Supporting Information for

Resolving Mixed Intermediate Phases in Methylammonium-Free Sn-Pb Alloyed Perovskites for High-Performance Solar Cells

Zhanfei Zhang¹, Jianghu Liang¹, Jianli Wang¹, Yiting Zheng¹, Xueyun Wu¹, Congcong Tian¹, Anxin Sun¹, Zhenhua Chen², Chun-Chao Chen^{1, *}

¹School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 20024, P. R. China

²Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China

*Corresponding author. E-mail: <u>c3chen@sjtu.edu.cn</u> (Chun-Chao Chen)

Supplementary Figures

Fig. S1 Efficiencies of previously reported MA-free Pb–Sn alloyed PSCs, plotted with their the band gaps (E_g). All references for this figure are given in **Table S1**

Fig. S2 Photographs of $Cs_{0.25}FA_{0.75}Pb_{0.6}Sn_{0.4}I_3$ perovskite precursor solutions, prepared with or without D-HLH, after exposure to the air for up to 20 min

Fig. S3 (left) Electrostatic potentials and (right) charge distributions of D-HLH, DMF, and DMSO

Fig. S4 J–V curves of PSCs prepared using different concentrations of D-HLH

Fig. S5 Statistics of the values of V_{oc} , J_{sc} , FF, and PCE from 20 devices containing the control and D-HLH–treated perovskites

Fig. S6 Statistics of the values of V_{oc} , J_{sc} , FF, and PCE from 20 tandem devices prepared with D-HLH treatment

Table S1 Performance data	of reported highly efficien	t MA-free Pb–Sn alloyed PSCs
---------------------------	-----------------------------	------------------------------

	Б	• 7	-	FF	DOE		Stability		
Perovskite	Eg (eV)	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)	Thermal (85 °C)	Light (MPP*)	Storage (N ₂)	Refs.
$Cs_{0.25}FA_{0.75}Pb_{0.5}Sn_{0.5}I_{3} \\$	1.24	0.74	26.7	71	14.1	70 h, 40%; 1500 h, 30%	50 min, 90%	_	[S1]
$Cs_{0.2}FA_{0.8}Sn_{0.5}Pb_{0.5}I_3$	1.24	0.77	25.6	69	14.0				
$Cs_{0.15}FA_{0.85}Sn_{0.625}Pb_{0.375}I_3$	1.26	0.76	24.6	70	13.5				
Cs _{0.225} FA _{0.775} Sn _{0.625} Pb _{0.375} I	1.28	0.76	25.6	72	13.6	-	-	-	[S2]
$Cs_{0.2}FA_{0.8}Sn_{0.7}Pb_{0.3}I_3$	1.30	0.76	25.1	76	13.5				
$Cs_{0.3}FA_{0.7}Pb_{0.7}Sn_{0.3}I_3$	1.30	0.77	26.4	71.6	14.6	—	-	-	[S3]
$Cs_{0.25}FA_{0.75}Pb_{0.5}Sn_{0.5}I_{3} \\$	1.25	0.76	27.6	74	15.6	325 h, 82%	30 h, 100%	_	[S4]
$Cs_{0.3}FA_{0.7}Pb_{0.7}Sn_{0.3}I_{3} \\$	1.30	0.74	25.89	81.4	15.6	-	_	288 h, 98.3%	[S5]
$Cs_{0.25}FA_{0.75}Sn_{0.5}Pb_{0.5}I_{3} \\$	1.29	0.72	30.8	74.95	16.6	600 h, 50%	1000 h, 90%	_	[S6]
$Cs_{0.25}FA_{0.75}Sn_{0.5}Pb_{0.5}I_3$	1.27	0.69	31.7	76	16.5	_	_	_	[S7]
$Cs_{0.15}FA_{0.85}Sn_{0.3}Pb_{0.7}I_3$	1.33	0.80	28.7	73.5	17.6				1001
$Cs_{0.15}FA_{0.85}Sn_{0.5}Pb_{0.5}I_3$	1.30	0.76	30.3	78.3	18.1		_	_	[20]
$Cs_{0.25}FA_{0.75}Sn_{0.5}Pb_{0.5}I_{3} \\$	1.25	0.79 8	31.1	78.4	19.1	4000 h, 80%	—	—	[S9]
$Cs_{0.15}FA_{0.85}Sn_{0.5}Pb_{0.5}I_{3} \\$	1.27	0.76	31.3	73	17.4	-	_	300 h, air, 65%	[S10]
$Cs_{0.3}FA_{0.7}Sn_{0.3}Pb_{0.7}I_{3} \\$	1.34	0.78 7	29.1	79.9	18.3	_	750 h, 80%	_	[S11]
$GDR-Pb^0$ (8.5)	1.26	0.84	30.37	72.24	18.34	_	700 h, 80%	2352 h, N ₂ , 81%	[S12]
GDR-Pb ⁰ (18.7)		0.86	31.55	73.64	20.01	_	_	_	
$Cs_{0.2}FA_{0.8}Pb_{0.5}Sn_{0.5}I_3$	1.24	0.86	31.5	77.9	21.10	—	_	_	[S13]

*MPP: continuous operation stability with maximum power point (MPP) tracking under 1-sun illumination.

Elements	Binding Energy (eV)	Sample	Affiliation
Pb	137.98/142.88 ^{a)}	Control	Pb in PbO[S14–S18], Pb ₃ O ₄ [S19, S20], Pb[S20], and PbS[S21]
10	137.78/142.68 ^{a)}	D-HLH	Pb in PbO[S22–S27], and PbS[S21, S22, S28]
	487.28/495.68 ^{b)}	Control	$\begin{array}{l} \textbf{Sn} \text{ in } SnO_2[S29-S31], SnO_{1.65}[S31], SnCl_2[S32],\\ SnF(C_6H_5)_3[S33], Sn(C_6H_5)_2Cl_2[S34],\\ SnCl_4(C_5H_5N)_2[S35], SnCl_3(C_2H_5)(C_5H_5N)_2[S35],\\ and SnCl_3(C_6H_5)(C_5H_5N)_2[S35] \end{array}$
Sn	487.08/495.48 ^{b)}	D-HLH	$\begin{array}{l} \textbf{Sn} \text{ in } SnO[S20, S36], SnF_2[S20, S37], SnO_2[S30, \\ S31, S38-S40], SnO_{1.65}[S31], SnF_2(CH_3)_2[S35], \\ Sn(CH_3)_2SO_4[S35], SnCl(C_6H_5)_3[S20], \\ Sn(C_6H_5)_4[S35], SnCl_2(CH_3)_2(SO(CH_3)_2)_2[S35], \text{ and} \\ Sn(C_6H_5)_3(C_9H_6NO)[S41] \end{array}$

Table S2 Peak parameters and assignments of Pb 4f and Sn 3d XPS signals for perovskites

 prepared with or without additive doping

a) Pb $4f_{7/2}/4f_{5/2}$; b) Sn $3d_{5/2}/3d_{3/2}$

Table S3 Peak parameters and assignments of O 1s XPS signals for perovskites prepared with and without additive doping

	O in inor	ganic mole	cule	O in organic molecule			
Sample	Binding energy	FWHM	Atomic	Binding energy	FWHM	Atomic	
	(eV)	^{c)} (eV)	ratio (%)	(eV)	^{c)} (eV)	ratio (%)	
Control	530.96[S40, S421	1.63	46	532.21[S43, S44]	1.90	54	
D-HLH	542] 530.62[S45, S46]	1.60	27	531.82[S47, S48, S49–S62]	2.19	73	

c) Full width at half maximum.

Table S4 FTIR spectral data for perovskites prepared with and without additive doping

Samula		Wavenumber (cm ⁻¹)	
Sample	N–H str	N–H stretching		
Control	3411	3270	1633	
D-HLH	3401	3231	1607	

Table S5 Photovoltaic parameters of PSCs prepared using different concentrations of D-HLH

D-HLH concentration (mg mL ⁻¹)	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
5	0.81	29.10	69.89	16.47
10	0.88	30.56	80.36	21.61
20	0.72	28.93	64.04	13.34

Table S6 Photovoltaic parameters of champion PSCs prepared with and without D-HLH
--

Device	Scan	$V_{ m oc}\left({ m V} ight)$	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)	Integrated J _{sc} (mA cm ⁻²)
Control	Reverse	0.77	27.26	69.13	14.51	27.12
Control	Forward	0.76	27.41	67.54	14.07	27.12
	Reverse	0.88	30.56	80.36	21.61	20.86
D-HLH	Forward	0.88	30.55	78.26	21.04	29.80

Device	Scan	$V_{\rm oc}\left({ m V} ight)$	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
Front coll	Reverse	1.18	16.21	82.15	15.71
FIOIII CEII	Forward	1.18	16.19	81.61	15.59
Doolt coll	Reverse	0.88	30.56	80.36	21.61
Back cell	Forward	0.88	30.55	78.26	21.04
Tandam D III II	Reverse	2.03	14.42	81.37	23.82
Tandem-D-HLH	Forward	2.03	14.32	81.12	23.58

Table S7 Photovoltaic parameters of champion tandem devices prepared with D-HLH

Table S8 Fitting parameters for TRPL curves of perovskite films

Sample	$ au_{\mathrm{avg}}\left(\mathrm{ns} ight)$	$ au_1$ (ns)	$ au_2$ (ns)	$A_{1}(\%)$	$A_{2}(\%)$
Control	9.14	1.77	13.44	81.58	18.42
D-HLH	28.81	3.39	31.93	53.67	46.33

 $F(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + \gamma_0$

where τ_1 and τ_2 are the fast and slow decay times, respectively, and A_1 and A_2 are coefficients.

Table S9 Related parameters fitted from the equivalent circuit for EIS spectral measurement

Device	$R_{\rm s}(\Omega)$	$R_{ ext{ct}}\left(\Omega ight)$	<i>C</i> (nF)	$R_{ m rec}(\Omega)$	CPE (nF)
Control	60.11	20,210	15	14,560	3970
D-HLH	42.06	3384	7783	19,220	28.21

Supplementary References

- [S1] G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskiteperovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861– 865 (2021). <u>https://doi.org/10.1126/science.aaf9717</u>
- [S2] R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit et al., Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139(32), 11117–11124 (2021). <u>https://doi.org/10.1021/jacs.7b04981</u>
- [S3] Y. Zong, N. Wang, L. Zhang, M.G. Ju, X.C. Zeng et al., Homogenous alloys of formamidinium lead triiodide and cesium tin triiodide for efficient ideal-bandgap perovskite solar cells. Angew. Chem. Int. Ed. 56(41), 12658–12662 (2021). https://doi.org/10.1002/anie.201705965
- [S4] T. Leijtens, R. Prasanna, K.A. Bush, G.E. Eperon, J.A. Raiford et al., Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain. Energy Fuels 2(11), 2450–2459 (2021). <u>https://doi.org/10.1039/C8SE00314A</u>
- [S5] Y. Zong, Z. Zhou, M. Chen, N.P. Padture, Y. Zhou, Lewis-adduct mediated grainboundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Adv. Energy Mater. 8(27), 1800997 (2021). <u>https://doi.org/10.1002/AENM.201800997</u>
- [S6] R. Prasanna, T. Leijtens, S.P. Dunfield, J.A. Raiford, E.J. Wolf et al., Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4(11), 939–947 (2021). <u>https://doi.org/10.1038/s41560-019-0471-6</u>

- [S7] A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019). <u>https://doi.org/10.1016/j.joule.2019.05.009</u>
- [S8] M.T. Klug, R.L. Milot, R.L. Milot, J.B. Patel, T. Green et al., Metal composition influences optoelectronic quality in mixed-metal lead-tin triiodide perovskite solar absorbers. Energy Environ. Sci. 13(6), 1776–1787 (2021). https://doi.org/10.1039/D0EE00132E
- [S9] J. Werner, T. Moot, T.A. Gossett, I.E. Gould, A.F. Palmstrom et al., Improving lowbandgap tin-lead perovskite solar cells via contact engineering and gas quench processing. ACS Energy Lett. 5(4), 1215–1223 (2021). <u>https://doi.org/10.1021/acsenergylett.0c00255</u>
- [S10] H. Liu, J. Sun, H. Hu, Y. Li, B. Hu et al., Antioxidation and energy-level alignment for improving efficiency and stability of hole transport layer-free and methylammonium-free tin-lead perovskite solar cells. ACS Appl. Mater. Interfaces 13(37), 45059–45067 (2021). <u>https://doi.org/10.1021/acsami.1c12180</u>
- [S11] J. Tong, J. Gong, M. Hu, S.K. Yadavalli, Z. Dai et al., High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter 4(4), 1365–1376 (2021). <u>https://doi.org/10.1016/J.MATT.2021.01.003</u>
- [S12] W. Zhang, X. Li, S. Fu, X. Zhao, X. Feng et al., Lead-lean and MA-free perovskite solar cells with an efficiency over 20%. Joule 5, 2904-1914 (2021). <u>https://doi.org/10.1016/j.joule.2021.09.008</u>
- [S13] Z. Yu, X. Chen, S.P. Harvey, Z. Ni, B. Chen et al., Gradient doping in Sn–Pb perovskites by barium ions for efficient single-junction and tandem solar cells. Adv. Mater., (2022). <u>https://doi.org/10.1002/adma.202110351</u>
- [S14] J.M. Baker, R.W. Johnson, R.A. Pollak, Surface analysis of rf plasma oxidized in and PbInAu films using esca. J. Vac. Sci. Technol. 16(5), 1534–1541 (1979). <u>https://doi.org/10.1116/1.570243</u>
- [S15] C. Hinnen, C.N. Huong, P. Marcus, A comparative X-ray photoemission study of $Bi_2Sr_2CaCu_2O_8^{+\delta}$ and $Bi_{1.6}Pb_{0.4}Sr_2CaCu_2O_8^{+\delta'}$. J. Electron Spectros. Relat. Phenomena **73**(3), 293–304 (1995). <u>https://doi.org/10.1016/0368-2048(94)02288-7</u>
- [S16] H. Kanai, M. Yoshiki, M. Hayashi, R. Kuwae, Y. Yamashita, Grain-boundary-phase identification of a lead-based relaxor by X-ray photoelectron spectroscopy. J. Am. Ceram. Soc. 77(8), 2229–2231 (1994). <u>https://doi.org/10.1111/j.1151-2916.1994.tb07128.x</u>
- [S17] G. Gökagaç, B.J. Kennedy, Potential-dependent surface segregation in lead + ruthenium pyrochlore Pb₂Ru₂O_{7-y}. J. Electroanal. Chem. **353**(1–2), 71–80 (1993). <u>https://doi.org/10.1016/0022-0728(93)80287-R</u>
- [S18] P.A. Bertrand, P.D. Fleischauer, X-Ray photoelectron spectroscopy study of the surface adsorption of lead naphthenate. J. Vac. Sci. Technol. 17(6), 1309–1314 (1980). <u>https://doi.org/10.1116/1.570661</u>
- [S19] C. Barriga, S. Maffi, L.P. Bicelli, C. Malitesta, Electrochemical lithiation of Pb₃O₄. J. Power Sources 34(4), 353–367 (1991). <u>https://doi.org/10.1016/0378-7753(91)80101-3</u>
- [S20] W.E. Morgan, J.R.V. Wazer, Binding energy shifts in the X-ray photoelectron spectra of a series of related group IVa compounds. J. Phys. Chem. 77(7), 964–969 (1973). <u>https://doi.org/10.1021/J100626A023</u>

- [S21] A.R.H.F. Ettema, C. Haas, An X-ray photoemission spectroscopy study of interlayer charge transfer in some misfit layer compounds. J. Phys. Condens. Matter 5(23), 3817–3826 (1993). <u>https://doi.org/10.1088/0953-8984/5/23/008</u>
- [S22] D.S. Zingg, D.M. Hercules, D.M. Hercules, Electron spectroscopy for chemical analysis studies of lead sulfide oxidation. J. Phys. Chem. 82(18), 1992–1995 (1978). <u>https://doi.org/10.1021/j100507a008</u>
- [S23] V.I. Nefedov, M.N. Firsov, I.S. Shaplygin, Electronic structures of MRhO₂, MRh₂O₄, RhMO₄ and Rh₂MO₆ on the basis of X-ray spectroscopy and ESCA data. J. Electron Spectros. Relat. Phenomena 26(1), 65–78 (2021). <u>https://doi.org/10.1016/0368-2048(82)87006-0</u>
- [S24] L.R. Pederson, Two-dimensional chemical-state plot for lead using XPS. J. Electron Spectros. Relat. Phenomena 28(2), 203–209 (2021). <u>https://doi.org/10.1016/0368-2048(82)85043-3</u>
- [S25] J.A. Taylor, D.L. Perry, An X-ray photoelectron and electron energy loss study of the oxidation of lead. J. Vac. Sci. Technol. A 2(2), 771–774 (2021). <u>https://doi.org/10.1116/1.572569</u>
- [S26] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation, (1992).
- [S27] O. Sakurada, M. Taga, H. Takahashi, X-ray photoelectron spectroscopic study of the stabilization of lead with a palladium modifier in graphite furnace aas. Bunseki Kagaku 38(9), 407–412(2021). <u>https://doi.org/10.2116/bunsekikagaku.38.9_407</u>
- [S28] K. Laajalehto, I. Kartio, P. Nowak, XPS study of clean metal sulfide surfaces. Appl. Surf. Sci. 81(1), 11–15 (1994). <u>https://doi.org/10.1016/0169-4332(94)90080-9</u>
- [S29] Ş. Süzer, T. Voscoboinikov, K.R. Hallam, G.C. Allen, Electron spectroscopic investigation of Sn coatings on glasses. Fresenius J. Anal. Chem. 355(5), 654–656 (1996). <u>https://doi.org/10.1007/S0021663550654</u>
- [S30] M.A. Stranick, A. Moskwa, SnO₂ by XPS. Surf. Sci. Spectra **2**(1), 50–54 (1993). https://doi.org/10.1116/1.1247724
- [S31] W. Choi, H. Jung, S. Koh, Chemical shifts and optical properties of tin oxide films grown by a reactive ion assisted deposition. J. Vac. Sci. Technol. 14(2), 359–366 (1996). <u>https://doi.org/10.1116/1.579901</u>
- [S32] G.T. Baronetti, S.R. Miguel, O.A. Scelza, A.A. Castro, State of metallic phase in PtSn/Al₂O₃ catalysts prepared by different deposition techniques. Appl. Catal. 24(1– 2), 109–116 (1986). <u>https://doi.org/10.1016/S0166-9834(00)81261-0</u>
- [S33] S. Hoste, D.F. Vondel, G.P. Kelen, XPS Spectra of organometallic phenyl compounds of P, As, Sb and Bi. J. Electron Spectros. Relat. Phenomena 17(3), 191–195 (1979). <u>https://doi.org/10.1016/0368-2048(79)85040-9</u>
- [S34] M. Andersson, J. Blomquist, B. Folkesson, R. Larsson, P. Sundberg, Esca, mössbauer and infrared spectroscopic investigations of a series of tin complexes. J. Electron Spectros. Relat. Phenomena 40(4), 385–396 (1986). <u>https://doi.org/10.1016/0368-2048(86)80047-0</u>
- [S35] H. Willemen, D.F. Vondel, G.P. Kelen, An ESCA study of tin compounds. Inorg. Chim. Acta 34, 175–180 (1979). <u>https://doi.org/10.1016/S0020-1693(00)94698-X</u>

- [S36] J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J. Appl. Phys. 48(8), 3524–3531 (1977). <u>https://doi.org/10.1063/1.324149</u>
- [S37] P. Owens, P.A. Grutsch, V. Zeller, T.P. Fehlner, K. Siegbahn et al., Photoelectron spectroscopy of tin compounds. Acta Crystallogr. Sect. B 12(6), 1431–1433 (1973). https://doi.org/10.1021/ic50124a045
- [S38] S. Badrinarayanan, A.B. Mandale, V.G. Gunjikar, A.P.B. Sinha, Mechanism of hightemperature oxidation of tin selenide. J. Mater. Sci. 21(9), 3333–3338 (1986). <u>https://doi.org/10.1007/BF00553376</u>
- [S39] E. Çetinörgü, S. Goldsmith, Y. Rosenberg, R.L. Boxman, Influence of annealing on the physical properties of filtered vacuum arc deposited tin oxide thin films. J. Non. Cryst. Solids 353(26), 2595–2602 (1996). <u>https://doi.org/10.1016/j.jnoncrysol.2007.04.031</u>
- [S40] M.D. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella et al., SnO₂ thin films for gas sensor prepared by r.f. reactive sputtering. Sens. Actuat. B Chem. 25(1–3), 465–468 (1995). <u>https://doi.org/10.1016/0925-4005(94)01397-7</u>
- [S41] P. Umapathy, S. Badrinarayanan, A.P.B. Sinha, An ESCA study of tin (IV) and tin (II) chelates with substituted 8-quinolinols. J. Electron Spectros. Relat. Phenomena 28(3), 261–266 (1983). <u>https://doi.org/10.1016/0368-2048(83)80004-8</u>
- [S42] M.D. Giulio, A. Serra, A. Tepore, R. Rella, P. Siciliano et al., Influence of the deposition parameters on the physical properties of tin oxide thin films. Mater. Sci. Forum 203, 143–148 (1996). <u>https://doi.org/10.4028/www.scientific.net/msf.203.143</u>
- [S43] C.M. Barnes, B.J. Kennedy, An X-ray photoelectron spectroscopic study of arene chromium tricarbonyl complexes at 170K. J. Mol. Struct. 344(3), 233–240 (1995). <u>https://doi.org/10.1016/0022-2860(95)08461-4</u>
- [S44] G. Beamson, D. Briggs, High Resolution XPS of organic polymers: the scienta ESCA300 database. J. Chem. Educ. 70(1), A25 (1993). <u>https://doi.org/10.1021/ed070pa25.5</u>
- [S45] P.R. Moses, H.O. Finklea, J.R. Lenhard, R.W. Murray, L.M. Wier et al., X-ray photoelectron spectroscopy of alkylamine-silanes bound to metal oxide electrodes. Anal. Chem. 50(4), 576–585 (1978). <u>https://doi.org/10.1021/ac50026a010</u>
- [S46] W. Choi, H. Jung, S. Koh, Chemical shifts and optical properties of tin oxide films grown by a reactive ion assisted deposition. J. Vac. Sci. Technol. 14(2), 359–366 (1996). <u>https://doi.org/10.1116/1.579901</u>
- [S47] H. Binder, D. Sellmann, Röntgen-photoelektronenspektroskopische untersuchungen an pentacarbonyl- chrom-und -wolfram-komplexen mit stickstoffliganden / X-ray photoelectron studies of pentacarbonyl chromium and tungsten complexes with nitrogen ligands. Zeitschrift Für Naturforsch. B 33(2), 173–179 (1978). <u>https://doi.org/10.1515/ZNB-1978-0211</u>
- [S48] S. Srivastava, S. Badrinarayanan, A.J. Mukhedkar, X-ray photoelectron spectra of metal complexes of substituted 2,4-pentanediones. Polyhedron 4(3), 409–414 (1985). <u>https://doi.org/10.1016/S0277-5387(00)87000-X</u>
- [S49] C.D. Wagner, D.A. Zatko, R.H. Raymond, Use of the oxygen KLL auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal. Chem. 52(9), 1445–1451 (1980). <u>https://doi.org/10.1021/AC50059A017</u>

- [S50] C.A. Tolman, W.M. Riggs, W.J. Linn, C.M. King, R.C. Wendt, Electron spectroscopy for chemical analysis of nickel compounds. Inorg. Chem. 12(12), 2770–2778 (1973). <u>https://doi.org/10.1021/IC50130A006</u>
- [S51] S. Lars, T. Andersson, M.S. Scurrell, Infrared and ESCA studies of a heterogenized rhodium carbonylation catalyst. J. Catal. 59(3), 340–356 (1979). <u>https://doi.org/10.1016/S0021-9517(79)80003-2</u>
- [S52] J. Peeling, F.E. Hruska, D.M. McKinnon, M.S. Chauhan, N.S. McIntyre, ESCA studies of the uracil base. The effect of methylation, thionation, and ionization on charge distribution. Can. J. Chem. 56 (18), 2405–2411 (1978). <u>https://doi.org/10.1139/v78-393</u>
- [S53] M.C. Burrell, Y.S. Liu, H.S. Cole, An X-ray photoelectron spectroscopy study of poly(methylmethacrylate) and poly(α-methylstyrene) surfaces irradiated by excimer lasers. J. Vac. Sci. Technol. 4(6), 2459–2462 (1986). <u>https://doi.org/10.1116/1.574091</u>
- [S54] G.P. López, D.G. Castner, B.D. Ratner, XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17(5), 267– 272 (1991). <u>https://doi.org/10.1002/sia.740170508</u>
- [S55] D.G. Castner, B.D. Ratner, Surface characterization of butyl methacrylate polymers by XPS and static SIMS. Surf. Interface Anal. 15(8), 479–486 (1990). <u>https://doi.org/10.1002/SIA.740150807</u>
- [S56] J. Szépvölgyi, A. Tüdös, I. Bertóti, X-ray photoelectron spectroscopy studies on solid xanthates. J. Electron Spectros. Relat. Phenomena 50(2), 239–250 (1990). <u>https://doi.org/10.1016/0368-2048(90)87068-Y</u>
- [S57] J. Russat, Characterization of polyamic acid/polyimide films in the nanometric thickness range from spin-deposited polyamic acid. Surf. Interface Anal. 11(8), 414– 420 (1988). <u>https://doi.org/10.1002/sia.740110803</u>
- [S58] T. Sugama, L.E. Kukacka, N. Carciello, N.J. Hocker, Study of interactions at watersoluble polymer/Ca(OH)₂ or gibbsite interfaces by XPS. Cem. Concr. Res. 19(6), 857– 867 (1989). <u>https://doi.org/10.1016/0008-8846(89)90098-7</u>
- [S59] L.C. Lopez, D.W. Dwight, M.B. Polk, The $\pi \rightarrow \pi^*$ shake-up phenomena in polyesters containing backbone aromatic groups. Surf. Interface Anal. 9(1–6), 405–409 (1986).
- [S60] J. Gardella, S.A. Ferguson, R.L. Chin, π^{*} ← π shakeup satellites for the analysis of structure and bonding in aromatic polymers by X-ray photoelectron spectroscopy. Appl. Spectrosc. 40(2), 224–232 (1986). <u>https://doi.org/10.1366/0003702864509565</u>
- [S61] G.C. Allen, I.S. Butler, C. Kirby, Characterization of ferrocene and (η⁶-benzene) tricarbonylchromium complexes by X-ray photoelectron spectroscopy. Inorg. Chim. Acta 134(2), 289–292 (1987). <u>https://doi.org/10.1016/S0020-1693(00)88098-6</u>
- [S62] K. Prabhakaran, C.N.R. Rao, Adsorption of carbonyl compounds on clean and modified Cu(110) surfaces: a combined eels-ups study. Appl. Surf. Sci. 44(3), 205– 210 (1990). <u>https://doi.org/10.1016/0169-4332(90)90051-Z</u>