs such as carbon dots 
(CDs), graphene QDs (GQDs), carbon QDs (CQDs) have 
been used to apply on catalysis. Their synthetic methods, 
surface-modified strategies, the roles recognition of cata-
lytic reaction, characteristic techniques, and the explora-
tion of catalytic mechanism have been widely investigated. 
As analogy, compared to carbon-based QDs, MQDs have 
controllable composition, complex internal structure. Thus, 
the exploration of MQDs for catalytic application can learn 
from the research style of carbon-based QDs, however, the 
challenges remain. For further guiding the design of high-
performance catalysts, it is necessary to construct some 
theoretical models to predict the effect of surface state and 
external environment (temperature, pressure, and illumina-
tion) on the catalytic activity.

6.5  Surface Defects of MQDs

Defective sites with low binding energy are commonly 
considered as key sites for catalytic activity. They not only 
act as adsorption sites of reactants, but as the coupling 
site of metal nanoparticles. MXene QDs with surface 
defects can be obtained by atomic doping, electrochemi-
cal reduction, reducing agents, etc. The introduction of 

surface defects facilitates to improve the electronic struc-
ture of the active sites around the MQDs. So, the electron 
transfer process and the adsorption/desorption behavior of 
reactants can be well controlled during the electrocatalytic 
reaction. In addition, when MQDs are used as photocata-
lysts, the controllable size of MQDs enables a unique band 
gap structure, beneficial to photocatalytic, and photoelec-
trocatalytic reactions.

Generally, the photocatalytic reaction performance 
is related to the separation efficiency of photogenerated 
carriers and light absorption range. Constructing surface 
defect is an effective strategy. Furthermore, studies have 
shown that the passivation of surface defects induced by 
amino groups facilitates to improve the PL properties of 
MQDs, resulting in bright blue fluorescence and enhanced 
fluorescence lifetime [140]. The doping includes both 
non-metallic elements such as N, P, and S, and transi-
tion metal elements such as Ni, Co, and Cu. As a result, 
a variety of surface and subsurface defects are produced. 
Controlling the surface oxygen content of MQDs can also 
achieve surface defects, unfortunately yet to be realized. 
The effect of surface defects on the PL properties remains 
to be revealed.

6.6  In Situ Characterization Techniques

The atomic structure of MQDs was observed under ultra-
high-resolution electron microscopy to study the distribu-
tion of defects, the arrangement of atoms, and the special 
sample-supporting mesh was used to visualize the dynamic 
evolution of catalysts, which is something expected. More-
over, the advanced in situ techniques such as Raman, syn-
chrotron radiation, FTIR expect to elucidate the nanostruc-
ture and formation mechanism of MQDs and MQDs-based 
catalyst, and contribute to reveal the structural evolution 
in catalytic process, toward designing high-performance 
MQDs-based catalysts. It is worth noting that the surface 
reconstruction of MQDs-based nanocomposites during 
the electrochemical reaction can be intuitively observed 
by using in situ characterization. It is thereof beneficial 
to clarify the real catalytic active sites, and confirm the 
morphology and structural changes after the reaction. On 
the basis of such foundation, it is expected to construct 
optimized performance catalysts.
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In general, an increasing number of investigations concen-
trate on the synthesis, modification, application of MQDs 
in the past five years. Therefore, our review provides new 
insights into the recognition of MQDs, and illustrates recent 
progress in catalysis. As a result, it will provide guidance 
and reference for the preparation of novel MQDs and the 
design of high-performance MQDs-based catalysts.
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