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Supplementary Figures and Table 

 

Fig. S1 Cyclic loading–unloading curves at 100% (a) and 200% (b) strains for 25% GEL-60% 

GLY/Na3Cit, with diminished residual strain and recovery of dissipated energy observed after 

5 min 

 

Fig. S2 a Photos of the OECT measurement on Au electrodes (W/L = 5000/200 μm) and 

PEDOT:PSS/LiTFSI with varied thickness through controlling the dilution ratio. b-c Typical 

output curves of PEDOT:PSS doped with 2 wt% LiTFSI (b) and 0.2 wt% LiTFSI (c) with 
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similar thickness (1:8 dilution). d Control of the transfer and Gm characteristics of 

PEDOT:PSS/0.2% LiTFSI channels by adjusting the thickness as measured by atomic force 

microscopy (AFM). e The corresponding plots of the max. Gm and the VG for the max. Gm with 

channel thickness 

 

Fig. S3 a Transfer and Gm curves and b normalized temporal responses of PEDOT:PSS 

channels (~100-nm thick) with 0.2 wt% LiTFSI and 2 wt% LiTFSI, respectively, which were 

drop cast on Au electrodes (W/L = 1000/200 μm) and gated with Ag/AgCl through 0.1 M NaCl 

aqueous solution. The blue curve in (b) shows the applied VG. The normalized 

transconductances were calculated as ~220 and ~380 S cm-1 for channels with 0.2 wt% LiTFSI 

and 2 wt% LiTFSI, respectively 

 

Fig. S4 a Contact angle measurements of hydrophobic PDMS substrate before and after oxygen 

plasma treatment. b Fabrication process of patterned hydrophilic and hydrophobic PDMS 

surface using oxygen plasma under a stainless steel mask to form the PEDOT:PSS/LiTFSI 

patterns on PDMS by dewetting, followed by transfer printing to obtain stretchable 

microelectrodes on the gel substrate. c Resistance values of the PEDOT:PSS/LiTFSI electrode 

before (left) and after (right) transfer onto GEL-GLY/Na3Cit. The soft carbon nanotube (CNT) 

thin films were used for contact pads 
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Fig. S5 a Transfer and Gm curves of all-polymer OECTs with controlled W/L ratios. The 

channels were PEDOT:PSS/0.2% LiTFSI with d<1 μm. b Transfer and Gm curves of 4 devices 

with the constant electrode design of W/L = 1000/400 μm to show the performance variation of 

the all-polymer OECTs from one batch fabrication. (c-e) Transfer and Gm curves of the all-

polymer OECTs consisting of PEDOT:PSS/2% LiTFSI electrodes and thin channels of 

PEDOT:PSS/2% LiTFSI (c), PEDOT:PSS/5% ethylene glycol (EG, d) and PEDOT:PSS/5% 

TritonX-100 (TX-100, e). f Output characteristics of the enhancement-mode all-polymer OECT 

using P3gCPDT-1gT2 as the channel 

 

Fig. S6 a Cross-sectional scanning electron microscopy (SEM) image of PDMS mold replicated 

from a sandpaper (400 mesh). b-c SEM top (b) and side (c) view images of the PDMS mold 

after spin coating PEDOT:PSS/LiTFSI thin film 
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Fig. S7 a Typical AFM topography image of the printed PEDOT:PSS/LiTFSI microwire arrays 

on the gel electrolyte. b Optical microscope image of the microwire channel by printing two 

polymer electrodes to contact with the microwire arrays 

   

Fig. S8 Photos of PEDOT:PSS/2% LiTFSI film attached on the gel electrolyte under strains 

from 0-40%, showing the macroscopic cracks appearing at ~40% strain 

 

Fig. S9 a Magnified optical microscope image of the microstructured PEDOT:PSS/LiTFSI thin 

film on the gel substrate under ~50% strain, with the arrows indicating the prevented crack 

propagation at the bump regions. b Finite element simulations of strain distribution on 

PEDOT:PSS/LiTFSI thin layer coated on concave and convex microstructures of gelatin-based 

gel electrolyte, with an overall strain of 50%. It indicates that the convex structure and the 

smaller diameter may decrease the strain on the PEDOT:PSS/LiTFSI 
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Fig. S10 a Photographs of the all-polymer OECT with wrinkled channel and electrodes (100% 

prestrain) under relaxed and stretched states. b Optical microscope image of the wrinkled 

channel and electrode. c ION retention and the maximum Gm of the stretchable all-polymer 

OECT during stretching from 0 to 100% strain parallel to the prestretched direction. d ID 

retention of the wrinkled electrode under repeated stretching for 800 cycles at 100% strain. e 

OECT performance under strains of 0-40% in the perpendicular direction (i). The 

corresponding optical microscope image (ii) shows the channel cracking after perpendicular 

stretching 

 

Fig. S11 a Typical tensile stress–strain curves of 20% GEL-60% GLY/Na3Cit under ambient 

storage for up to 4.5 months. b Transfer curves of OECT prepared with fresh and aged gel 

electrolytes. c Transfer curves of gel-based OECT under varied temperature conditions 
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Fig. S12 a Transfer curves of an all-polymer OECT with submicron-thick channel during the 

storage for 3 months. b Output curves of the OECT after 3 months 

Table S1 Comparison among stretchable OECTs using PEDOT:PSS channels 

Materials 
Device 

Dimensions 
Gm 

Stretch-

ability 

Long-term 

Operation 
Refs. 

PEDOT:PSS/glycerol/Cap

stone FS-30 

Electrodes: wrinkled Au, 

carbon gate Electrolyte: 

PAM hydrogel 

W/L=2000/ 

8000 μm  

d=400 nm 

1.1 mS 

Normalized: 

110 S‧cm-1 

50 % 
1000 cycles at 

30 % strain 
[S1] 

PEDOT:PSS/EG/GOPS 
Electrodes: Au Electrolyte: 

aqueous solution 

W/L=50/50 μm  

d<200 nm 

1 mS 

Normalized:  

>50 S‧cm-1 

15 % 
1000 cycles at 

15 % strain 
[S2] 

PEDOT:PSS/EG/GOPS 

Electrodes: wrinkled Au 

Electrolyte: 

PAM/PVA/glycerol 

organohydrogel 

W/L=50/50 μm  

d<200 nm 

1.62 mS 

Normalized:  

>80 S‧cm-1 

30% 

1000 cycles at 

20% strain, 

storage: 8 days 

[S3] 

PEDOT:PSS/EG/GOPS 
Electrodes: microcracked 

Au Electrolyte: aqueous 

solution 

W/L=630/ 130 

μm  

d<200 nm 

0.54 mS 

Normalized: 

>6 S‧cm-1 

100% 
1000 cycles at 

50 % strain 
[S4] 

Wavy 

PEDOT:PSS/glycerol/Zon

yl fluoro-surfactant 

Electrodes: wavy 

Au/PEDOT:PSS 

Electrolyte: aqueous 

solution 

NA ~1 mS 
biaxial 

30% 
NA [S5] 

PEDOT:PSS/glycerol/Cap

stone FS-30 

Electrodes: Au, carbon 

gate Electrolyte: aqueous 

solution 

W/L=2000/ 

8000 μm  

d=50 nm 

0.2 mS 

Normalized: 

160 S‧cm-1 

30 % 
60 cycles at 

30 % strain 
[S6] 

PEDOT:PSS/glycerol/Cap

stone FS-30/PEG 400 

Electrodes: Au, carbon 

gate Electrolyte: aqueous 

solution 

W/L=2000/ 

8000 μm 

d=300 nm 

0.1 mS 

Normalized: 

13 S‧cm-1 

45 % 
100 cycles at 

45 % strain 
[S7] 
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PEDOT:PSS/PEG/divinyl 

sulfone 

Electrodes: AuNPs-

AgNWs Electrolyte: ionic 

liquid 

W/L=2000/ 200 

μm 

d=440 nm 

27.43 mS 

Normalized: 

62.3 S‧cm-1 

biaxial 

30% 
NA [S8] 

PEDOT:PSS/PAMPS/ioni

c liquid Electrodes: 

AgNWs, SWCNT gate 

Electrolyte: P(VDF-HFP) 

ionogel 

W/L=1000/ 250 

μm 

d=200 nm 

12.95 mS 

Normalized: 

162 S‧cm-1 

biaxial 

100% 
NA [S9] 

Microstructured 

PEDOT:PSS/LiTFSI 

Electrodes: wrinkled 

PEDOT:PSS/LiTFSI 

Electrolyte: gelatin-

glycerol/Na3Cit 

organohydrogel 

W/L=2000/ 200 

μm  

d=500 nm 

12.7 mS 

Normalized: 

25.4 S‧cm-1 

biaxial 

100%, 

uniaxial 

120% 

1000 cycles at 

80 % strain, 

storage: >4 

months 

This 

Work 
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