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S1 Laser Scribing Mechanism 

The transformation of MOF precursors to 3D-GCM is a photothermal process. Upon laser 

irradiation, the MOF were instantly pyrolyzed by pyrolysis and form a 3D graphene. 

Simultaneously, due to the high-power intensity of the short pulse laser and the constraints of 

the slide, high local temperatures up to 2200 K can be achieved during the laser scribing, 

forming a reducing atmosphere to prevent the oxidation of MNPs. Finally, 3D graphene loaded 

with metal nanoparticles is realized by laser scribing. 

S2 Characterizations of Cu/Pd@3D-GCM 

The Brunauer-Emmett-Teller (BET) data of Cu/Pd@3D-GCM is shown in Fig. S2a, which 

confirms the surface area of the materials. The BET surface area reveals the high surface area 

of the 3D-GCM after laser scribing. The XPS spectra of Cu/Pd@3D-GCM shows a 

predominant peak of C 1s at 284.3 eV and O 1s at 530.9 eV (Fig. S2b, c). The FTIR spectrum 

of the Cu/Pd@3D-GCM is shown in Fig. S2d. The intensity of the absorption peaks at 
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approximately 3000-3400 cm-1, can be attributed to the O-H bond stretching of surface-active 

carbon. The peaks at 1645, 1639, and 1480 cm-1 corresponding to the C=O symmetric and 

asymmetric modes, are greatly reduced in the spectra of 3D-GCM. These results can be ascribed 

to both reductions of GO to graphene and deposition of MNPs. The high-resolution 

transmission electron microscopy (HRTEM) and Energy-dispersive X-ray Spectrometry (EDS) 

mapping results are shown in Fig. S3. The uniform elemental distribution of MNPs and C 

indicates the uniformity and density of the MNPs. 

Rhodamine B (RhB) as the contaminant model was filtered from the membranes at 0.1 bar and 

the permeated solution was collected after filtration to measure contaminant concentrations and 

recorded the corresponding fluid volumes of permeation. Figure S4 presents the RhB removal 

efficiency and flux of the Cu/Pd@3D-GCM. In addition, H2O2 and UV light was used for the 

catalytic degradation of pollutants. The separation ability could recover almost 100% of the 

initial value after 5 cycles of testing. 

S3 HRTEM Images and XPS Spectrum of Cu@3D-GCM and Cu/Ag@3D-

GCM 

Cu@3D-GCM and Cu/Ag@3D-GCM were also prepared using the laser scribing. The TEM 

image and XPS spectrum are shown in Fig. S7-9. Similar to the Cu/Pd@3D-GCM, these 

samples show a sheet-like or graphene-like structure, where Cu and Cu/Ag nanoparticles 

distribute in 3D-graphene homogeneously. The HRTEM image further shows that the lattice 

fringes of Cu(111) and Ag(111) are observed to be 0.205 nm and 0.235 nm in the amplified 

TEM photograph, respectively. The results clearly confirm the successful anchoring/deposition 

of MNPs inside the 3D-graphene. 

In addition, the XPS spectra for the as-prepared samples shows a predominant peak of C 1s at 

284.3 eV and O 1s at 530.9 eV (Fig. S8-9). The main peaks at 932.6 and 952.08 eV have two 

shakeup peaks at about 941.375 and 962.375 eV, which proves the presence of Cu2+. 

Furthermore, the high-resolution XPS spectrum of Cu and Ag for Cu/Ag@3D-GCM shows the 

Cu 2p and Ag 3d states, respectively.  The results show that MNPs were successfully 

synthesized by laser scribing. 

S4 Simulation of Electromagnetic Field Distribution and Temperature 

Distribution 

In order to further depict the localized surface plasmonic resonance (LSPR), the optical spectra 

and temperature distribution of copper nanoparticles anchored on graphene were simulated with 

finite element methods using a photothermal-coupling module. 

S4.1 Electromagnetic Field Distribution and Absorption Simulation 

The modeled structures are illustrated in Fig.S10a. The computational domain is a cubic volume 

whose edge length is set to 4 times the diameter of the particles. The spherical particles are 

placed in a body-centered cubic arrangement. A single-layer graphene sheet, which is treated 

as a conductivity surface in the modeling, is then placed on the surface of the particles. The 

dielectric function of Cu is taken from the Handbook of Optical Constants of Solids. The 

dielectric function of graphene is taken from the Drude model [S1]. 

The dynamic in-plane conductivity (𝜔) of graphene is derived from the Kubo formula with both 

intraband and interband contributions. Assuming 𝑘𝐵𝑇≪|𝐸𝑓| and ℏ𝜔, the intraband contribution 

can be simplified into the Drude-like form [S2-S4]. 
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Where ω is the angular frequency, e is the charge of an electron, ℏ=ℎ/2𝜋 is the reduced 

Planck constant, kB is Boltzmann’s constant, T is the temperature, Ef is Fermi energy of 

graphene, and γ is the carrier relaxation time. 

According to the intraband and interband contributions, the complex permittivity of graphene 

(𝜔) is obtained from the complex conductivity:  
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Where ε is the out-of-plane component of the effective dielectric permittivity tensor set equal 

to 1, ε0 is the permittivity of free space, and tg is the thickness of graphene. 

To simplify calculations, floquet-periodic boundary conditions were used on four sides of the 

unit cell to simulate the infinite 2D array. The perfectly matched layers (PMLs) on the top and 

bottom of the unit cell absorb the excited mode from the source port and any higher-order modes 

generated by the periodic structure. The computational domain was discretized by a structured 

mesh. The simulation of the field distribution and at and around the Cu nanospheres was carried 

out with a rigorous Maxwell’s solver based on the finite element methods. The implementation 

of the method dealt with a large number of degrees of freedom needed for the simulation of 

multiscale structures involving plasmonic effects. The electromagnetic field distribution (Fig. 

S10) of Cu at 350 nm was obtained by a fit to the Drude model of the empirical data. 

S4.2 Temperature Simulation 

The temperature distribution was simulated by the steady-state 3D axisymmetric Heat 

Transfer module in the Solids model. The incident light was absorbed in the copper 

nanoparticles anchored on graphene, which was modeled as the surface heat source with a 

boundary temperature of 293.15 K. As shown in Fig. S8, the heating area of nanoparticles 

contains the entire cube area and the temperature rises rapidly with time.  

S5 Calculation Details 

To further study the effect of different compositions on HER production, density functional 

theory (DFT) [S5] calculations for hydrogen adsorption energy were implemented by 

employing Vienna Ab initio Simulation Package (VASP) code [S6, S7], which is based on the 

projector augmented-wave technique [S8, S9]. A Pd-doped Cu alloy supercell surface covered 

by a layer of graphene was used as the basic model, which includes 48 metal atoms and 32 

carbon atoms. Moreover, the vacuum layer thickness along the c axis was no less than 1.5 nm 

for any model supercell. For all calculations, the exchange-correlation energy was treated using 

the generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) 

[S10] functional form. The plane wave energy cutoff was fixed to be 500 eV. Owing to the 

existence of van der Waals interactions, the DFT-D2 correction was included in our calculations. 

The convergence criterion for total energy was set to 1.0×10-5eV. The force convergence 
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criterion was set to 0.02 eV Å-1 in each direction. The Brillouin zones for surface models were 

sampled by 3×3×1 equal-spacing Monkhorst-Pack k-point mesh. 

The adsorption Gibbs free energy of intermediate hydrogen (∆GH*) on the catalyst is the 

descriptor for evaluating the HER performance. The adsorption energy is calculated as ΔGH*= 

ΔE H* + ΔZPE – TΔS, where ΔE is the adsorption energy of the corresponding intermediate 

species, ΔZPE is the zero-point energy variation after adsorption, ΔS is the entropy change after 

adsorption.  

S6 Adsorption Kinetics 

Adsorption kinetics has been widely studied to describe the adsorption process and mechanism. 

Kinetics analyses are conducted by using the pseudo-first-order, pseudo-second-order model, 

which are applied to fit experimental data obtained from experiments [S11, S12]. The equation 

of pseudo-first-order and the pseudo-second-order kinetic model could be expressed as follows: 
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Linear transformations of pseudo-first-order and pseudo-second-order kinetic models are, 
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Where t, qe, and qt represent time, the adsorption capability at equilibrium and at a certain 

time t, respectively. k1 and k2 are the rate constant of pseudo-first-order and pseudo-second-

order model, respectively. The values of qe, k1, and k2 are calculated from the slopes of their 

respective graphs. 

S7 Supplementary Figures and Tables 

 

Fig. S1 The process for the preparation of metal-loaded 3D-GCM by laser scribing 
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Fig. S2 a N2 adsorption/desorption isotherm. b FTIR spectra of Cu/Pd@3D-GCM. c XPS 

spectra of Cu/Pd@3D-GCM 

 

Fig. S3 EDS mappingsand corresponding EDS mappings of C, Cu, Pd of Cu/Pd@3D-GCM 

 

http://springer.com/40820


Nano-Micro Letters 
 

 

S6/S13 

Fig. S4 Removal efficiency and adsorption capacity for RhB of Cu/Pd@3D-GCM during 3h. 

The removal efficiency could recover almost 100% of the initial value and adsorption 

capacity increased slightly after 5 cycles of testing 

 

Fig. S5 Five times recycling for removal efficiency and H2 evolution of Cu/Pd@3D-GCM 

during 540 mins 

 

Fig. S6 Mechanical property of Cu/Pd@3D-GCM 
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Fig. S7 a-c TEM images, and HRTEM images of Cu@3D-GCM. d-f TEM images, and 

HRTEM images Cu/Ag@3D-GCM 

 

Fig. S8 a XPS spectra of Cu@3D-GCM. b High-resolution XPS spectra of Cu@3D-GCM 

 

Fig. S9 a XPS spectra of Cu/Ag@3D-GCM. b high-resolution XPS spectra of Cu/Ag@3D-

GCM 
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Fig. S10 Spatial distribution of the enhancement of electric field intensity and temperature 

change at the wavelength of 350 nm of 3D-GCM 

 

Fig. S11 Spatial distribution of the enhancement of electric field intensity of Cu/Pd@3D-

GCM at the wavelength of 375 nm, 420 nm, 500 nm, and 750 nm 

 

Fig. S12 Removal efficiency and H2 evolution of Cu/Pd@3D-Graphene and 3D-GCM 
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Table S1 Fitting data of the pseudo-first-order and pseudo-second-order kinetics model of 3D-

GCM for five cycles 

 

Table S2 Fitting data of the pseudo-first-order and pseudo-second-order kinetics models of 3D-

GCM for multiple pollutants 
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Table S3 Comparison of adsorption performance of typical graphene-based catalysts 

 

Table S4 Comparison of the photodegradation and photocatalytic H2 evolution performance of 

typical graphene-based catalysts 
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