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Elastic Buffering Layer on CuS Enabling High‑Rate 
and Long‑Life Sodium‑Ion Storage
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HIGHLIGHTS

• Erythrocyte-like CuS microspheres were encapsulated in ultrathin polyaniline (PANI) layer coating.

• PANI swollen by electrolytes stabilizes solid electrolyte interface layer and benefits the ion transport and charge transfer at the PANI/
electrolyte interface.

• Multi-functional PANI coating ensures an outstanding comprehensive performance for sodium-ion storage.

ABSTRACT The latest view suggests the inactive core, sur-
face pulverization, and polysulfide shuttling effect of metal 
sulfides are responsible for their low capacity and poor cycling 
performance in sodium-ion batteries (SIBs). Whereas over-
coming the above problems based on conventional nanoengi-
neering is not efficient enough. In this work, erythrocyte-like 
CuS microspheres with an elastic buffering layer of ultrathin 
polyaniline (PANI) were synthesized through one-step self-
assembly growth, followed by in situ polymerization of ani-
line. When CuS@PANI is used as anode electrode in SIBs, it 
delivers high capacity, ultrahigh rate capability (500 mAh  g−1 
at 0.1 A  g−1, and 214.5 mAh  g−1 at 40 A  g−1), and superior 
cycling life of over 7500 cycles at 20 A  g−1. A series of in/ex 
situ characterization techniques were applied to investigate the 
structural evolution and sodium-ion storage mechanism. The PANI swollen with electrolyte can stabilize solid electrolyte interface layer, 
benefit the ion transport/charge transfer at the PANI/electrolyte interface, and restrain the size growth of Cu particles in confined space. 
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Moreover, finite element analyses and density functional simulations confirm that the PANI film effectively buffers the volume expansion, 
suppresses the surface pulverization, and traps the polysulfide.

KEYWORDS CuS; Elastic buffering layer; Polyaniline; Long life; Sodium-ion batteries

1 Introduction

Along with the advance in the industry, commercial lith-
ium-ion batteries (LIBs) may be unable to meet the rapidly 
increasing requirements in large-scale energy storage owing 
to the limited lithium resources [1, 2]. Accordingly, sodium-
ion batteries (SIBs) with enriched sodium resources are 
emerging as one of the most promising alternatives to LIBs 
[3, 4]. Although lithium and sodium share similar proper-
ties as alkali metals, graphite, as the most common negative 
electrode of commercial LIBs, shows low reversible capac-
ity (≈35 mAh  g−1) in SIBs because  Na+ embedded between 
graphite layers cannot form a stable  NaCx intercalation 
compound [5]. Afterward, it was found that the amorphous 
hard carbon shows enhanced Na-ion storage performance, 
but it still suffers from insufficient rate capacity, low ini-
tial Coulombic efficiency, and poor cycling stability [6–8]. 
Therefore, it is urgent to search for efficient anode materials 
for SIBs.

Metal sulfides (MSs) possess high theoretical capacities 
and fast reaction kinetics of phase transformation, which 
have been widely studied for high-performance SIBs [9, 10]. 
However, in situ real-time magnetic monitoring technology 
reveals the presence of "inactive core" in the interior caused 
by the sluggish kinetics of larger Na-ion radius and severe 
surface pulverization of MSs, results in its low capacity and 
poor cycling performance for SIBs [11]. Thus, MSs nano-
structure with a short ion transmission path will facilitate 
 Na+ insertion/extraction and highly utilize active materials. 
Furthermore, the pulverization caused by volume expansion 
during the typical conversion reaction usually requires the 
construction of hollow nanostructure and carbon-based com-
posites [12]. However, the hollow nanostructure generally 
requires a complicated template-based strategy and has a 
low tap density (often < 0.7 g  cm−3) [13]. Despite carbon-
based composites proving high electronic conductivity, the 
low elongation of nanocarbon (e.g., < 10% for graphene) is 
not sufficient to buffer the more considerable volume expan-
sion [14–16]. Differently, conductive polymer combines the 
advantages of high elongation and conductivity [17], which 

would bring a great chance to overcome the pulverization 
and low cyclability of MSs. Meanwhile, polymer coating 
displays a great potential to avoid the polysulfide shuttling 
issue in MSs anodes during the long-term cycling process.

Among the various MSs materials, copper sulfide (CuS) 
with layered structure has attracted much more attention 
because of its resource abundance and high capacity in SIBs 
[18]. However, the unique Cu aggregation behavior in CuS 
will promote the growth of Cu particles even to 38 nm in 
size during the electrochemical conversion reaction, which 
leads to huge local stress, strain, and particle cracking [19]. 
Therefore, coating the above-mentioned conductive polymer 
on the surface of CuS is an effective strategy for constructing 
high-performance SIBs anodes.

Herein, we report a facile solvothermal approach to pre-
pare erythrocyte-like CuS microspheres (consisting of thin 
nanosheets) initially, and after an in situ polymerization, an 
ultrathin coating layer (~ 2.0 nm thickness) of polyaniline 
(PANI) on CuS nanosheets (CuS@PANI) is obtained. When 
it was used as an anode for SIBs, the CuS@PANI delivered 
a high capacity of 500.0 mAh  g−1 (closing to the theoreti-
cal capacity) and ultralong cycling life over 7500 cycles. 
Finite element analyses (FEA) reveal PANI layer with a 
high elongation (even up to 40%) [20] can buffer the volume 
expansion and suppress the surface pulverization of CuS. 
Besides, the positive  NH+- groups in PANI can effectively 
bind the negative polysulfide, as evidenced by DFT calcula-
tion. Moreover, the PANI swollen by electrolytes can stabi-
lize the SEI film, facilitate Na-ion transport, and confine the 
space for Cu particle growth during the conversion reaction. 
Such a universal strategy of using multi-functional coating 
can be extended to other MSs with improved performance 
for new-generation batteries.

2  Experimental Section

2.1  Synthesis of Erythrocyte‑like CuS Microspheres

Copper (II) nitrate hydrate (Cu(NO3)2·3H2O) (0.5798) and 
thiourea  (CH4N2S) (0.7308 g) were dissolved in 40 mL 



Nano-Micro Lett.          (2022) 14:193  Page 3 of 13   193 

1 3

ethylene glycol. Next, the above solution was transferred into 
a 50 mL stainless steel autoclave and kept at 140 °C for 10 h. 
After natural cooling, the black products were filtered, rinsed 
with water and ethanol, and vacuum dried at 50 °C for 10 h.

2.2  Synthesis of CuS@PANI Microsphere

0.1 g of the synthesized erythrocyte-like CuS microspheres, 
0.005 g paratoluenesulfonic acid sodium salt (pTSA), and 
20 μL aniline monomers were added to 40 mL deionized 
(DI) water under magnetic stirring for 2 h. Then, a solution 
dissolved by 0.114 g ammonium persulfate was dropped into 
the above-mixed solution under magnetic stirring for 3 h. All 
of the above experimental procedures were carried out in an 
ice bath. After the reaction, the products were collected by 
washing and drying at 50 °C for 10 h.

2.3  Characterization

The crystal structure, surface feature, and morphology 
microstructure of the products were characterized using 
x-ray diffraction (XRD, Bruker AXS D8 Advance), scanning 
electron microscope (SEM, JSM-7001F, 10 kV), Fourier 
transform infrared spectra (FT-IR, Nicolet 380), transmis-
sion electron microscopy (TEM, JEM-2100, 200 kV), and 
x-ray photoelectron spectroscopy (XPS, ESCALAB 250 Xi).

2.4  Electrochemical Testing

Electrochemical measurements were carried out in CR2032 
coin cells, in which active materials (~ 2 mg, 80%), con-
ductive carbon black (Super P, 10 wt%), and binder (poly-
vinylidene difluoride binder, PVDF, 10 wt%) were mixed 
and coated on a copper foil as the working electrode. A 
porous glass fiber film, 1 M sodium trifluomethanesul-
fonate  (NaSO3CF3) in diethylene glycol dimethyl ether 
(DEGDME), and a sodium foil electrode were used as the 
separator, electrolyte, and counter/reference electrodes, 
respectively. The cyclic voltammetry (CV) curves between 
0.01 and 3 V (vs.  Na+/Na) and electrochemical impedance 
spectroscopy (EIS) were performed using an electrochemical 
workstation (Gamry Reference 3000). Galvanostatic charge/
discharge tests were conducted on a Neware battery testing 
system (Neware, Shenzhen, China). In situ XRD measure-
ments were performed in an electrochemical cell with a 

beryllium window, and the active material slurry was cast 
on an Al foil (See the schematic diagram of the cell device 
in Fig. S1), and the active material slurry was cast on an 
Al foil. For ex situ tests, the disassembled electrodes were 
washed in DEGDME, dried in Ar, transferred and tested 
with minimized exposure time in the air.

3  Results and Discussion

Figure 1a illustrates the growth mechanism and prepara-
tion process of CuS@PANI. First, erythrocyte-like CuS 
microspheres can be obtained by a solvothermal reaction of 
hydrated copper nitrate and thiourea (Tu) in ethylene glycol 
(EG) solvent for 10 h. In the initial stage of reaction, the Tu 
would coordinate with  Cu2+ to produce [Cu(Tu)n(EG)m]2+ 
complexes (Fig. S2), and then the complex would decom-
pose to form nuclei in further solvothermal process for over 
one hour [21]. The following nuclei will occur preferentially 
at the surface of CuS plate along the lower surface energy 
[22], which finally generates the intersectional circle CuS 
nanoplate. Meanwhile, the intersectional two CuS nano-
plates will likely grow in the same direction based on the 
same lattice fringes in a conjoined place [23]. The SEM 
images of CuS intermediates obtained in time-dependent 
experiments (Fig. S3) show a small number of thin nano-
disks with a diameter of ~ 1.0 μm at the initial reaction stage 
(2–4 h). With increasing the reaction time to 6 h, these nan-
odisks stacked with each other around a common center, 
forming a pancake-like shape. As the reaction time was 
further extended to 10 h, many more nanosheets crowded 
around to self-assemble into the uniform erythrocyte-like 
CuS microspheres with a diameter up to ~ 2.0 μm, as shown 
in Fig. 1b. For a long reaction time (over 10 h), the obtained 
samples still do not produce a complete sphere and maintain 
the same erythrocyte-like structure (Fig. S3). In addition, 
the reaction temperature plays a key role in the formation of 
CuS microspheres and the thickness of nanodisks (Fig. S4). 
Next, the erythrocyte-like CuS microspheres coated with an 
ultrathin PANI layer (Fig. 1c-d) were prepared based on a 
typical in situ polymerization method in an ice-bath solution 
containing aniline monomers and an oxidizing agent. The 
high-magnification SEM image (Fig. 1d) exhibits a rougher 
surface than pristine CuS microspheres, indicating that the 
PANI film was successfully grown on the surface of CuS 
nanosheets.
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The sharp XRD peaks of CuS and CuS@PANI are 
matched well with the hexagonal CuS (JCPDS No. 06–0464) 
(Fig. 1e). No diffraction peaks of PANI can be found in 
CuS@PANI, indicating the low crystallinity and content of 
PANI. TEM measurement was carried out to analyze the 
detailed structure of CuS@PANI. Figure 1f-g displays the 
front and side views of the CuS@PANI, which agree well 
with the SEM results. The selected area electron diffraction 
(SAED) pattern with the polycrystalline diffraction rings can 
be indexed to the (102), (103), (006), and (110) planes of 
CuS (Fig. 1h). The HRTEM image (Fig. 1i) of the CuS@
PANI demonstrates that the thickness of the PANI coating 
layer on CuS is ~ 2 nm, and the lattice spacing of 0.8 nm 
corresponds to the (002) plane of CuS. XPS analyses are 
further performed to confirm the chemical states of the ele-
ments involved in CuS@PANI. The Cu 2p spectrum (Fig. 1j) 
presents the Cu 2p3/2 (931.3 eV) and Cu 2p1/2 (951.3 eV) 
with a spin energy separation of 20.0 eV and an apparent 
satellite peak at 943.8 eV, which confirms the presence of 
 Cu2+ [24]. In Fig. 1k, there are two doublets peaks at (161.3 
and 160.4 eV) and (164.2 and 162.9 eV) assigned to  S2− and 

 (S2)2−, respectively [25]. Figure 1l shows the C 1s spectrum 
with three peaks at 284.4, 285.8, and 287.8 eV correspond-
ing to C–C, C–N, and C=N, respectively [26]. The N 1s 
spectrum in Fig. 1m is deconvoluted into four peaks, where 
three peaks at 398.5, 399.6, and 400.5 eV can be indexed 
to quinonoid imine (=N–), benzenoid imine (–NH–), and 
protonated amine (=NH+–), respectively [27]. And the rest 
of –NH2

+– at 443 eV reflects the intrachain doping with 
p-toluenesulfonic acid (pTSA) on PANI. These results, com-
bined with the IR analysis (Fig. S5), confirm that the PANI 
coating on CuS is the high conductive emeraldine salt [28].

To fundamentally understand the advantage of elastic 
coating, we introduce finite element analyses (FEA) to com-
pare the stress and strain distribution of CuS@PANI with 
CuS@Carbon film after the intercalation of Na ions. Given 
the lamellar structure unit of CuS microsphere, we built a 
similar fan-like CuS flake with a radius of 1 μm and a thick-
ness of 100 nm (see the 3D and 2D views in Fig. 2a-b). 
The coating shell was set as 2 nm thickness, representing 
the amorphous carbon or PANI. The Young’s modulus and 
Poisson’s ratio of CuS were assumed as 60 GPa and 0.15, 

Fig. 1  a Schematic illustration of the self-assembly growth of the erythrocyte-like CuS microsphere and the subsequent coating by PANI. The 
SEM images of the as-synthesized b CuS and c, d CuS@PANI. e XRD patterns of CuS, PANI, and CuS@PANI. f‑i TEM image, SAED pattern, 
and HRTEM image of CuS@PANI. XPS spectra of CuS@PANI for j Cu 2p, k S 2p, l C 1s, and m N 1s 
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respectively, based on a survey of metal sulfides [29–32]. 
And those of the amorphous carbon film are 950 Gpa and 
0.2 [33], respectively, as well as 0.9 Gpa and 0.3 for PANI 
[34–37]. The expansion coefficients of composites were 
appointed to remain a constant in the whole structure. Dur-
ing the volume expansion up to 10% caused by sodium-
ion insertion, the carbon film reaches the highest stress 
of 39.1 GPa over its tensile strength (Fig. 2c) [38]. Under 
high stress, the carbon shell leads to a volume compres-
sion, inducing a severe compressive strain in sharp corners 
(hot spot), as shown in Fig. 2d. At the same volume expan-
sion condition, the PANI shell obtains stress below 40 MPa 
(see the von Mises in Fig. 2e), smaller than its tensile stress 
of over 90 MPa [39–41]. The uniform train distributions 
(Fig. 2f) of CuS@PANI indicate CuS undergo a homogene-
ous expansion without strain concentration. Thus, the CuS@
PANI has the potential to overcome the probable surface 
fracture and achieve excellent electrochemical and structural 
stability for SIBs.

After optimization of the synthesis procedure by adjusting 
reaction time, temperature, and thickness of PANI film, the 
CuS@PANI samples prepared under a 10 h solvothermal 
process and the adding of 20 μL aniline monomers (Figs. 
S3, S4, and S6) were further systematically investigated 
as anode for SIBs. The initial five cyclic voltammograms 

(CV) curves of CuS@PANI are shown in Fig. 3a. In the first 
scan, the cathodic peaks of 1.6–1.1 V mainly correspond to 
the  Na+ ion insertion into the CuS lattice to form  NaxCuS 
(x < 0.5) [42]. And the strong irreversible peak at 0.3 V is 
associated with forming the solid electrolyte interphase 
(SEI) layer and the conversion of CuS to Cu and  Na2S. The 
subsequent anodic peaks of 1.9 and 2.2 V are related to the 
multiple-phase transformations and desodiation process. In 
the following cycles, the cathodic peaks of 2.2–1.5 V cor-
respond to the  Na+ ion intercalation processes of  Cu2S. The 
new reduction peaks of 0.8 and 0.5 V refer to the deeply 
sodiated  NaxCu2S (0.5 < x < 1) and conversion reaction 
with the generation of Cu and  Na2S, respectively [43]. The 
1.5–2.0 V oxidation peaks involve the multi-step desodiation 
process to produce the  Cu2S [42, 44]. And the reduction/
oxidation peaks are highly overlapped, demonstrating the 
reversible multi-step conversion reaction of  Cu2S.

Figure 3b shows the first five galvanostatic charge/dis-
charge (GCD) curves at 0.1 A  g−1. The voltage plateaus of 
GCD curves agree well with the redox peaks of CV profiles. 
And the CuS@PANI electrode shows the first discharge 
capacity of 620.0 mAh  g−1 with a coulombic efficiency value 
of nearly 100% and the reversible capacity of 500.0 mAh  g−1 
from the  2nd to 5th cycle with a slight capacity loss, which 
could be attributed to the irreversible formation of SEI and 

Fig. 2  FEA simulations for comparing the strain and stress distributions of CuS@carbon and CuS@PANI coating
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the phase transition from CuS to  Cu2S. Pure CuS micro-
spheres display similar CV and GCD curves to those of the 
CuS@PANI, suggesting the capacity contribution from the 
ultrathin coating layer of PANI can be ignored (Fig. S7). 
The erythrocyte-like CuS microspheres assembled by hier-
archical nanosheets with highly conductive PANI coating 
will facilitate the transportation of electrolyte and electron 
conductivity, ensuring an excellent rate performance. As 
expected, the GCD curves of CuS@PANI even deliver stable 
charge/discharge plateaus at a ultrahigh current density of 
40 A  g−1 (Fig. 3c). The corresponding discharge capacities 
of 500.0, 484.1, 489.0, 471.5, 469.4, 459.4, 453.5, 422.7, 
387.7, 332.3, and 214.5 mAh  g−1 at 0.1- 40.0 A  g−1 are 
obtained, respectively, which are superior to those of the 
individual CuS and PANI electrodes (Fig. 3d). In addition, 

the specific capacity of the CuS@PANI can quickly recover 
to 400 mAh  g−1 as the current density is suddenly back to 
2 A  g−1, further demonstrating the high stability and revers-
ibility of the CuS@PANI electrode. Figure 3e summarizes 
the rate performance of CuS-based anode materials reported 
recently in SIBs [43, 45–54]. It can be seen that CuS@PANI 
possesses a high specific capacity and a peerless advantage 
in ultrahigh rate performance. To evaluate the cycling sta-
bility of the CuS@PANI microspheres, we carried out the 
cycling test at a current density of 5 A  g−1 within 0.01—3 V 
was carried out (Fig. 3f). The CuS@PANI cell retains a high 
reversible capacity of 393.3 mAh  g−1 (over 99% of the  3rd 
capacity) after 500 cycles with a high Coulombic efficiency 
of nearly 100%. While the bare CuS without PANI coating 
begins to decay seriously after 120 cycles, which can be 

Fig. 3  a First five CV curves at 0.1 mV  s−1 and b GCD curves at 0.1 A  g−1 for CuS@PANI electrode. c The GCD curves of CuS@PANI at dif-
ferent current densities and d, e the corresponding rate performance compared with CuS, PANI, and previously reported other CuS electrodes. f 
Cycling performance of CuS@PANI, CuS, and PANI at 5 A  g−1, and g long cyclic stability of CuS@PANI at 20 A  g−1
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attributed to the severe surface pulverization (see the ex situ 
SEM image in Fig. S8). The pure PANI electrode only dis-
plays a low specific capacity of ~ 17 mAh  g−1. Additionally, 
the structural tolerance of CuS@PANI was further evaluated 
in a higher current density (20 A  g−1), as shown in Fig. 3g. It 
is noteworthy that CuS@PANI still maintains 266 mAh  g−1 
with a high retention of 91% over 7500 cycles, superior to 
other metal sulfides electrodes in SIBs (Table S1), demon-
strating the vital role of PANI in improving the cycling sta-
bility of CuS.

To reveal the excellent rate performance of CuS@PANI, 
we used the CV test method to distinguish the typical capac-
itive contribution (Fig. 4a). According to the equation of 
log(i, peak currents) = blog(v, scan rates) + log(a) [50], the 
calculated b value are 0.80, 0.81, 0.84 and 0.88 for peaks 
1 to 4, respectively (inset in Fig. 4a), which approach 1, 
demonstrating the capacitance dominant process. The equa-
tion of i = (k1v, capacitive part) + (k2v0.5, diffusion-controlled 
part) was employed to quantify its ratio of capacitive con-
tribution. Figure  4b displays the increase in capacitive 
contribution with rising rates, e.g., as high as 98.7% of the 
pseudocapacitive contribution (blue area) at 2.0 mV  s−1 
(Fig. 4c), which exceeds the bare CuS microspheres (Fig. 

S9). Figure 4d shows the galvanostatic intermittent titration 
technique (GITT) measurement curves. Compared with 
CuS@PANI, the pure CuS show a significant polariza-
tion voltage in the charging process related to the desodia-
tion process of  Na2S to produce  Cu2S. The corresponding 
sodium-ion diffusion coefficients (see the calculated method 
in Supporting Information and Fig. S10) of CuS@PANI are 
1.8 ×  10–10–4.5 ×  10–13  cm2  s−1 in discharging process and 
2.5 ×  10–10–7.8 ×  10–13  cm2  s−1 in charging process, respec-
tively, outperforming the pure CuS in charge/discharge 
process. These results are supported by the EIS tests (Fig. 
S11), manifesting that the PANI coating lowers the charge 
transfer resistance and promotes the charge/ion transport at 
the interface.

To better understand the sodium-ion storage mecha-
nism, in situ XRD, ex situ XPS, and TEM measurements 
were conducted to investigate the structural evolution 
of CuS@PANI. During the initial sodiation, the diffrac-
tion peak of CuS gradually decreases until it disappears 
(Fig. 5a), corresponding to the Na intercalation process 
(CuS + xNa+  + xe− →  NaxCuS). Then, the emergence of 
the weak peaks of  Cu2S and  Na2S can be attributed to a 
disproportionation reaction of  NaxCuS → (x/2)Na2S + (x/2)

Fig. 4  a CV curves at different scan rates, inset: its relationship of log(i) and log (v). b Capacitive and diffusion contribution calculated based 
on the CV results and c corresponding detailed shaded area of CV curve at 2 mV  s−1. d GITT charge/discharge curves for CuS and CuS@PANI, 
and e, f the corresponding sodium-ion diffusion coefficient
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Cu2S + (2 – x)CuS. In the following cycles (Fig. 5b), the 
 Cu2S peaks appear and disappear periodically along with 
the GCD process, indicating a highly reversible conversion 
reaction of  Cu2S +  2Na+  +  2e− ↔  Na2S + 2Cu. The ever-
present  Na2S peak mainly stems from the overweight  Na2S 
produced in the irreversible phase transformation [55]. The 
F 1s spectra at the different discharged and charged states 
(Fig. 5c) exhibit the bands at around 685.0 and 688.4 eV, 
corresponding to the formation of NaF and organic fluorides 
(SEI film), respectively [56]. That demonstrated the SEI 
layer begins to emerge as discharging from 0.7 to 0.01 V and 
get stronger in the subsequent charging to 3.0 V. As shown in 

Fig. 5d, the Cu LMM spectrum measured at the discharged 
0.7 V state presents a broad peak at 917.8 eV near Cu(I), 
which indicates a fast phase transformation from Cu(II) to 
Cu(I) happened at 0.7 V. For the sample fully discharged 
to 0.01 V, the emerging Cu LMM Auger peak at 918.5 eV 
refers to the Cu(0), confirming the metal Cu generated in 
the conversion reaction [57]. After a full charging to 3.0 V, 
the prominent peak at 917.2 eV corresponds to the Cu(I), 
confirming the formation of  Cu2S from the electrochemi-
cal oxidation of Cu(0). In the S 2p spectra (Fig. 5e), the 
dominant peak at around 169.0 eV corresponds to sulfate 
(from the electrolyte and partially oxidized material by air) 

Fig. 5  a, b In situ XRD patterns of CuS@PANI during the first discharge and the third CGD processes. The ex situ XPS analysis of CuS@
PANI for c F 1 s, d Cu LMM, e S 2p spectra at 0.01, 0.7 and 3.0 V states. The HRTEM images and SAED patterns of CuS@PANI electrode at 
different CGD states: f (0.7 V), g (0.01 V), and h (3.0 V)
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[58]. The peak at 161.4 eV appearing in all states is assigned 
to  Na2S [59], consistent with the in situ XRD results. The 
peak at 162.7 eV can be indexed to sulfide of  Cu2S [60, 61]. 
Besides, the shadow area between 161.4 and 163.9 eV for 
the electrode at the three states involves the central-S atoms 
in polysulfide chains, suggesting the existence of polysulfide 
that cannot be completely transformed in the GCD process 
[61–63]. Furthermore, the ex situ HRTEM image of the dis-
charged electrode at 0.7 V (Fig. 5f) reveals the intermediate 
state of the emergence of  Cu2S (222) accompanied by the 
disappearance of CuS (002), demonstrating the phase trans-
formation from CuS to  Cu2S. The inverse fast Fourier trans-
form (IFFT) image and geometric phase analysis (GPA) (as 
shown in Fig. S12) reveal the formation of crystallographic 
defects of edge and screw dislocation after intercalating  Na+ 
ion, which induces the uniform tensile stress and compres-
sive stress in the electrode materials. Deeply discharged to 
0.01 V, the HRTEM image (Fig. 5g) presents the fully trans-
formed products of the  Na2S and Cu particles, evidenced by 
their SAED pattern inserted in the image. After charging 
up to 3.0 V (Fig. 5h), the main products of  Cu2S and ever-
presented  Na2S can be found in the HRTEM image and cor-
responding SAED pattern.

Based on the above analysis, the mechanism of the excel-
lent rate property and long cycling life of CuS@PANI is 
illustrated in Fig. 6. First, the CuS@PANI was transformed 
into  Cu2S@PANI during the sodiation/desodiation process 
(Fig. 6a) and maintained its original morphology (Fig. S13). 

Meanwhile, the PANI rich in positive charge (=NH+–) can 
adsorb the sodium polysulfide, further evidenced by the den-
sity functional theory calculations, showing the adsorption 
energy (Ead) of  Na2Sx (x = 2, 4, 6, 8) is −4.1, −2.5, −1.7, 
and −0.6 eV, respectively (Fig. 6b, the detailed computa-
tional method was shown in Supporting Information). The 
ultrathin PANI coating was swollen by electrolytes (see the 
thickness of PANI film increased by 20.4% after swelling 
in the electrolyte; meanwhile, the swollen PANI can restore 
to its initial state after a drying process, indicating its high 
elasticity, as shown in Fig. S14). Then, the PANI matrix 
with  Na+ doping and taking in the corrosive HF can pre-
vent the continued buildup of poorly conducting fluoride 
[64], resulting in a stable SEI layer suitable for ion transport 
(Fig. 6c). And the encapsulated space by PANI can not only 
contribute to buffering the volume expansion but also can 
confine the excessive growth of nanoparticles in conversion 
reaction (see the ex situ HRTEM observation of Fig. 5g, 
showing the size of Cu particles no more than 6 nm), ensu-
ing little change in morphology and suppressing the surface 
pulverization upon cycling. Overall, the introduction of 
multi-functional PANI coating ensures efficient utilization 
of CuS electrodes, affording an outstanding comprehensive 
performance of high specific capacity, high rate, and ultra-
long cycle stability.

Furthermore, we also evaluated the electrochemical per-
formance of hybrid sodium-ion capacitors (SIC) by using 
CuS@PANI as the anode and commercial active carbon 

Fig. 6  a Schematic illustration for phase transition from CuS@PANI to  Cu2S@PANI, b adsorption configuration of polysulfide on PANI, and c 
the  Cu2S encapsulated in PANI-electrolyte with improving Na-ion storage
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(AC) as the cathode electrode (see the details in Fig. S15). 
Benefiting from the high-rate pseudocapacitive process 
in CuS@PANI anode, the CuS@PANI//AC SIC deliv-
ers a high energy density of 50 Wh  kg−1 at a power den-
sity of 140 W  kg−1 and retains 23 Wh  kg−1 at an ultrahigh 
power density of 6250 W  kg−1. The excellent performance 
of CuS@PANI//AC SIC is superior to that of previously 
reported SIC, such as SMGA (sulfur-doped  Ti3C2Tx/
RGO)//AC (41 Wh  kg−1 at 197 W  kg−1 and 25 Wh  kg−1 at 
2473 W  kg−1) [65], Bi-stacked MXene//AC (40 Wh  kg−1 at 
38 W  kg−1) [66],  NiCo2O4//AC (23.5 Wh  kg−1 at 36 W  kg−1) 
[67], and Na-TNT (sodium titanate nanotubes)//AC 
(33.6 Wh  kg−1 at 120 W  kg−1) [68]. Such CuS@PANI//AC 
SIC sustains a retention of 80.1% after 1000 GCD cycles at 
a current density of 5 A  g−1 with a high coulombic efficiency 
of above 99.6%.

4  Conclusions

In this work, erythrocyte-like CuS microspheres were pre-
pared based on self-assembly growth via a solvothermal 
method, followed by the PANI coating to fabricate CuS@
PANI composite. When used as anodes for SIBs, the CuS@
PANI delivers an excellent rate capability (500 mAh  g−1 at 
0.1 A  g−1, and 214.5 mAh  g−1 at 40 A  g−1) and superior 
cyclability of over 7500 cycles at 20 A  g−1. These outstand-
ing electrochemical performances can be mainly attributed 
to the contribution of multi-functional PANI. PANI coating 
on CuS buffers the volume expansion, suppresses the surface 
pulverization, and binds the negative polysulfide. Moreover, 
PANI swollen by electrolytes can stabilize the SEI layer, 
facilitate Na-ion transport and charge transfer at the elec-
trode interface, and restrain further growth of nanoparticles 
in conversion reaction. Consequently, the convenient strat-
egy can be extended to other MSs with overall performance 
improvement in SIBs.
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