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Animal‑ and Human‑Inspired Nanostructures 
as Supercapacitor Electrode Materials: A Review
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HIGHLIGHTS

• Animal- and human-inspired nanostructures as supercapacitor electrode materials are summarized.

• Structural formation and supercapacitive electrochemical applications are comprehensively summarized.

• Future outlooks such as large-scale production and other properties are proposed.

ABSTRACT Human civilization has been relentlessly inspired by the 
nurturing lessons; nature is teaching us. From birds to airplanes and 
bullet trains, nature gave us a lot of perspective in aiding the progress 
and development of countless industries, inventions, transportation, 
and many more. Not only that nature inspired us in such technological 
advances but also, nature stimulated the advancement of micro- and 
nanostructures. Nature-inspired nanoarchitectures have been consid-
ered a favorable structure in electrode materials for a wide range of 
applications. It offers various positive attributes, especially in energy 
storage applications, such as the formation of hierarchical two-dimen-
sional and three-dimensional interconnected networked structures that 
benefit the electrodes in terms of high surface area, high porosity and 
rich surface textural features, and eventually, delivering high capacity 
and outstanding overall material stability. In this review, we compre-
hensively assessed and compiled the recent advances in various nature-inspired based on animal- and human-inspired nanostructures used 
for supercapacitors. This comprehensive review will help researchers to accommodate nature-inspired nanostructures in industrializing 
energy storage and many other applications.
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being considered [39– 42]. Basically, the porous nature of 
electrode materials allows easy and fast transport of electro-
lyte ions which further improves the electrochemical perfor-
mance [43– 49]. While these properties are important, the 
morphology of the electrode materials is equally significant 
too [50–55]. The availability of large electrochemical sur-
face area also relieves the stress incurred by long charg-
ing/discharging cycles. Among different morphologies, 
hierarchical morphologies are advantageous toward energy 
storage application due to their enhanced surface area, low 
density, controlled, interconnected structure, and enhanced 
accessible area. Such materials produce electrical, chemical, 
biological, mechanical, as well as sustainable gains, which 
are valuable toward the new developments in the energy-
related fields [8]. In this aspect, nature-inspired materials 
with hierarchical structures are highly beneficial, such as, 
carbon materials with nature-inspired structures display-
ing high surface area and enhanced porosity. On the other 
hand, some metal oxides/mixed metal oxides also exhib-
ited promising electrochemical characteristics, benefitted 
by their special nanoarchitectures [56– 59]. Although the 
nature-inspired materials are long way to go for commer-
cialization, the current research trend is very encouraging 
for sustainable future. Despite of their impressive character-
istics, very few systematic review articles on energy-related 
applications of nature-inspired materials are available [1, 6, 
7, 60, 61]. Therefore, a timely update on such materials in 
this particular research field is highly necessary.

The aim of this paper is to summarize the applications 
of nature-inspired (animal- and human body-inspired) 
morphologies comprehensively for SC as shown in Fig. 1. 
Categorizing nature-inspired nanostructures according to 
a group of animal-inspired (honeycomb-, beehive-, spider 
web-, hedgehog-, whisker-, caterpillar and worm-, nest-, 
and plume-like) and human body-inspired (spine-, finger-, 
DNA-, and dendrite-like) nanostructures. This review dis-
cusses different factors and certain conditions capable of 
generating nature-inspired nanostructures. Moreover, the 
review ends with incorporating the learning from nature-
inspired nanostructures with outlook, prospects, and strate-
gies to mitigate the shortcomings of future electrodes in SC 
and battery applications.

1 Introduction

Over the years, nature plays an important role in the develop-
ment of mankind. Many revolutionary discoveries of today’s 
world have been inspired by nature. In the area of materials 
science, such inspiration from nature has been successively 
employed in fabrication processes as well as to design target 
materials. The highly ordered, diverse, and unique struc-
tures of natural things and biomaterials inspired researchers 
to duplicate and mimic it in nanomaterials through mate-
rial chemistry [1–7]. The inspiration from nature and the 
designing of nanomaterials with appropriate orientation, 
highly ordered structure, and exceptional mechanical robust-
ness while achieving high energy and power densities have 
remained a hot topic in developing electrode materials. 
Many nature-inspired commercial products are also easily 
available in today’s commercial market [8]. For example, 
artificial photosynthesis, inspired by the photosynthesis of 
plant, approach has been successively employed for harvest-
ing solar energy [9, 10]. Other nature-inspired applications 
include bio-inspired water purification system [11], protein 
production inspired from the silk making process of spiders 
[12], bio-inspired materials for plastic replacement [13], etc. 
have also been reported. Moreover, nature-inspired materials 
and designs have also been explored to produce natural and 
renewable resources toward sustainable, low-cost electrode 
development [14– 17].

The enthusiastic development of cutting-edge energy 
storage devices advances today’s electronics world for the 
betterment of tomorrow. Supercapacitors (SCs) are one of 
such elite electrochemical energy storage devices which have 
gained enormous research interest in last few years [18–27]. 
Specially, the charge storage mechanism of electric double 
layer capacitor (EDLC) does not involve any chemical reac-
tion [28– 30], which plays a crucial role for the designing 
of sustainable future. Benefitted by their enhanced charge 
storage mechanism, improved cycling stability, high rate 
capability, and elevated power density, SCs have shown 
promising advantages to fulfill the demand of future elec-
tronic devices [31– 38]. In this aspect, several strategies have 
been employed for enhancing the capacitive performance of 
SC electrodes. Among them, high porosity, high conductiv-
ity, and large surface area are some of the prime factors 
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2  Nature‑Inspired Structures: Synthesis, 
Structural Formation, and Supercapacitive 
Electrochemical System Application

As categorized in the dimensional growth of structures, 
the formation of 0D, 1D, 2D, and 3D structures are widely 
investigated in the mechanistic formation of crystals and 
their morphology [62–66]. Tiwari et al. [67] categorized 
different nanostructured materials as 0D, such as uniform 
particles arrays (quantum dots), heterogeneous particles 

arrays, core–shell quantum dots, onions, hollow spheres, 
and nanolenses; 1D such as nanowires, nanorods, nano-
tubes, nanobelts, and nanoribbons; 2D such as junctions 
(continuous islands), branched structures, nanoprisms, nano-
plates, nanosheets, nanowalls, and nanodisks; and 3D such 
as nanoballs (dendritic structures), nanocoils, nanocones, 
nanopillars, and nanoflowers.

Even though these structures are classified into dimen-
sional orientations, many studies have shown nanostructures 
mimicking things that we regularly see in nature. The over-
lapping and combination of 1D, 2D, and 3D nanostructures 
that resemble trees, honeycombs, flowers, urchins, etc., 
have been synthesized and worked effectively as an elec-
trode material for SCs. Depending on many factors, such 
as choice of precursors, method of synthesis, the structure 
of an active electrode material can be customized in a way 
that more surface area can be exposed [53– 55, [68]. For 
example, carbon with tailored structure can achieve high sur-
face area by engineering its morphology [69– 72] (Table 1). 
Such engineering of structures paved way for researchers to 
continuously study and evaluate hierarchical structures in a 
nanoscale level [73– 75].

In this section, we discuss the recent morphologies reported 
that imitate various nature-inspired such as animal and human 
body-inspired nanostructures, their method of synthesis, and 
their electrochemical properties applied as SC. This section 
is divided into groups according to animal-inspired (honey-
comb-, beehive-, spider web-, hedgehog-, whisker-, caterpillar 
and worm-, nest-, and plume-like) and human body-inspired 
(spine-, finger-, DNA-, and dendrite-like) nanostructures.

Nest-like
Plume-like

Dendrite-like

DNA-like

Finger-like

Spine-like

Honeycomb and
beehive-like

animal- and
human body-

inspired
nanostructures

Spider web-like

Hedgehog-like

Whisker-like

Caterpillar and
worm-like

Fig. 1  Schematic illustration of animal- and human body-inspired 
nanostructures

Table 1  Specific surface area of carbon with various animal- and human-inspired structures

Nature-inspired structure Electrode material Specific surface area  (m2 
 g−1)

Refs.

Beehive-like Porous carbon 1472 [76]
Beehive-like Microporous carbon 1327 [77]
Beehive-like Porous carbon 1615 [78]
Honeycomb-like Graphene 1962 [79]
Honeycomb-like activated carbon 2990 [80]
Whisker-like N-doped hollow porous carbons 3007 [81]
Worm-like Nitrogen, sulfur-co-doped hierarchical porous carbon 720 [82]
Nest-like N- and P-co-doped mesoporous carbon 922 [83]
Spine-like Nanostructured carbon interconnected by graphene 428 [84]
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2.1  Animal‑Inspired Structures

2.1.1  Honeycomb‑Like Structure

With a similar structure, honeycomb and beehive-like struc-
tures have uniform and regularly shaped pores. Bio-inspired 
honeycomb-like [85–92] and beehive-like [76, 93, 94] struc-
tures with vertical thin walls have been greatly studied for 
SCs due to its excellent mechanical properties as well as 
exceptional active sites [2, 92, [95– 99]. Aside from SCs, 
bio-inspired honeycomb structures have also inspired further 
applications in biomedicine such as tissue engineering and 
regenerative medicine [97].

Lv et al. [100] reported novel honeycomb-lantern-inspired 
3D flexible and stretchable SCs for improved capacitance. 
The interesting structural flexibility and stretchability in 
shape of honeycomb-like structure offer mechanical strength 
as shown in Fig. 2a. The honeycomb-lantern-inspired struc-
ture was synthesized based on expandable composite elec-
trode composed of polypyrrole/black-phosphorous oxide 
electrodeposited on carbon nanotube (CNT) film. The 3D 
honeycomb-lantern-inspired exhibited enhanced stretch-
ability compared to 2D counterparts, which is useful for 
wearable devices. More importantly, the device is feasible 

to lessen the stress from different directions. The 3D SC 
maintained a capacitance of 95% under the reversible strain 
of 2000% even after 10,000 stretch and release cycles. Sun 
et al. [101] reported the metal–organic frameworks (MOFs) 
as a sacrificial template to prepared honeycomb-like metal 
sulfide as a SC electrode. Among different electrode mate-
rials, the MOF-derived honeycomb-like metal sulfide at 
500 °C  (Co9S8@C‐500) exhibited superior performance due 
to enhanced active sites of porous carbon thin nanosheets 
(Fig. 2b), which suppressed the agglomeration of metal 
sulfide and the improved conductivity of the electrode mate-
rial due to carbon nanosheets. The  Co9S8@C‐500 exhib-
ited no fade in capacitance for 4000 cycles, confirming its 
excellent mechanical properties. Peng et al. [102] compared 
dynamic hydrolysis and static deposition approaches for the 
fabrication of SC electrode materials. Ruthenium oxide hol-
low sphere (static deposition) and honeycomb-like (dynamic 
hydrolysis) nanostructure were compared. The ruthenium 
oxide honeycomb-like (RHCs) electrode exhibited supe-
rior surface area (226  m2  g–1) than ruthenium oxide hol-
low sphere (RHSs)-like (226  m2  g–1) structure (Fig. 2c-d). 
Furthermore, the honeycomb-like electrode exhibited 5% 
higher cycling stability for the same number of cycles. Wu 
et al. [99] carbonized KOH-treated wheat flour in a single 
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Fig. 2  a 3D stretchable supercapacitors with various shape. Reproduced with permission from Ref. [100]. Copyright 2018, Wiley–VCH; b 
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Table 2  Comparison of animal-inspired structures in three-electrode measurements

Electrode structure Electrode materials Method Three-electrode measurements Refs.

Capacitance Cycling Stability Electrolyte

Animal-inspired structures
Honeycomb and beehive-like structures
Honeycomb N-doped porous carbon Carbonization 275 F  g–1

0.5 A  g–1
99%
5,000 cycles
1 A  g–1

6 M KOH [143]

Honeycomb FeMoO4 on NF CBD 158.39 mA h  g–1

2 A  g–1
90.76%
4,000 cycles
6 A  g–1

3 M KOH [92]

Honeycomb Porous carbon Carbonization 349 F  g–1

1 A  g–1
98.6%
10,000 cycles
200 mV  s–1

6 M KOH [144]

Honeycomb NiO Hydrothermal 1,250 F  g–1

1 A  g–1
88.4%
3,500 cycles
5 A  g–1

6 M KOH [145]

Honeycomb Porous carbon Hydrothermal, carbonization 227 F  g–1

1.5 mA  cm−2
100%
2,000 cycles
40 mA  cm−2

2 M KOH [146]

honeycomb NiCo2O4 on NF Combustion method 646.6 F  g–1

1 A  g–1
NA 6 M KOH [98]

Honeycomb O, N- carbon Ethanol extraction, chemical 
activation

381 F  g–1

1 A  g–1
NA 6 M KOH [147]

160 F g–1
1 A g–1

NA 1 M KOH

honeycomb Mo-ZnS@NF hydrothermal 2,208 F  g–1

1 A  g–1
83.5%
5,000 cycles
10 A  g–1

3 M KOH [148]

Honeycomb rGO/NiO/Co3O4 Microwave irradiation 910 F  g–1

20 mV  s–1
89.9%
2,000 cycles
100 mV  s–1

0.1 M KOH [149]

Honeycomb rGO/Co2SiO4 Hydrothermal 429 F  g–1

0.5 A  g–1
92%
10,000 cycles
NA

3 M KOH [150]

Honeycomb Ni0.85Se on NF Hydrothermal 3,105 F  g–1

1 A  g–1
90.1%
5,000 cycles
10 A  g–1

3 M KOH [151]

Other animal-inspired structures
Beehive porous carbon Carbonization, activation 314 F  g–1

0.5 A  g–1
96%
2,000 cycles
5 A  g–1

6 M KOH [94]

Beehive NiFe2O4/ Ni nanocone on 
Ni foil

Electrodeposition 483 F  g–1

5 A  g–1
95.3%
10,000 cycles
NA

1 M KOH [93]

web V3O7 on carbon cloth Hydrothermal 198 F  g–1

1 A  g–1
∼97%
100,000 cycles
10 A  g–1

1 M  Na2SO4 [118]

Hedgehog Ni–Mn oxide Hydrothermal 1,016 F  g–1

0.5 A  g–1
NA 6 m KOH [121]

Ni–Mn sulfide 1,430 F  g–1

0.5 A  g–1
NA

Hedgehog NiCo2O4
@NixCoyMoO4

Two-step hydrothermal 861.3 C  g–1

1 A  g–1
99.5%
10,000 cycles
5 A  g–1

PVA-KOH [119]
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step to obtain 3D honeycomb-like porous carbon (HPC) 
foam nanostructure. The interconnected HPC (Fig. 2e) elec-
trode material exhibited high surface area and was used for 
symmetric supercapacitor (SSC) device. The SSC device 
exhibited superior energy and power densities than reported 
carbon-based SSC devices as shown in Fig. 2f [77, 99, 103, 
104]. In addition to that, various number of honeycomb-like 
structure have been reported for SC applications, confirm-
ing the importance of unique structure for energy storage 
applications. Table 2 shows the reported honeycomb-like 
structures.

2.1.2  Spider Web‑Like Structure

Nature has always motivated and inspired human being 
for the fabrication of interesting and attractive nanostruc-
tures-based electrode materials [105– 107]. Both materials 
properties and determination of architectures are important 
for variety of applications [108, 109]. Spider webs are 
commonly found anywhere – at parks or even at homes. 
Spider webs are made from silk known for its exceptional 
toughness and flexibility, and water resistivity. Inspired 
by these characteristics, Deng et al. [110, 111] prepared 

Table 2  (continued)

Electrode structure Electrode materials Method Three-electrode measurements Refs.

Capacitance Cycling Stability Electrolyte

Whisker PANI on carbon fibers Chemical polymerization 427 F  g–1

5 mV  s–1
90%
3,000 cycles
1 A  g–1

1 M  H2SO4 [123]

Whisker Ni–Co hydroxides Hydrothermal 918.9 F  g–1

0.2 A  g–1
98.7%
3,000 cycles
2 A  g–1

6 M KOH [124]

Caterpillar NiCo2S4 on NF hydrothermal /sulfurization 1,777 F  g–1

1 A  g–1
83%
3,000 cycles
10 A  g–1

5 M KOH [126]

Caterpillar PANI/P4VP-g-GMWCNT Chemical polymerization 1,065 F  g–1

0.5 A  g–1
92.2%
1,000 cycles
1 A  g–1

0.5 M  Na2SO4 [127]

Worm NiMoO4 on carbon nanofiber Hydrothermal 1,088.5 F  g–1

1 A  g–1
73.9%
5,000 cycles
10 A  g–1

2 M KOH [130]

Worm Ni–Co–P on NF Electroless electrolytic 
deposition

222.16 F  g–1

1 mV  s–1
105%
1,000 cycles
50 mV  s–1

6 M KOH [132]

Worm N,S–carbon Carbonization 456 F  g–1

0.3 A  g–1
NA 1 M  H2SO4 [82]

Plume Ni3S2 on rGO-NF Hydrothermal 1462 F  g−1

1 A  g−1
93.%
2,000 cycles
1 A  g–1

2 M KOH [133]

Nest N, P-co-doped carbon Microwave-assisted solvo-
thermal method

171 F  g−1

0.2 A  g−1
96.2%
5000 cycles
2 A  g–1

6 M KOH [83]

Nest Fe:MnO2 Electrodeposition 273 F  g–1

5 mV  s–1
92%
1,000 cycles
100 mV  s–1

1 M  Na2SO4 [135]

Nest N-doped carbon–V3O7 Hydrothermal, in situ pho-
topolymerization method

660.63 F  g–1

0.5 A  g–1
80.47%
4,000 cycles
10 A  g–1

1 M  Na2SO4 [137]

Ant-nest NiMoO4/carbonized mela-
mine sponge

Carbonization/solvothermal 1,689 F  g–1

1 A  g–1
86.7%
5,000 cycles
10 A  g–1

3 M KOH [140]

Ant-nest MnO2/carbon Annealing, simple mixing 662 F  g–1

1 A  g–1
93.4%
5,000 cycles
1 A  g–1

6 M KOH [142]
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a special design structure for energy storage device with 
exceptional mass transfer abilities. Figure 3a shows the 
schematic diagram of the preparation of 3D carbon net-
work (3DCN) with bionic surface using zeolitic imida-
zolate frameworks (ZIF) as precursors. ZIF-8 polyhedron 
on carbon surface were connected to each other, form-
ing spider web network-like structure. After annealing at 
800 °C in argon for 2 h, the desired structure was achieved 
by washing away ZIF-8 with HCl and retaining 3D car-
bon network with “spider web”-like carbon, S-3DCN. The 
detailed mass transfer abilities for all three samples are 
given in Fig. 3b. Herein, S-3DCN portrayed a full adsorp-
tion of water drop at 8 s, out-performing 3DCN (14 s) and 
S-C (> 14 s), depicting S-3DCN has the best transporta-
tion ability. The as-prepared electrode material was further 
considered for energy storage applications and the solid-
state SSC device (S-3DCN//S-3DCN) was fabricated. The 
nature-inspired S-3DCN spider web-like microstructures 
show multiple active sites toward electrolyte, numerous 
pores, excellent wettability of electrolyte. The designed 
SSC device successfully illuminated 19 LEDs as shown 
in Fig. 3c, which confirmed the advantaged of S-3DCN 
materials toward multiple applications.

The construction and design of 1D nanoarchitecture 
and the flexibility of binder-free electrode material have 
shown great interest for electrode fabrication. The practical 

capacitance and stability of the metal oxide greatly depend 
on the composition, synthesis condition, and morphology of 
the structure [43, 63, 112, 113, 114, 115, 116, 117]. Mani-
kandan et al. [118] designed binder-free vanadium oxide 
spider web-like nanostructure by using facile in situ hydro-
thermal technique for SSC devices. Figure 4a-b shows the 
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Fig. 3  a The illustrated scheme of the synthesis process, b The results of water-drop experiments of S-3DCN, 3DCN, and S-C, and c LED light 
devices powered by three supercapacitors connected in series. Reproduced with permission from Ref. [110]. Copyright 2018 Elsevier

(a) (b)

(c)

1 µm

1 µm

120

100

80

60

40

20

0

0.6

0.4

0.2

0.0

C
ap

ac
ita

nc
e 

re
te

nt
io

n 
(%

)

0 10000 20000 30000 40000 50000
Cycle number

60000 70000 80000 90000 100000

Vo
lta

ge
 (V

)

0.0 0.5 1.0 2.0

3rd cycle
100000th cycle

48 h@V3O7/CFC

2.5
Time (s)

1.5

Fig. 4  a Schematic representation of the in situ growth of  V3O7 spi-
der web-like nanowires, b SEM image  V3O7/CFC substrates. c 
Cycling stability of  V3O7/CFC SSCs devices at a constant current 
density of 10 A  g–1 for 100,000 cycles. Reproduced with permission 
from Ref. [118]. Copyright 2018, Royal Society of Chemistry



 Nano-Micro Lett.          (2022) 14:199   199  Page 8 of 25

https://doi.org/10.1007/s40820-022-00944-z© The authors

schematic diagram and the scanning electron microscopy 
(SEM) image of the as-synthesized spider web-like struc-
ture. The nature-inspired based SSC device exhibited excep-
tional stability of 97% after 100,000 cycles (Fig. 4c). Even 
after 100,000 cycles, the spider web-inspired nanostructure 
was preserved as shown in the inset of Fig. 4c.

2.1.3  Hedgehog Quills Structure

Hedgehogs are unique pets that have spines consisting of 
hollow hairs. These spines, called as quills, can be curled, 
or straightened upon muscle control. Inspired by the curl-
ing up and relaxation of their quills and the exterior struc-
ture of hedgehogs, researchers have utilized these struc-
tures to cater an electrode’s architecture for SC application 
[119, 120, 121]. Sun et al. [119] reported of hedgehog-
inspired electrode material for flexible SC devices. Fig-
ure 5a shows the preparation of  NiCo2O4@NixCoyMoO4 

core–shell hedgehog-like nanoneedle-clusters nanostruc-
tures. The synthesis was done in two-step facile hydrother-
mal method. In the first step, carbon fabric was used as a 
current collector and a substrate to grow  NiCo2O4 hedge-
hog-like nanoneedles with a maximum diameter of 150 nm 
(Fig. 5c-d). In the second step,  NixCoyMoO4 nanosheets 
were wrapped on the initially prepared  NiCo2O4 nanonee-
dle clusters, forming  NiCo2O4@NixCoyMoO4 core–shell 
hedgehog-like nanoneedle-cluster nanostructures (Fig. 5e-
f). Figure 5b shows the utilization of the hedgehog-like 
structure for charge transport and stress release mecha-
nism. Such combination of nanosheets grown on nanonee-
dles may be beneficial in giving sufficient space between 
the active materials which can provide better electrolyte 
infiltration and plentiful electroactive sites for redox reac-
tion. The as-assembled all-solid-state flexible battery-type 
hybrid supercapacitor (HSC),  NiCo2O4@NixCoyMoO4//
AC, demonstrated outstanding outcomes with a high 
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Fig. 5  a Schematic illustrations of  NiCo2O4@NixCoyMoO4 nanostructures (carbon fabric (black),  NiCo2O4 nanoneedle clusters (pink), the 
 NiCo2O4@NixCoyMoO4 precursor (green),  NiCo2O4@NixCoyMoO4 (gray)); b charge transport and stress release in these hedgehog-like nanon-
eedle-cluster nanostructures; c, d SEM images of  NiCo2O4 nanoneedle clusters; and e, f  NiCo2O4@NixCoyMoO4 nanostructures. Reproduced 
with permission from Ref. [119]. Copyright 2018, Royal Society of Chemistry
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specific capacitance of 207 F  g–1 (1 A  g–1) a high energy 
density (64.7 Wh  kg–1 at 749.6 W  kg–1) and promising 
cycling stability (nearly 100% after 10,000 cycles).

2.1.4  Whisker‑Like Structures

Luo et al. [122] synthesized self-assembled whisker-like 
 MnO2 arrays on carbon fiber paper (MOWAs) using simple 
in situ redox replacement reaction in a hydrothermal method 
(Fig. 6a). In their study, different amount (3–15 mM) of 
potassium permanganate  (KMnO4) was used as precursor to 
 MnO2 yielding to different morphologies. At 7 mM  KMnO4, 
highly ordered whisker-like  MnO2 arrays are consistently 
observed covering the whole carbon fiber (Fig. 6b). At a 
higher magnification (Fig. 6c), each whisker is made up of 
many interconnected and ultrathin nanosheets. An individual 
MOWA is shown in Fig. 6d portraying a length of 3–5 μm 
and about 0.5 μm in diameter at the middle section. Other 
morphologies were also observed upon changing  KMnO4’s 
concentration to 3 mM (carbon fiber/MnO2 core–shell nano-
structures, MOCSs) and 15 mM (ill-defined carbon fiber/
MnO2 core–shell nanostructures, I-MOCSs). Figure 6e 
shows a comparative study of the cyclic voltammetry (CV) 
curves of carbon fiber paper (CFP), MOWAs, as well as the 
two other prepared structures, MOCs and I-MOCs. Among 
all electrodes, MOWAs exhibited the largest CV curve. 
The specific capacitance obtained for MOWAs electrode at 

100 mA  g–1 is 274.1 F  g–1. The long-term cycling stability of 
MOWAs electrode resulted in a retention of 95% after 5,000 
cycles (100 mA  g–1). With such unique structure of small 
 MnO2 sheets directly attached on CFP, MOWAs’ architec-
ture provided well separated yet conductive sheets that paved 
way for better ion insertion and transport. Other whisker-like 
structured electrodes are reported in polyaniline on carbon 
nanofiber (CNF) [123], floss-like Ni–Co binary hydroxide 
composites assembled with whisker-like nanowires [124], 
and polyaniline (PANI) whiskers [125].

2.1.5  Caterpillar and Worm‑Like Structures

Caterpillars and worms are both cold-blooded species typi-
cally with a long tube-like body. However, worms consist 
of smooth-structured body that do not have legs, eyes nor 
hair. In contrast, caterpillars have segmented bodies which 
appears to be rough and hairy. In a nanostructure level, cat-
erpillar-like and worm-like structures have been investigated 
in SC applications. For instance, caterpillar-like  NiCo2S4 
nanocrystal arrays on nanofibers (NF) [126] and polyaniline/
CNT hybrids with core–shell structures [127] are success-
fully synthesized as electrode materials. Figure 7a shows 
the SEM image of the  NiCo2S4 nanosheet@nanowires 
(NSNW) which exhibits a caterpillar-like structure [126]. 
The  NiCo2O4 consists of vertical nanosheets aligned on NF 
with each sheet having multidirectional nanowires. Figure 7b 
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shows a transmission electron microscopy (TEM) image 
of the nanowire with a dimension of bottom core ∼50 nm 
and a tip ∼30 nm. Aside from the caterpillar-like  NiCo2S4 
NSNW structures, other structures were prepared by vary-
ing the time of maintained reaction. The sealed autoclave 
maintained at 95 °C for 12, 10, and 8 h yielded the Ni–Co 
precursor NSNWs, Ni–Co precursor NSNP, and Ni–Co 
precursor NS, respectively. The difference in morphologies 
and its effect in electrochemical performance were evalu-
ated and the discharge curves are shown in Fig. 7c.  NiCo2S4 
nanosheet@nanowires (NSNW, S1),  NiCo2S4 nanosheet@
nanoparticles (NSNP, S2), and  NiCo2S4 porous nanosheets 
(NS, S3) and their specific capacitances are 1,777, 1,238, 
and 1,010 F  g–1, respectively, at the same current density of 
1 A  g–1. The caterpillar-like structure also benefited the S1 
electrode with a retention of 83% after 3,000 cycles (10 A 
 g–1), compared with S2 (66%) and S3 (73%) (Fig. 7d).

Worm-like structures have been prepared in N-doped 
graphitized porous carbon [128], mesoporous carbon [129], 
 NiMoO4 coaxially decorated on electro-spun CNF [130], 

amorphous  MnO2 nanowires grown on textiles [131], 
Ni–Co–P deposited on NF [132], and N/S-co-doped porous 
carbon [82]. Figure 8a shows the SEM image of a nitro-
gen-doped worm-like hierarchical porous carbon with gra-
phitized porous carbon embossment (NWHC-GE), which 
was prepared by polymerization-induced colloid aggregation 
method followed by coordination–pyrolysis process [128]. 
The worm-like structure was likely plausible due to the pres-
ence of ferrous sulfate heptahydrate (FSH) as a precursor. 
Aside from the worm-like structure formed from the addition 
of 0.01 mol FSH in the material preparation, the key influ-
ence of FSH leads to formation of other structures, such as 
N-doped hollow carbon sphere (NHCS, no FSH was added) 
and N-doped hollow carbon capsule (NHCC, 0.02 mol FSH 
was added). Figure 8b shows a comparative GCD profiles of 
NHCS, NWHC-GE, and NHCC at a current density of 20 A 
 g–1 portraying the longest GCD curved favorable to NWHC-
GE. At 1 A  g–1, the higher specific capacitance of NWHC-
GE is 178 F  g–1is attained compared to NHCS (114 F  g–1) 
and NHCC (156 F  g–1). A better electrical conductivity and 
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lower resistivity were also observed for NWHC-GE (0.39 Ω) 
than that of NHCS (0.57 Ω) and NHCC (1.58 Ω) (Fig. 8c). 
Such improved performance is credited to a higher graphiti-
zation degree and an optimized nitrogen-doping content for 
NWHC-GE.

Similarly, Gopalakrishnan et al. [82] reported worm-like 
hierarchical structures based on nitrogen, sulfur-co-doped 
porous carbon were derived from ginger. Inspired by ginger 
as biomass source for carbon, ginger was pre-activated using 
NaCl/KCl followed by carbonization (800 °C) and removal 
of salt ions through washing with diluted HCl (product 
denoted as AGC). To dope AGC with nitrogen and sulfur, 
thiourea was used as precursor and went under another car-
bonization (800 °C) (product denoted as DAGC). The final 
structure of the doped & activated ginger carbon (DAGC) 
with unique worm-like pore structure and interconnected 
cavities is shown in Fig. 8d. The worm-like structure not 
only gained a high specific surface area (720  m2  g–1) but also 
yielded to an improved electrochemical performance. Fig-
ure 8e shows a comparative GCD curves for DAGC, AGC 
(activated ginger-derived carbon), and GC (ginger-derived 
carbon without any activation and doping). Clearly, DAGC 

showed a lengthy charge and discharge profiles which can be 
acquainted to a better ion storage and high capacitive perfor-
mance. The highest performance conducted at 1 A  g–1 was 
obtained for DAGC (268 F  g–1) compared to GC (75 F  g–1) 
and AGC (172 F  g–1). The stability for GC and DAGC were 
compared at constant current density (Fig. 8f). The superior 
electrochemical performance can be acquainted to DAGC’s 
thin carbon nanosheets morphology with worm-like pore 
structures and heteroatom doping, which utilized rapid ion 
transfers and maximum charge storage capacity [73, 74, 75].

2.1.6  Plume‑Like Structure

A plume is similar to a structure of a bird’s feather that con-
sists of tiny hair-like strands. Jinlong et al. [133] initially 
deposited graphene oxide (GO) sheets on NF by dipping 
in a GO dispersion and thermal reduction annealing. Then, 
 Ni3S2 was grown by hydrothermal method on the pre-depos-
ited GO on NF. The final resulting structure is a plume-like 
 Ni3S2 grown on the NF with thermal reduced graphene oxide 
(rGO) architecture as shown in Fig. 9a. Figure 9b shows 
the CV curve representing the electrochemical performance 
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of the plume-like structure compared to rGO on NF and 
 Ni3S2 on NF only. At a scan rate of 2 mV  s−1, larger non-
rectangular CV curves were observed for the  Ni3S2 on NF 
with rGO electrode. The plume-like structured electrode 
delivered a high capacitance of 1,462 F  g−1 (1 A  g−1) and 
retained 98.34% of its capacitance on the first 1,000 cycles. 
The plume-like  Ni3S2 on NF with rGO exhibited better SC 
performance and improved cycling stability which is valu-
able for energy storage applications.

2.1.7  Nest‑Like Structures

By nature, nests are built by animals, such as birds, to hold 
their eggs and to serve as a home for the young ones. Bird’s 
nest comprises of dried leaves, branch, or grasses that is 
coiled into a cup-shape. Nest-like architectures are studied 
and structured in electrode materials, such as N- and P-co-
doped mesoporous carbon [83], glucose-derived nitrogen-
doped hollow carbon [134], Fe-doped  MnO2 [135], polyani-
line [136], and  V3O7 [137]. A nest-like structure based on 
Ni@Ni1.4Co1.6S2 [138], MnO, and  V3O7 [137] are shown in 

Fig. 10. Mi et al. [138] initially synthesized Ni@Ni3S2 with 
a nest-like structure. Ni@Ni1.4Co1.6S2 was then synthesized 
by a Co-exchange method by using Ni@Ni3S2 as a template. 
The Ni@Ni1.4Co1.6S2 is composed of a network of nanowires 
which forms numerous micro-/nanoholes mimicking a nest 
(Fig. 10a). With a similar structure yet with the addition of 
Co-ions, the specific capacitance of Ni@Ni1.4Co1.6S2 is 122 F 
 g–1, compared to Ni@Ni3S2 (89 F  g–1) at 1 A  g–1. Figure 10b 
shows a bird’s nest-like structures based on  MnO2 [139]. The 
self-organized structure formed clusters with ~ 4–5 μm diam-
eter consisting of interconnected nanowires (Fig. 10c). With 
such organized structure, the maximum specific capacitance 
of 917 F  g–1 at a current density of 5 mA  cm–2 was obtained.

Another nest-like structure is based on the home of ants or 
anthills. Anthills are commonly built underground. Inside an 
anthill is a massive network of interior channels and cham-
bers. Inspired by such unique interconnected structure, ant-
nest-based nanostructures have been utilized as electrode 
materials. A unique ant-nest-like structured electrode was 
prepared in  NiMoO4/ carbonized melamine sponge (CMS) 
using solvothermal reaction (Fig.  11a) [140].  NiMoO4 
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nanorods are grown on the CMS by solvothermal reaction while 
maintaining the interconnected channels of CMS sponge. The 
optimized  NiMoO4/CMS electrode exhibited a high specific 
capacitance of 1,689 F  g–1 (1 A  g–1). Miao et al. [141] studied 
carbon‐based ant-nest-like structures are prepared using NF sup-
ported hierarchical porous carbon (NF-HPC). A 3D crossed‐
linked and associated backbones (diameter of ≈200 nm) aided 
the formation of highly uniform and well‐interconnected porous 
structure (Fig. 11b). As a symmetric SC device, the outstanding 
electrochemical performance of the device resulted in a high 
specific capacitance (292 at 0.25 A  g–1) and long‐term cycling 
stability (100% at 5 A  g–1 after 30,000 cycles). Lastly, a unique 
3D ant-nest-like hierarchical porous carbon (ANHPC) is shown 
in Fig. 11c [142]. The ant-nest-like structure of ANHPC pos-
sesses large surface area (2,372  m2  g–1) and high pore volume 
(1.936  m3  g–1. The exceptional structure was then utilized to 
embed  MnO2 and obtain  MnO2/ANHPC composites (Fig. 11d). 
It is clearly observed that the carbon skeleton structure has not 
collapsed and retained the structure of ANHPC. The ant-nest-
inspired structures give a favorable architecture for rapid ion 
transfer/diffusion. The combination of EDLC-based ANHPC 
and pseudocapacitance-based  MnO2 yielded to a high specific 
capacitance of 662 F  g–1 at 1 A  g–1 compared to ANHPC at 
254 F  g–1. The detailed electrochemical performance of animal-
inspired structure tabulated in Table 2.

2.2  Human Body‑Inspired Structures

2.2.1  Spine‑Like Structure

Park et al. [84] prepared spine-like nanostructured car-
bon interconnected by graphene with SC applications. 

The preparation of spine-like graphene-interconnected 
nanostructured carbon consists of three steps: i) prepa-
ration of platelet-type CNF (P-CNF) by chemical vapor 
deposition (CVD), ii) an expanding process by oxida-
tion treatment, and iii) a co-solvent exfoliation method 
and reduction processes. Figure 12a-b shows the SEM 
and TEM image of the spine-like nanostructured carbon 
which is composed of regularly occurring intervals of 
exfoliated graphitic blocks and graphene nanoplatelets. 
In a three-electrode system, the spine-like nanostructured 
carbon exhibited significantly improved electrochemical 
performance (272 F  g–1 at 10 mV  s–1) compared to as-
prepared P-CNF (19 F  g–1) (Fig. 12c). To further use into 
practical application, the two-electrode system delivered a 
high capacitance (238.8 F  g–1 at 2.5 A  g–1), rate capability 
(230 F  g–1 at 200 mV  s–1, above 85% of the initial value at 
10 mV  s–1), and cycle stability (94% after 3,000 cycles) 
for the spine-like nanostructured carbon (Fig. 12d).

2.2.2  Finger‑Like Structure

Finger-like structures are used as effective designs for 
electrode materials in multifunctional integrated micro/
nano systems [152, 153, 154, 155, 156]. In‐plane finger-
like structures are advantageous for micro‐supercapacitors 
for it provides suitable accessibility for ion transport as 
the edges of the active electrodes are exposed to the elec-
trolyte. Also, the finger-like design eliminates the use of 
separators as needed in conventional sandwich structures of 
SCs which also decreases the resistance and leads to high-
frequency response as the distance between the electrode 
finger arrays is small [157]. Wang et al. [158] fabricated 

Fig. 11  a SEM image of ant-nest-like  NiMoO4/CMS, inset is ant-nest. Reproduced with permission from Ref. [140]. Copyright 2018, Royal 
Society of Chemistry. b SEM image of carbon‐based ant-nest-like structures. Reproduced with permission from Ref. [141]. Copyright 2019, 
Wiley. c SEM image of ant-nest-like ANHPC and d SEM image  MnO2/ANHPC. Reproduced with permission from Ref. [142]. Copyright 2018, 
ACS Publications
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vertical finger-like asymmetric supercapacitors (VFASCs) 
comprising of rGO–manganese dioxide–polypyrrole (rGO-
MnO2-PPy) as positive electrode and RGO–molybdenum 
trioxide (rGO–MoO3) as negative electrode. Various mass 
loading was investigated with structures mimicking 2 to 
10 finger-like electrodes (Fig. 13a). The CV (Fig. 13b) and 
GCD (Fig. 13c) curves showed the highest performance for 
the 10 finger-like electrodes  (5m0). The specific capacitance 
increased with the increased of mass loading (Fig. 13d) with 
 5m0 recording the highest capacitance of 31.4 F  g–1 (34.8 
F  cm−3). The  5m0 electrode showed a high energy density 
of 12.94 mW h  cm−3 (power density at 0.47 W  cm−3) and 
still maintained the high value of 2.59 mW h  cm−3 (power 
density at 3.72 W  cm−3) with 88.2% capacitance retained 
after 10,000 cycles (Fig. 13e-f). For practical application, 
bending experiment was done to show the flexibility of the 
electrode as shown in Fig. 13g. Moreover, two electrodes 
connected in series accumulating 3.2 V were successful in 
lighting two LEDs (Fig. 13h).

2.2.3  DNA‑Like Structure

Another fascinating nature-inspired nanoarchitecture is a 
double helical DNA-like  WO3–x/C microfiber superstructure 

[159]. Salkar et al. [159] prepared a self-assembly of in situ 
carbon fiber encapsulated by  WO3–x/C nanorods depicting a 
DNA-like structure as shown in Fig. 14a. The double helical 
DNA-inspired assembly provides favored structure allowing 
better participation of ions during electrochemical reaction. 
Figure 14b shows the CV curves with different scan rate (25 
to 250 mV  s–1) across the − 0.5 to 0.3 V potential range. At 
25 mV  s–1, the specific capacitance is 169.2 F  g–1. Using the 
GCD curves, the highest specific capacitance was recorded 
at 498.4 F  g–1 at 1.2 A  g–1 (equivalent to areal capacitance of 
401.4 mF  cm–2 at 2 mA  cm−2) (Fig. 14c). A solid-state asym-
metric supercapacitor (ASC) device was assembled a deliver a 
power density of 498 W  kg–1 at an energy density of 15.4 Wh 
 kg–1. The rare DNA-like morphology only justified its unu-
sual yet important structure in the development of electrode 
nanoarchitectures.

2.2.4  Dendrite‑Like Structure

Dendrites are pronged extensions of a nerve cell which 
is similar to a tree-like structures. Dendrite formation 
has also been observed in mineral crystal growth, as 
well as, in snowflake and frost pattern formations. These 
unique structures have been observed in the growth of Au 

300

250

200

150

100

50

0Sp
ec

ifi
c 

C
ap

ac
ita

nc
e 

(F
 g

−1
) 300

250

200

150

100

50

0Sp
ec

ifi
c 

C
ap

ac
ita

nc
e 

(F
 g

−1
)(c) (d)

200 nm

(a) (b) Carbon 2

Graphitic
blockGraphene

nanoplateltets

Spine-like nanostructured carbon
As-prepared P-CNF

0 50 100 200 0 500 1000 2000 3000
Cycle Number

25001500
Scan Rate (mV s−1)

150

94%

0.5 µm

Fig. 12  a‑b SEM and TEM of spine-like nanostructured carbon, c rate capabilities of as-prepared P-CNF and spine-like nanostructured carbon, 
d cycle stability of the spine-like nanostructured carbon measured at a scan rate of 100 mV  s–1. Reproduced with permission from Ref. [84]. 
Copyright 2014, Nature publisher



Nano-Micro Lett.          (2022) 14:199  Page 15 of 25   199 

1 3

dendrites containing long back bone stems with several 
branches and highly corrugated structures [160],  Co3O4 
nanostructure made up of nanorods [161], and dendrite-
like  MnO2 nanostructures grown on carbon cloth [162]. 
Figure 15 shows the synthesis of  MnO2 nanowires grown 
on hollow Ni dendrites prepared by Sun et al. [163]. Ini-
tially, Cu dendrites were first prepared on Ni substrate 
using electrodeposition (Fig. 15a, e–g). The as-formed Cu 
dendrites were then coated with a thin layer of Ni using 
electroplating (Cu@Ni) (Fig. 15b). Then, Cu was selec-
tively removed from Cu@Ni through anodic dissolution, 
leaving a hollow Ni (Fig. 15c, h-j). Finally, Ni@MnO2 was 
prepared by growing  MnO2 nanowires on the surface of 
hollow Ni using anodic pulse electrochemical deposition 

(Fig. 15d, k-m). When applied as an electrode, the Ni@
MnO2 electrode delivered a specific capacitance of 1125 
F  g–1 (5 mV  s–1) at a  MnO2 mass loading of 0.35 mg  cm–2. 
When a higher  MnO2 mass loading was increased to 
1.8 mg  cm–2, the specific capacitance resulted in 303 F 
 g–1 (5 mV  s–1). The outstanding electrochemical perfor-
mance of the Ni@MnO2 electrode can be attributed to 
the following nanoarchitecture: first, the highly conductive 
hollow Ni dendrites acted as both support and current col-
lector that allowed the pathway for fast electron transport; 
second, the  MnO2 nanowire arrays permitted productive 
material utilization; lastly, the existence of hierarchical 
porous channels in the overall construction facilitates fast 
diffusion between the electrode and electrolyte [39, 40, 
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47, 48, 56, 164, 165]. The detailed electrochemical perfor-
mance of human-inspired structure tabulated in Table 3.

3  Future Outlooks and Conclusion

In this review article, we have highlighted the importance 
of animal and human body-inspired materials down to the 
nanoscale level for SC application. Materials with different 
dimensionalities can be fabricated, tailored, and exploited 
according to several factors to construct nature-inspired 
formation of interconnected and hierarchical nanostruc-
tures. It is interesting to note that such dimensional struc-
tures can generate ordered structures, which are highly 
valued as the electrode materials. Still, the overall electro-
chemical performance will matter for practical use. Though 
having a high capacitance and capacitive property is highly 
desirable for many electrodes that has been researched, it is 
only one of the important properties that must be consid-
ered in constructing electrode materials. Nevertheless, a lot 
of hindrances have been assessed why scientifically studied 
electrodes cannot be launched in the market.

Nature-inspired materials with high porosity are found 
to be feasible for energy storage applications. The current 
article systematically summarized SC application of few 
of such nature-inspired materials. However, such materials 
also shave some drawbacks, which are enlisted below with 
future research directions.

1. Large scale production of such nature-inspired mate-
rials with cost-effectiveness is quite complicated. For 
example, metal precursors displayed considerable elec-
trical and chemical properties. However, researchers 
must consider the long-term availability of these pre-
cious metals as well as their costs if they want to con-
centrate on producing metal-based electrode materials 
in commercial scale. Moreover, precise production of 
such material is also highly challenging. In this aspect, 
the 3D printing techniques have the ability to copy the 
natural structures. The printed products are also found to 
be highly flexible, which can be applicable for construct-
ing flexible and stretchable supercapacitors. Therefore, 
future manufacturing of nature-inspired materials can 
be focused on these techniques for scalable production.

2. Apart from their structures and morphologies, other 
factors, like the nature of electrode materials, choice of 
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electrolytes, use of binders, and nature of current col-
lections, have also played significant role on the electro-
chemical performance of any electrode materials. Smart 

combination of EDLC-type and pseudocapacitive-type 
materials with nature-inspired structures is found to 
be a feasible strategy to improve the capacitive perfor-

(e)

(a) Cu Cu@Ni Ni@MnO2

MnO2+Na+

e−

MnOONa

Ni(b) (c) (d)

(f) (g)

(h) (i) (j)
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Fig. 15  Synthesis of  MnO2 nanowires supported on hollow Ni dendrites. a Electrodeposition of a nanoforest of Cu dendrites; b electroplating 
of Ni on Cu dendrites; c selective dissolution of Cu; d electrodeposition of  MnO2 nanowires on hollow Ni dendrites to form a hierarchical Ni@
MnO2 porous structure. SEM and TEM images of (e–g) Cu dendrites, h–j hollow Ni dendrites, and k–m Ni@MnO2 structure, respectively. 
Reproduced with permission from Ref. [163]. Copyright 2013, Royal Society of Chemistry
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mance. Although, such combination requires much more 
research attention for commercialization.

3. In-depth knowledge of the charge storage mechanism 
of such nature-inspired materials is highly required for 
future research. In this aspect, the in situ characterization 
techniques like in situ TEM, in situ XRD, in situ Raman 
spectra, in situ XPS, etc. can be a pivotal approach to 
incorporate in material characterization in order to better 
understand the physiochemical properties of the active 
materials.

4. It is evident that the electrochemical performance of 
such nature-inspired materials can be tuned by manipu-
lating the interfacial interactions of individual compo-
nents. However, detailed theoretical study is necessary 
in this topic.

5. Nature-inspired structures based on newly developed 
2D materials like MXene should be explored for a 
wide variety of applications.

6. The differences in EDLC-, pseudocapacitive-, and 
battery-type electrode materials; symmetric, asym-
metric, and hybrid SC devices; and the appropriate 
selection of potential/voltage window as well as suit-
able equations for the calculations of energy density 
should be carefully selected as previously discussed 
[21, 166, 167].
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