Supporting Information for

MOF Transformed In₂O_{3-x}@C Nanocorn Electrocatalyst for Efficient CO₂ Reduction to HCOOH

Chen Qiu^{1, #}, Kun Qian^{2, #} Jun Yu^{1, *}, Mingzi Sun³, Shoufu Cao⁴, Jinqiang Gao¹, Rongxing Yu^{1, 5}, Lingzhe Fang², Youwei Yao⁵, Xiaoqing Lu⁴, Tao Li^{2, 6, *}, Bolong Huang^{3, *}, Shihe Yang^{1, 7, *}

¹Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China

²Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA

³Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China

⁴School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

⁵Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China

⁶X-ray Science Division and Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, USA

⁷Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, P. R. China

[#]Chen Qiu and Kun Qian contributed equally to this work.

*Corresponding authors. E-mail: <u>yu.jun@pku.edu.cn</u> (Jun Yu); <u>taoli@aps.anl.gov</u> (Tao Li); <u>bhuang@polyu.edu.hk</u> (Bolong Huang); <u>chsyang@pku.edu.cn</u> (Shihe Yang)

Supplementary Figures and Tables

Fig. S1 X-ray diffraction (XRD) spectrum of the MIL-68 (In) sample

Fig. S3 The SEM images of MIL-68-Air

Fig. S4 a Transmission electron microscopy (TEM) image of the MIL-68-N₂ sample and the corresponding EDS mapping images of **b** all detected elements, **c** In element, **d** O element and **e** C element. Part of the surface cubic shape particles was removed to expose the beneath film through sonication

Fig. S5 a HR-TEM and b Raman spectrum of the MIL-68-N₂ sample

Fig. S6 O 1s XPS spectrum of the MIL-68-Air sample

Fig. S7 Cyclic voltammograms of **a** MIL-68-Air and **b** MIL-68-N₂ measured in a non-Faradaic region of the voltammogram with the scan rates of 5, 10, 20, 30, and 40 mV s⁻¹. **c** Current density at OCP vs CV scan rate for the catalysts. The slope of current density at OCP vs scan rate represents the double-layer capacitance

Fig. S8 Representative nuclear magnetic resonance (NMR) spectrum of the catholyte, peak at 8.3 ppm, 4.7 ppm and 2.6 ppm were ascribed to formate, water and DMSO, respectively

Fig. S9 FE of CO and H_2 during the stability test of the MIL-68-N₂ catalyst at the current density of 100 mA cm⁻² for more than 120 h

Fig. S10 Product distributions in terms of FE for the fixed current density of 500, 600, 700, 800, 900 and 1000 mA cm⁻²

Fig. S11 Diagram of the in situ electrochemical cell

Fig. S12 FE and the product distribution vs the applied potentials for the MIL-68- N_2 catalyst tested in H-Cell. The electrolyte was 0.5 M KHCO₃ aqueous solution

Fig. S13 a CV curves of the MIL-68-N₂ catalyst. **b** XRD pattern and **c** In K-edge XANES spectrum of the MIL-68-N₂ catalyst after electrolysis

Catalyst	Reactor	Electrolyte	Applied potential /V _{RHE}	J _{HCOOH} /mA cm ⁻²	FE/%	Refs.
$In_2O_{3-x}@C$	Flow cell	1 M KOH	-0.4 V	11*	84	This work
$In_2O_{3-x}@C$	Flow cell	1 M KOH	-1.0 V	218*	99	This work
$In_2O_{3-x}@C$	Flow cell	1 M KOH	-1.2 V	324*	99	This work
MIL- 68(In)-NH ₂	Flow cell	1 M KOH	-1.1 V	108*	94	[S1]
InP CQDs	Flow cell	1 M KOH	-2.5 V	368*	92	[S2]
hp-In	Flow cell	0.1 M KHCO ₃	-1.1 V	45	90	[S3]
In/In ₂ O _{3-x} MFM-	H-cell	0.5 M NaHCO ₃	-0.82 V	Low	89	[S4]
300(In)- e/In	H-cell	0.5 M EmimBF ₄ /MeCN	-2.15 $V_{Ag/Ag+}$	46	99	[S5]
Cu ₂₅ In ₇₅	H-cell	0.5 M NaHCO ₃	-0.7 V	Low	84	[S6]
In ₂ O ₃ -rGO	H-cell	0.1 M KHCO ₃	-1.2 V	22	85	[S7]
$H-InO_x$	H-cell	0.5 M NaHCO ₃	-0.7 V	Low	92	[S 8]
MoP@In- PC	H-cell	[Bmim]PF ₆ (30 wt%)/MeCN/H ₂ O(5wt%)	-2.2 $V_{Ag/Ag+}$	42	97	[S 9]
CuBi ₂ O ₃ - PE	HFGDE	0.5 M KHCO ₃	-1.0 V	120	85	[S10]
Bi	Flow cell	0.5 M KHCO ₃	-0.7 V	Low	100	
nanosheets			-0.9 V	16	50	[S11]
Bi ₂ O ₃ @C	Flow cell	1 M KOH	-1.0 V	170*	93	[S12]
SnS	Flow cell	1 M KOH	-1.3 V	120*	88	[S13]

Table S1 Summary of the current density and faradaic efficiency of HCOOH of our results and recently published data

*stands for the current density without iR correction. Low stands for the current density below 10 mA cm⁻²

Table S2 The fitting parameters of In-O in In K-edge XANES spectra

Sample	R (Å)	CN	σ2 (Å2)	ΔE (eV)	R factor
fresh	2.17 ± 0.01	5.03 ± 0.29	0.005	3.8	0.00763
CVs	2.16 ± 0.01	3.97±0.28	0.00545	4.61	0.0153
-0.445	2.16 ± 0.01	3.6±0.42	0.00511	3.46	0.0116
-0.845	2.17±0.01	4.93±0.49	0.0042	3.85	0.0271
-1.045	2.17±0.01	5.00 ± 0.55	0.00419	4.1	0.01216
-1.245	2.175±0.01	4.64 ± 0.54	0.00366	3.39	0.03983
-1.445	2.167±0.01	4.88±0.25	0.00396	2.52	0.00581

Supplementary References

- [S1] Z. Wang, Y. Zhou, C. Xia, W. Guo, B. You et al., Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem. Int. Ed. 60(35), 19107-19112 (2021). <u>https://doi.org/10.1002/anie.202107523</u>
- [S2] I. Grigioni, L.K. Sagar, Y.C. Li, G. Lee, Y. Yan et al., CO₂ electroreduction to formate at a partial current density of 930 mA cm⁻² with inp colloidal quantum dot derived catalysts. ACS Energy Lett. 6(1), 79-84 (2020). https://doi.org/10.1021/acsenergylett.0c02165

- [S3] W. Luo, W. Xie, M. Li, J. Zhang, A. Züttel, 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO₂. J. Mater. Chem. A 7(9), 4505-4515 (2019). <u>https://doi.org/10.1039/c8ta11645h</u>
- [S4] Y. Liang, W. Zhou, Y. Shi, C. Liu, B. Zhang, Unveiling in situ evolved In/In₂O₃heterostructure as the active phase of In₂O₃ toward efficient electroreduction of CO₂ to formate. Sci. Bull. 65(18), 1547-1554 (2020). <u>https://doi.org/10.1016/j.scib.2020.04.022</u>
- [S5] X. Kang, B. Wang, K. Hu, K. Lyu, X. Han et al., Quantitative electro-reduction of CO₂ to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 142(41), 17384-17392 (2020). <u>https://doi.org/10.1021/jacs.0c05913</u>
- [S6] M. Zhu, P. Tian, J. Li, J. Chen, J. Xu et al., Structure-tunable copper-indium catalysts for highly selective CO₂ electroreduction to co or hcooh. ChemSusChem 12(17), 3955-3959 (2019). <u>https://doi.org/10.1002/cssc.201901884</u>
- [S7] Z. Zhang, F. Ahmad, W. Zhao, W. Yan, W. Zhang et al., Enhanced electrocatalytic reduction of CO₂ via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 19(6), 4029-4034 (2019). https://doi.org/10.1021/acs.nanolett.9b01393
- [S8] J. Zhang, R. Yin, Q. Shao, T. Zhu, X. Huang, Oxygen vacancies in amorphous InOx nanoribbons enhance CO₂ adsorption and activation for CO₂ electroreduction. Angew. Chem. Int. Ed. 58(17), 5609-5613 (2019). <u>https://doi.org/10.1002/anie.201900167</u>
- [S9] X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang et al., Mop nanoparticles supported on indiumdoped porous carbon: outstanding catalysts for highly efficient CO₂ electroreduction. Angew. Chem. Int. Ed. 57(9), 2427-2431 (2018). <u>https://doi.org/10.1002/anie.201712221</u>
- [S10] H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li et al., Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO₂ reduction to formate. Appl. Catal. B 286, 119945 (2021). <u>https://doi.org/10.1016/j.apcatb.2021.119945</u>
- [S11] L. Yi, J. Chen, P. Shao, J. Huang, X. Peng et al., Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO₂ to formate. Angew. Chem. Int. Ed. 59(45), 20112-20119 (2020). <u>https://doi.org/10.1002/anie.202008316</u>
- [S12] P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO₂ electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807-10813 (2020). <u>https://doi.org/10.1002/anie.202000657</u>
- [S13] J. Zou, C.Y. Lee, G.G. Wallace, Boosting formate production from CO₂ at high current densities over a wide electrochemical potential window on a SnS catalyst. Adv. Sci. 8(15), e2004521 (2021). <u>https://doi.org/10.1002/advs.202004521</u>