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In the nanoscale beam, two effects become domineering. One is the non-Fourier effect in heat 
conduction and the other is the coupling effect between temperature and strain rate. In the present 
study, a generalized solution for the generalized thermoelastic vibration of gold nano-beam 
resonator induced by ramp type heating is developed. The solution takes into account the above two 
effects. State-space and Laplace transform methods are used to determine the lateral vibration, the 
temperature, the displacement, the stress and the strain energy of the beam. The effects of the 
relaxation time and the ramping time parameters have been studied. 
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Many attempts have been made recently to investigate the 

elastic properties of nanostructured materials by atomistic 

simulations. Diao et al. [1] studied the effect of free surfaces on 

the structure and elastic properties of gold nanowires by 

atomistic simulations. Although the atomistic simulation is a 

good way to calculate the elastic constants of nanostructured 

materials, it is only applicable to homogeneous nanostructured 

materials (e.g., nanoplates, nanobeams, nanowires, etc.) with 

limited number of atoms. Moreover, it is difficult to obtain the 

elastic properties of the heterogeneous nanostructured materials 

using atomistic simulations. For these and other reasons, it is 

prudent to seek a more practical approach. One such approach 

would be to extend the classical theory of elasticity down to the 

nanoscale by including in it the hitherto neglected 

surface/interface effect. For this it is necessary first to cast the 

latter within the framework of continuum elasticity. 

Nano-mechanical resonators have attracted considerable 

attention recently due to their many important technological 

applications. Accurate analysis of various effects on the 

characteristics of resonators, such as resonant frequencies and 

quality factors, is crucial for designing high-performance 

components. Many authors have studied the vibration and heat 

transfer process of beams. Kidawa [2] has studied the problem 

of transverse vibrations of a beam induced by a mobile heat 

source. The analytical solution to the problem was obtained 

using the Green’s functions method. However, Kidawa did not 

consider the thermoelastic coupling effect. Boley [3] analyzed 

the vibrations of a simply supported rectangular beam subjected 

to a suddenly applied heat input distributed along its span. 

Manolis and Beskos [4] examined the thermally induced 

vibration of structures consisting of beams, exposed to rapid 

surface heating. They have also studied the effects of damping 

and axial loads on the structural response. Al-Huniti et al. [5] 

investigated the thermally induced displacements and stresses 

of a rod using the Laplace transformation technique. Ai Kah 

Soh et al. studied the vibration of micro/nanoscale beam 

resonators induced by ultra-short-pulsed laser by considering 

the thermoelastic coupling term in [6] and [7]. The propagation 

characteristics of the longitudinal wave in nanoplates with small 

scale effects are studied by Wang et al. [8].  

When very fast phenomena and small structure dimensions 

are involved, the classical law of Fourier becomes inaccurate. 
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The classical Fourier heat conduction equation is a parabolic 

equation, whereas, the non-Fourier heat conduction equation is 

a hyperbolic equation. A more sophisticated model is then 

needed to describe the thermal conduction mechanisms in a 

physically acceptable way. Modern technology has enabled the 

fabrication of materials and devices with characteristic 

dimensions of a few nanometers. Examples are superlattices, 

nanowires, and quantum dots. At these length scales, the 

familiar continuum Fourier law for heat conduction is expected 

to fail due to both classical and quantum size effects [9]. 

Among many applications, the studying of the thermoelastic 

damping in MEMS /NEMS has been improved in [10] and [11].  

It is worthwhile to mention here that in most of the earlier 

studies, mechanical or thermal loading on the bounding surface 

is considered to be in the form of a shock. However, the sudden 

jump of the load is merely an idealized situation because it is 

impossible to realize a pulse described mathematically by a step 

function; even very rapid rise-time (of the order of 10-9 s) may 

be slow in terms of the continuum. This is particularly true in 

the case of second sound effects when the thermal relaxation 

times for typical metals are less than 10-9 s Misra et al. [13]. It 

is thus felt that a finite time of rise of external load (mechanical 

or thermal) applied on the surface should be considered while 

studying a practical problem of this nature. Most ultrafast heat 

sources (such as certain lasers) involve the emission of a pulse 

(for example) that heats a material over a finite time due to the 

finite rise time of the pulse. 

Considering the aspect of rise of time, Misra et al. [14] and 

Youssef with many authors investigated  many applications in 

which the ramp-type heating is used [15-21]. 

State-space methods are the cornerstone of modern control 

theory. The essential feature of state-space methods is the 

characterization of the processes of interest by differential 

equations instead of transfer functions. This may seem like a 

throwback to the earlier, primitive period where differential 

equations also constituted the means of representing the 

behavior of dynamic processes. But in the earlier period, the 

processes were simple enough to be characterized by a single 

differential equation of fairly low order. In the modern approach, 

the processes are characterized by system of coupled, first-order 

differential equations. In principle, there is no limit to the order 

(i.e., the number of independent first-order differential 

equations), and in practice the only limit to the order is the 

availability of computer software capable of performing the 

required calculations reliably [22]. In particular, the state-space 

approach is useful because: (1) linear systems with 

time-varying parameters can be analyzed in essentially the same 

manner as time-invariant linear systems, (2) problems 

formulated by state-space methods can easily be programmed 

on a computer, (3) high-order linear systems can be analyzed, (4) 

multiple input-multiple output systems can be treated almost as 
easily as single input-single output linear systems, and (5) 

state-space theory is the foundation for further studies in such 

areas as nonlinear systems, stochastic systems, and optimal 

control. For solving coupled thermoelastic problems using the 

state-space approach in which the problem is rewritten in terms 

of state-space variables, namely, the temperature, the 

displacement and their gradients, has been developed by Bahar 

and Hetnarski [23-25]. 

 In this paper, the non-Fourier effect in heat conduction, 

and the coupling effect between temperature and strain rate in 

nanoscale beam will be studied. In the present work, a 

generalized solution for the generalized thermoelastic vibration 

of gold nano-beam resonator induced by ramp type of heating 

will be developed. The state-space and the Laplace transform 

methods will be used to determine the lateral vibration, the 

temperature, the displacement, the stress and the strain energy 

of the beam. The effects of the relaxation time and the ramping 

time parameters will be studied and represented graphically. 

Problem Formulation

Since beams with rectangular cross-sections are easy to 

fabricate, such cross-sections are commonly adopted in the 

design of NEMS resonators. Consider small flexural deflections 

of a thin elastic beam of length � �0 x� �� �0 x� �x , width 

2 2
b bb y� �� � �� 	


 �
and thickness

2 2
h hh z� �� � �� 	


 �
, for which the 

x, y and z axes are defined along the longitudinal, width and 

thickness directions of the beam, respectively. In equilibrium, 

the beam is unstrained, unstressed, and at temperature T0 

everywhere [6]. 

 

 
 

In the present study, the usual Euler-Bernoulli assumption 

[6,7] is adopted, i.e., any plane cross-section, initially 

perpendicular to the axis of the beam, remains plane and 
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perpendicular to the neutral surface during bending. Thus, the 

displacements are given by 

� � � � � �
,

, 0 , , , , , .
w x t

u z v w x y z t w x t
x

�
 �  

�         (1) 

Hence, the differential equation of thermally induced 

lateral vibration of the beam may be expressed in the form [6]: 

24 2

4 2 2 0,T
T

Mw A w
EIx t x
� �

�� �
� � 

� � �
      (2) 

where E is Young’s modulus, I [= bh3/12] the inertial moment 

about x-axis, � the density of the beam, �T the coefficient of 
linear thermal expansion, w(x,t) the lateral deflection, x the 

distance along the length of the beam, A=hb is the cross section 

area and t the time and MT is the thermal moment, which is 

defined as: 

/ 2

3
/ 2

12 ,
h

T
h

M z dz
h

�
�

 �                                (3) 

where 0T T�  � is the dynamical temperature increment of the 

resonator, in which T(x, z, t) is the temperature distribution and 

T0 the environmental temperature. 

The non-Fourier heat conduction equation has the 

following form [17]: 

2 2 2
0

2 2 2 ,o
C T

e
t k kx z t

�� �� � � �
� �� � � � � ��  � �� 	� 	� 	�� � � 
 �
 �         

(4) 

u v we
x y z

� � �
 � �

� � �
is the volumetric strain, C�  is the 

specific heat at constant volume, 0�  the thermal relaxation 

time, k the thermal conductivity, 
1 2

TE�
�

�


�
in which �  is 

Poisson’s ratio. Where there is no heat flow across the upper 

and lower surfaces of the beam, so that 0
z
��


�

 at / 2z h �  

For a very thin beam and assuming the temperature varies in 

terms of a � �sin pz function along the thickness direction, 

where /p h� , gives: 

� � � � � �1, , , sin .x z t x t pz� �
 

Hence, equation (2) gives 

� �
/ 224 2

1
4 2 3 2

/ 2

12
sin 0

h
T

h

w A w z pz dz
EIx t h x

� ��

�

�� �
� � 

� � � �     (5) 

and equation (4) gives 

� � � �

� �

2
21

12

2 2
0

12 2

sin sin

sino

pz p pz
x

C T wpz z
t k kt x

�

�
�

� �
� �

�
� 

�

� �� �� � �
� �� 	� 	� 	� 	� � �
 �
 �

    (6) 

After doing the integrations, equation (5) takes the form 

24 2
1

4 2 2 2
24

0.Tw A w
EIx t h x

� ��
�

�� �
� � 

� � �                
(7) 

In equation (6), we multiply the both sides by z and 

integrating with respect to z from 
2
h

�  to 
2
h

 then we obtain 

22 2 2
2 01

1 12 2 2 ,
24o
T h wp

t kx t x
� ��

� � ��
� �� � � �� � � �

�  � �� 	� 	 � 	� 	� 	 � 	�� � �
 �
 � 
 �   
(8) 

Where, 
C
k

��
�  .  

Now, for simplicity we will use the following 

non-dimensional variables: 

� � � � � � � �2

21
1

, , , , , , , ,

, , .

o o o o

o
o

x w h c x w h t c t
Ec

E T

� � � �

��� �
�

� � � � � 

� �  
      (9) 

Then, we have 

24 2
1

1 24 2 2 0,w wA A
x t x

��� �
� � 

� � �                  
(10) 

and 

2 2 2
1

3 1 1 42 2 2 ,o
wA A

tx t x
�

� � �
� �� �� � � �

�  � �� 	� 	� 	� 	�� � �
 �
 �         
(11) 

Where 
2

2
1 2 3 42 2

2412 , , ,
24

t oT hA A A p A
kh h

� � �
��

    , 

and we have canceled the prime for convenience. 

Formulations the Problem in the Laplace 
Transform Domain 

Applying the Laplace transform for equations (10) and (11) 

defined by the formula  

� � � � � �
0

L ( ) stf s f t f t e d t
�

�  � . 

Hence, we obtain the following system of differential 

equations 
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24
2 1

1 24 2 0,
dd w A s w A

d x d x
�

� � 
                 

(12) 

and 

� �
2 2

21
3 1 1 42 2 .o

d d wA s s A
d x d x

�
� � �

� �
�  � �� 	� 	


 �            
(13) 

We will consider a new function as follows: 

2

2 ,d w
d x

�
                               

(14) 

Then, we obtain

2
1

1 1 22 ,
d
d x

�
� � � � �                                (15) 

2

3 4 1 52 ,d w
d x

� � � � � � � � �
                   

(16) 

where 

� �2
1 3 ,oA s s� � � � � �2

2 4 oA s s� � � 2
3 1 ,A s� 

� �2
4 2 3 ,oA A s s� � � � � �2

5 2 4 .oA A s s� � �  

State-Space Formulation 

Choosing as a state variable the functions w , 1� , � , 

dw w
dx

� , 1
1

d
dx
�

� �  and 
d
dx
� ��  in the x-direction, then 

equations (14)-(16) can be written in matrix form by using the 

Bahar-Hetnarski method [23-25]: 

( , ) ( ) ( , )dV x s A s V x s
d x



                      
(17) 

Where  

1

11

( , )
( , )
( , )

( , ) ,
( , )
( , )
( , )

w x s
x s
x s

V x s
w x s

x s
x s

�
�

�
�

�  
! "
! "
! "

 ! "�! "
! "�
! "

�! "# $

                        (18) 

and 

1 2

3 4 5

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

( ) .
0 0 1 0 0 0
0 0 0 0

0 0 0

A s

� �
� � �

�  
! "
! "
! "

 ! "
! "
! "�
! "
� �! "# $

            

(19) 

The formal solution of equation (17) is given by 

V( x, s) = exp [A( s ) . x] V (0,s),              (20) 

Where 

1

11

(0, )
(0, )
(0, )

 ( 0 , s ) .
(0, )
(0, )
(0, )

w s
s
s

w s
s
s

�
�

�
�

�  
! "
! "
! "

 ! "�! "
! "�
! "

�! "# $

V

                          

(21) 

The characteristic equation of the matrix A(s) has the form 
6 4 2 -    + m   - n = 0,k k k44   + m  4

                     (22) 
Where 

 

1 5 1 5 2 4 3 1 3, , .l m n� � � � � � � � � �  � �   
The roots of the characteristic equation (22) 2 2

1 2 ,  k k and 
2
3k  satisfy the following relations 

2 2 2
1 2 3 +  +  =  ,k k k  ,                                 (23a) 

2 2 2 2 2 2
1 2 2 3 1 3  +   +   = m ,k k k k k k                         (23b) 

2 2 2
1 2 3     = n.k k k                                    (23c) 

The Taylor series expansion for the matrix exponential is 

given by 

  i

i  =  0

[ A( s )  x ]e x p [ A ( s ) x ] =  .
 i !

�

%
              

(24) 

Using the Cayley-Hamilton theorem [23]-[25], this infinite 

series can be truncated to 

2 3 4 5
0 1 2 3 4 5

e x p [ A( s ) . x ] = L ( x , s ) = 
  I +   A +    +    +    +    ,a a a a a aA A A A     (25) 

Where I is the unit matrix of order 6 and a0 - a5 are some 

parameters depending on s and x to be determined. 

Using the Cayley-Hamilton theorem again [23,25], we 

obtain, 

2 3 4 5
1 0 1 1 2 3 4 51 1 1 1

2 3 4 5
1 0 1 1 2 3 4 51 1 1 1

2 3 4 5
2 0 1 2 2 3 4 52 2 2 2

3 0

exp ( x ) =     +      +     ,k k k k
exp ( - x) =  -   +   -   +   -  ,k k k k
exp ( x ) =     +      +     ,k k k k
exp (-  x) = ak

k a a k a a a a

k a a k a a a a

k a a k a a a a

� � �

� � �
2 3 4 5

31 2 3 4 53 3 3 3
2 3 4 5

3 0 1 3 2 3 4 53 3 3 3
2 3 4 5

3 30 1 2 3 4 53 3 3 3

 -   +   -   +   -  ,a a a a ak k k k k
exp ( x ) =     +      +     ,k k k k
exp ( -  x ) =  -   +   -   +   -  .a a a a a ak k k k k k

k a a k a a a a� � �

  (26) 

The solution of this system of linear equations is given by 

2 2 2 2 2 2
0 1 2 32 3 1 3 1 2

2 2 2 2 2 2
1 1 2 32 3 1 3 1 2

 = - F (    +    +   ),a c c ck k k k k k
 = - F (    +    +   ),a s s sk k k k k k
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2 2 2 2 2 2
2 1 2 32 3 3 1 1 2

2 2 2 2 2 2
3 1 2 32 3 3 1 1 2

4 1 2 3

5 1 2 3

 = F [ (  +  )  + (  +  )  + (  +  )  ],a c c ck k k k k k
 = F [ (  +  )  + (  +  )  + (  +  )  ],a s s sk k k k k k
 = - F (  +  +  ),a c c c
 = - F  (  +  +  ).a s s s

   (27)
 

where 

� �

� �

� �

2 2 2 2 2 2
1 2 2 3 3 1
2 2

11 2 3
2 2

22 3 1
2 2

3 31 2
2 2
2 3

1 1
1

2
3

2

1F =  ,
(  -  )  (  -  )  (  -  )k k k k k k

 = (  -  ) cosh (  x ) ,c k k k
 = (  -  ) cosh (  x ) ,c k k k

, = (  -  ) cosh(  x ),k k
(  -  )k k, =  sinh( ),

k
(  -k , = 

c x s k

s x s k x

s x s
2
1

2
2

2 2
1 2

33
3

  )k  sinh(  x),
k

(  -  )k k( , ) =  sinh(  x) ,s k
k

k

x s

Substituting from equations (27) into equation (25), we 

obtain the matrix exponential in the form 

 i jexp [A (s) . x] = L(x , s) = [ (x,s) ]  , L
 i , j = 1 , 2 , 3 , 4 , 5 , 6 ,             (28) 

Where  i j(x,s) ,  i , j = 1 , 2 , 3 , 4 , 5 , 6 L  are defined in the 

appendix. 

Now, we will consider the first end of the nano-beams x=0 

is clamped and loaded thermally by ramp-type heating, which 

gives [6, 7]: 

� � � �0, 0, 0w t t�  ,                              (29) 

and 

� �1 0 0
0

0

0 for 0

0, for 0 ,

1 for

t
tt t t
t

t t

� �

�  �
! "
! " & &! "
! "

'! "# $
             

(30) 

 
Where 0t is non-negative constant and is called ramp-type 

parameter  and 0� is constant [19]. 

After using Laplace transform, the above conditions take 

the forms 

� � � �0, 0, 0,w s s�                         (31) 

and 

� � � �
0

0
1 2

0

10, .
t ses G s

t s
�

�
�� ��

 � 	� 	

 �                   

(32) 

Applying the conditions (31) and (32) into equations (21), 
we obtain 

� �

11

0

0
 ( 0 , s ) .

(0, )
(0, )
(0, )

G s

w s
s
s

�
�

�  
! "
! "
! "

 ! "�! "
! "�
! "

�! "# $

V

                          

(33) 

To get 11w (0,s), (0,s) and (0,s)� � �� � , we will 

consider the other end of the beam x   is clamped and 
remains at zero increment of temperature as follows: 

1( , ) ( , ) ( , ) 0.w t t t� �  1, ) ( ) ( , ) 0., ) ( , ) ( ,) ( , ) ( ,�1( , )( , )1( , )( , )1( ) (( ) ( )( ) (( )( )1                      (34) 

After using Laplace transform, we have 

1( , ) ( , ) ( , ) 0.w s s s� �  1, ) ( , ) ( , ) 0., ) ( , ) ( ,) ( , ) ( ,�1( , )( , )1( , )1( )( )( )( ) )( ) (( )( )1                     (35) 

Hence, we obtain 

� � � � � �
� � � � � �
� � � � � �

� �
� �
� �

11

1
14 15 16 12

24 25 26 22

34 35 36 32

(0, )
(0, ) ( )
(0, )

,s ,s ,s ,s
,s ,s ,s ,s
,s ,s ,s ,s

w s
s G s
s

L L L L
L L L L
L L L L

�
�

�

��  
! "�  �! "
! "�# $

� ��  �  � 	! " ! "� 	! " ! "� 	! " ! "� 	# $ # $
 �

�1� � � � � � �1 s�L L L� � � � � 1s s ss s� � � � � �

	
�� �,s�15 16 12� � � � �s s s� � � � �15 16 11 1 1� � � � � �s�s s ss s� � � � �� � � � � � �15 16 12� � � � � ,�15 16 1215 16� � � � �   �,�15 16 1215 16� � � � � 	
	
		" ! "� � � � � � �L L L� � � � � � �,s�25 26 22� � � � �L L L� � � � �s s s� � � � �25 2625 2625 26� � � � � ""� �L L L� � � � �
	
		" ! "� � � � � � �25 26 22� � � � � ,�25 26 2225 26� � � � � �,�25 26 2225 26� � � � �
	� � � � � � �

				� � � � � � �L L L� � � � � ""�s�s s s� � � � � � �s�L L L� � � � �s s ss s� � � � � �
		$ # $� � � � � � �35 36 32� � � � � ,�35 36 32� � � � � �,s�35 36 32� � � � �35 36 3� � � � � ""�,s�32s s ss s� � � � �35 36 335 3635 36 3� � � � � 	" ! "� � � � � � �" ! "" ! "

.    (36) 

After some complicated simplifications by using MAPLE 

software, we get the final solutions in the Laplace transform 

domain as follow: 

The lateral deflection  

� �
� �� �

� �� � � �
� �� �

� �� � � �
� �� �
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1
2 2 2 2
1 2 1 3 1

2
2 2 2 2
2 1 2 3 2

3
2 2 2 2
3 1 3 2 3
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,
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.
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k k k k k
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� �

( �
�

� �

( �
�

� �

��x

�
��x

�
.

��x

�
           

(37) 

The temperature   
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2
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2 1 2 1 2 1 2

2
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2 2 2 2 2
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sinh
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k pz k x
z x s

k k k k k k

k pz k x

k k k k k k
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k k k k k k

�
�

�

�

�

�

�

( �
 �
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The displacement 
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The Strain  
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��x
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��x
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.         (40) 

Where 

� �� �� �2 2 2
1 1 1 2 1 3

1 2

G k k k� � �
� �

(  � � �  

 
The Stress and the Strain-Energy  

 

The stress on the x-axis, according to Hooke’s law is: 

� � � �, ,xx Tx z t E e� � � � .                    (41) 

By using the non-dimensional variables in (9), we obtain 

the stress in the form 

� � 0, , .xx Tx z t e T� � � �                      (42) 

After using Laplace transform, the above equation takes 

the form: 

� � 0, ,xx Tx z s e T� � � � .                     (43) 

The strain energy which is generated on the beam is given 

by 

� �
3

, 1

1 1 1, , ,
2 2 2ij ij xx xx xx

i j
W x z t e e z� � � �


   �%

      
(44) 

or, we can write as follows: 

� � � � � �1 11, , ,
2 xxW x z t z L L� �� ��  �   � # $ # $            

(45) 

Where � � � �1L f s f t� �  # $ is the Laplace inverse. 

Those complete the solution in the Laplace transform 

domain. 

Numerical Inversion of the Laplace Transform

In order to determine the solutions in the time domain, the 

Riemann-sum approximation method is used to obtain the 

numerical results. In this method, any function in Laplace 

domain can be inverted to the time domain as  

� � � �
1

1( ) Re 1
2

t N
n

n

e i nf t f f
t t

) �) )


�  � � � � �! "� 	

 �# $

%       (46) 

Where Re is the real part and i is imaginary number unit. For 
faster convergence, numerous numerical experiments have 
shown that the value of ) satisfies the relation 4.7t) *  

Tzou [26]. 

Numerical Results and Discussion 

 Now, we will consider a numerical example for which 

computational results are given. For this purpose, gold (Au) is 

taken as the thermoelastic material for which we take the 

following values of the different physical constants: 

� � � �
� �

6 1

3
0

318 / , 14.2 10 K ,

1930 kg /m , 293K, 130 / kg K ,
180 GPa, 0.44.

Tk W m K

T C J
E

�

�

�
�

� � 

  

 

 

The aspect ratios of the beam are fixed as 

/ 10h / 10 and / 1/ 2b h  . When h is varied,  and b changed 
accordingly with h. 

For the nanoscale beam, we will take the range of the 
beam length � � 121 100 10 m�� + . The original time t and the 

ramping time parameter 0t will be considered in the picoseconds 

� � 121 100 10 sec�� + and the relaxation time 0� in the 

range � � 141 100 10 sec�� + .

The figures were prepared by using the non-dimensional 

variables which are defined in (9) for a wide range of beam 
length when 1.01.0 , 0 1.0�    / 6z h and 0.15t  . 

 Figures (1-5), represent the lateral vibration, the 

temperature, the displacement, the stress and the strain energy 

of the beam at different values of the relaxation time when 

0 0.0�  (Biot) and 0 0.02�   (L-S) and we found that, the 

relaxation time has significant effects on all the studied fields. 

In the context of L-S, the values of the lateral vibration, the 

temperature, the displacement, the stress and the strain energy 

decreasing when the relaxation time value increases and it is 

very obvious in the peek points. In the context of L-S model, 

the speed of the wave propagation of all the studied fields 

vanish at points closed to the first edge of the beam more than 



Hamdy M. Youssef et al                                       145                            Nano-Micro Lett. 2, 139-148 (2010) 

DOI:10.5101/nml.v2i3.p139-148                                                                       http://www.nmletters.org 

the points at the context of Biot model and the damping of the 

strain-energy appear in L-S model before Biot model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 1. The lateral deflection w For L-S and Biot theories 

 

 
FIG. 2. The temperatue for L-S and Biot theories 

 

 
FIG. 3. The displacement for L-S and Biot theories 

 

 
FIG. 4. The stress for L-S and Biot theories 

 
FIG. 5. The strain-energy at L-S and Biot theories 

 
 

 
FIG. 6. The lateral deflection w at different time of ramping parameter 

 
 

 
FIG. 7. The temperature at different time of ramping parameter 

 
 

 
FIG. 8. The displacement at different time of ramping parameter 
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In figures (6-10), we represented the lateral vibration, the 

temperature, the displacement, the stress and the strain energy 

of the beam at different values of the ramping time parameter 

when t0(0.10)<t(0.15), t0= t =0.15 and t0(0.20)>t(0.15) in the 

context of L-S model. We found that, the ramping time 

parameter has significant effects on all the studied fields. The 

increasing in the value of the ramping time parameter causes 

decreasing in the values of all the fields which is very obvious 

in the peek points of the curves. Also, the damping of the strain 

energy increases when the ramping time parameter increases. 

Conclusion 

This paper has investigated the vibration characteristics of 

the deflection, the temperature, the displacement, the stress and 

the strain energy of an Euler-Bernoulli gold nano-beam induced 

by a ramp type heating. An analytical direct method and 

numerical technique based on the Laplace transformation has 

been used to calculate the vibration of the deflection, the 

temperature, the displacement, the stress and the strain energy. 

The effects of the relaxation time and the ramping time 

parameter on all the studied fields have been shown and 

represented graphically. The non-Fourier law of heat 

conduction gives a finite speed of wave propagation and 

increases the damping of the strain energy. 

Received 23 June 2010; accepted 12 July 2010; published online 
26 July 2010. 
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Appendix 

� �11 0 4 3L x,s = a  - a � , 

� �12 4 4L x,s  =- a � , 

� �13 2 4 5L x,s  = a  + a � ,  

� �14 1 5 3L x,s  = a  - a � , 

� �15 5 4L x,s  =  - a � , 

� �16 3 5 5L x,s =a  + a � ,  

� �21 4 2 3L x,s  = a � � , 

� � � �2
22 0 2 1 4 1 2 4L x,s  = a  + a  + a  +� � � � , 

 

� � � �23 2 2 4 2 1 5L x,s  =- a  - a  + � � � � , 

� �24 5 2 3L x,s  =  a � � , 

� � 2
25 1 3 1 5 1 2 4L x,s = a  + a  + a (  + )� � � � , 

� �26 3 2 5 2 1 5L x,s = - a  - a (  + )� � � � , 

� �31 2 3 4 3 5L x,s = - a  - a� � � , 

� �32 2 4 4 4 l 5L x,s = - a  - a (  + )� � � � , 

� � 2
33 0 2 5 4 2 4 3 5L x,s = a  + a  + a (  -  + )� � � � � , 

� �34 3 3 5 3 5L x,s = - a  - a� � � , 

� �35 3 4 5 4 1 5L x,s =  - a  - a (  + )� � � � , 

� � 2
36 1 3 5 5 2 4 3 5L x,s = a  + a  + a (  -  + )� � � � � , 

� �41 3 3 5 3 5L x,s =  - a  - a� � � , 

� �42 3 4 5 4 1 5L x,s =  - a  - a (  + )� � � � , 

� � 2
43 1 3 5 5 2 4 3 5L x,s = a  + a  + a (  -  + )� � � � � , 

� �44 0 4 3L x,s = a  - a � , 

� �45 4 4L x,s = - a � , 

� �46 2 4 5L x,s = a  + a � , 

� �51 3 2 3 5 2 3 1 5L x,s = a  + a (  + )� � � � � � , 

� � 2
52 1 1 3 1 2 4

3
5 1 1 2 4 2 4 5

L x,s = a  + a (  + ) 

+a (  + 2  + )

� � � �

� � � � � � �
, 

� �53 1 2 3 2 1 5
2 2

5 2 1 1 5 2 4 3 5

L x,s = - a  - a (  + ) 

-a (  +  +  -  + )

� � � �

� � � � � � � �
, 

� �54 4 2 3L x,s =  a � � , 

� �56 2 2 4 2 1 5L x,s =- a  - a (  + )� � � � , 

� � 2
61 1 3 3 3 5 5 3 2 4 3 5L x,s = - a  - a  - a (  -  + )� � � � � � � � , 

� �62 1 4 3 4 1 5
2 2

5 4 1 1 5 2 4 3 5

L x,s = - a  - a (  + )

-a (  +  +  -  + )

� � � �

� � � � � � � �
, 

� � 2
63 1 5 3 2 4 3 5

2
5 1 2 4 5 2 4 3 5

L x,s =a  + a (  -  + ) 

+a ( + (2 -2 + ))

� � � � �

� � � � � � � �
, 

� �64 2 3 4 3 5L x,s =  - a  - a� � � , 

� �65 2 4 4 4 1 5L x,s =- a  - a (  + )� � � � , 

� � 2
66 0 2 5 4 2 4 3 5L x,s =a  + a  + a (  -  + )� � � � � ,
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