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Vertically Integrated Electronics: New Opportunities 
from Emerging Materials and Devices
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HIGHLIGHTS

• The vertically integrated electronic devices based on emerging semiconductor materials including organic, metal oxide, and two-
dimensional materials are revisited.

• Comprehensive aspects of the device architecture, performance, and fabrication method of the vertically stacked electronics according 
to each semiconductor material are discussed.

• Recent advances in vertically integrated electronic devices for emerging applications such as advanced integrated circuits, sensors, 
and display systems are highlighted.

ABSTRACT Vertical three-dimensional (3D) integration is a highly attractive strategy to 
integrate a large number of transistor devices per unit area. This approach has emerged to 
accommodate the higher demand of data processing capability and to circumvent the scaling 
limitation. A huge number of research efforts have been attempted to demonstrate vertically 
stacked electronics in the last two decades. In this review, we revisit materials and devices 
for the vertically integrated electronics with an emphasis on the emerging semiconductor 
materials that can be processable by bottom-up fabrication methods, which are suitable 
for future flexible and wearable electronics. The vertically stacked integrated circuits are 
reviewed based on the semiconductor materials: organic semiconductors, carbon nanotubes, 
metal oxide semiconductors, and atomically thin two-dimensional materials including transi-
tion metal dichalcogenides. The features, device performance, and fabrication methods for 
3D integration of the transistor based on each semiconductor are discussed. Moreover, we 
highlight recent advances that can be important milestones in the vertically integrated elec-
tronics including advanced integrated circuits, sensors, and display systems. There are remaining challenges to overcome; however, we believe 
that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.
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1 Introduction

In 1959, Dawon Kahng and Mohamed M. Atalla first pro-
posed metal oxide semiconductor field-effect transistors 
(MOSFETs), which leads to the success of silicon-based 
ICs as a key component in modern electronics. Approxi-
mately 13 sextillions (1.3 ×  1022) of MOSFETs have been 
manufactured since it was presented in 1960 [1] and the 
MOSFETs have provided various applications such as 
not only processors [2, 3] but also image sensors [4, 5], 
memory integrations [6, 7], power electronics [8, 9], and 
neuromorphic systems [10, 11]. Dennard scaling suggests 
a transistor size is a key factor in determining its power 
consumption and operation frequency; thus, continuous 
efforts have been made to reduce the MOSFET dimen-
sion, which is the largest focus in the semiconductor socie-
ties and industries. However, the scaling reduction in the 
MOSFETs is encountering physical limitations. A feature 
size of a few nanometers on the level of a few atoms suf-
fers from low process yield (~ 70%) and short channel 
effects.

As an alternative approach, vertical integration has been 
considered a promising strategy to circumvent the issues 
in conventional silicon MOSFETs. Rather than top-down 
fabrication of silicon technologies, tremendous efforts 
on bottom-up process-based transistors and electron-
ics have been made by adopting emerging semiconduc-
tor materials including transition metal dichalcogenides 
(TMDs) [12–14], graphene [15, 16], carbon nanotubes 
(CNTs) [17–19], organics [20–23], metal oxides [24, 25], 
and combinations of those materials [26, 27]. The larg-
est difference from the conventional silicon MOSFETs is 
that each material can be simply deposited, which makes 
layer-by-layer vertical stacking available. This trait allows 
the devices to be vertically integrated without complex 
etching-based processes in top-down fabrication methods. 
There are considerable and increasing efforts to develop 
vertical integrations using the emerging semiconductor 
materials in the bottom-up approach, presenting promis-
ing feasibility of next-generation electronics. Furthermore, 
these emerging semiconductor materials offer additional 
advantages beyond the conventional MOSFETs. As a rep-
resentative example of the additional properties, organic 
semiconductors provide a solution-processable fabrica-
tion [28–30], reducing the cost of electronic products, and 

two-dimensional (2D) TMDs are an atomically thin struc-
ture, reducing short channel effects [31] and less phonon 
scattering due to a van der Waals interface. Therefore, in 
such bottom-up-based devices, materials applications co-
consideration is required as each material has strengths 
and weaknesses concerning device characteristics, fabri-
cation process, and functional properties. Along this line, 
this review revisits recent progress in the emerging field 
of vertically integrated electronic devices and circuits 
enabled by the bottom-up process with emerging materi-
als. With an emphasis on how the vertical stacking and 
integration can be made, this review summarizes repre-
sentative examples depending on each material: organic, 
TMDs, CNTs, metal oxides, and hybrid combinations of 
such materials by organizing strengths/weaknesses and 
possibilities/challenges (Fig.  1). Furthermore, unique 
applications obtained by emerging materials-based vertical 
integrations are comprehensively reviewed, and through 
a timely overview, this review clarifies the benefits of the 
bottom-up process-based 3D integrations.

2  Methods for Metal Interconnection

Vertical 3D integration has emerged as a solution to over-
come the scaling-based physical limitations and achieve 
high integration density within a given 2D planar area 
(Fig.  2a). To implement vertically stacked electronic 
devices, it is critically important to secure a reliable elec-
trical connection between the electrodes on different lay-
ers. The metal interconnection methods can be divided 
mainly into the via-hole forming process and via-hole-less 
process (Fig. 2b). Conventional lithography-based pattern-
ing and etching are the representative methods for via-hole 
forming process. Most of metal oxide semiconductors and 
chemically robust 2D semiconductor materials are com-
patible with the lithography and wet/dry etching meth-
ods, and thus, via-hole forming methods based on etching 
have been widely used for those materials [25, 26, 32]. 
However, it is difficult to apply conventional lithography-
based via-hole processes into 3D stacked organic devices 
because developers containing an organic solvent, plasma, 
or high-temperature process can damage the vulnerable 
semiconductors such as organic materials and thus can 
impair the device performance significantly [33–35]. For 
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this reason, laser drilling or soft etching through solvent-
based ink-jet printing has been utilized in organic elec-
tronic devices to make via-holes, by removing the die-
lectric layer in the selective area [36–38]. Nevertheless, 
such destructive methods may still have limitations. For 
example, irradiating high-energy laser is accompanied by 
the inevitable temperature rise, which can degrade the 
organic materials. In the solvent-based printing method, 
only dielectric materials that are soluble to the solvent can 
be used, which can limit the material selection. Alterna-
tively, a via-hole-less multi-metal interconnection strategy 
was proposed by dielectric patterning [39]. A solvent-free 
deposition method for polymer dielectrics, called initiated 
chemical vapor deposition (iCVD), was utilized to achieve 

the robust insulating properties even with the ultrathin die-
lectric thickness [40–42]. Utilizing this all-dry method and 
shadow mask patterning, the polymer dielectric layer was 
directly patterned during the deposition process, which 
allows for the vertical interconnection without via-hole 
formation. The vertically stacked inverter circuits were 
fabricated by using transistors on 4 different floors verify-
ing the reliable metal interconnection through this method 
[39]. Unlike planar structures, metal interconnections 
between different layers are critical for the vertically inte-
grated devices. Therefore, a process design that is suitable 
for the materials constituting the device including semi-
conductor and dielectric materials is important.

Fig. 1  Overview of 3D integration based on emerging materials, including organic semiconductors, metal oxide semiconductors, and 2D mate-
rials
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3  Vertically Integrated Electronic Devices 
Based on Emerging Semiconductor 
Materials

3.1  Organic Materials‑Based Vertical Integration

Organic electronic devices have gained huge research atten-
tion for next-generation electronics due to their unique 
advantages such as low cost, large-area solution process 
suitability, intrinsic mechanical deformability, and light 
weight [43–46]. In addition, tunable electrical characteristics 
according to the molecular conjugated structures let them 
suitable for various electronic devices [47, 48]. With the 
growing interest in flexible electronics and human-friendly 
interfaces, demand for highly integrated electronic devices 
based on the organic thin-film transistor (OTFT) has been 
increasing. However, most of organic materials including 
organic semiconductors showed the limited thermal and 
chemical stability, which has been regarded as a critical 
obstacle in achieving 3D integration of the OTFTs (Fig. 3a). 
In particular, the solvent used in the following process can 
impair the electrical characteristics of the organic semicon-
ductors [49, 50]. In addition, it is challenging to develop 

an organic semiconductor-based complementary circuit 
because n-type organic semiconductor materials are typi-
cally vulnerable to the ambient air [51, 52]. The degradation 
of electron transport in n-type organic semiconductors can 
occur due to electron trapping caused by the electrochemical 
reactions with water and oxygen. The organic semiconduc-
tors can be oxidized in the presence of water and oxygen 
in ambient air according to the following reaction [53, 54]:

This reaction in turn causes the transfer of electrons from the 
organic semiconductor to the OH– hydroxyl group, and thus, 
an OH– ion matrix immobilized in the channel is formed, 
at which electrons are trapped and not able to contribute 
transport.

Therefore, it has been important to protect the organic 
layers and devices to achieve the vertically stacked organic 
electronic devices. The organic device fabricated in the 
bottom or intermediate layers should be protected against 
organic solvents and other chemicals that are required in the 
subsequent process. In addition, thermal stress in device fab-
rication processes should be minimized. On the other hand, 
the organic devices in the topmost layer need to be protected 
from the ambient air. In this context, the polymer materials 

(1)O
2
+ 2H

2
O + 4 osc

−
⇄ 4 osc + 4OH

−

Fig. 2  a Via-hole-based and b via-hole-less metal interconnection schemes for vertical integration to improve the integration density
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containing fluoroalkyl chain can be useful materials as well 
as maintaining the excellent interface with other organic 
materials. For example, Cytop has been widely utilized as a 

passivation material that can provide a strong hydrophobic-
ity due to its low surface energy (~ 15 mJ  m−2) [55]. This 
fluoropolymer can effectively protect the underlying device 

Fig. 3  a Advantages obtained by using fluoropolymer or parylene as a protective layer in organic material-based vertical integration. b Sche-
matic diagram realizing vertical stacking by applying FEP as a protective layer before forming an isolation layer. c Shift of the transfer curve by 
annealing after FEP deposition and PMMA coating [23]. Copyright © 2008, John Wiley and Sons. d Schematic diagram of a vertically stacked 
inverter with a structure that shares a gate composed of a blend semiconductor (TIPS-pentacene/PTAA) and PCBM with CYTOP as a protective 
layer. e Voltage transfer characteristics of the inverter [20]. Copyright © 2011, Elsevier. f Illustration of the process of deposition of parylene 
through the CVD method. g, h Schematic diagram and optical microscopy image of ultra-thin organic vertically stacked complementary inverter 
using parylene as gate dielectric and substrate [67]. Copyright © 2016, Springer Nature. i A schematic diagram of an organic vertical stack-
ing inverter in which all processes except parylene used as the gate dielectric was implemented by ink jet printing. j The transfer curves of the 
P(NDI2OD-T2) OTFT and diF-TES-ADT/PS OTFT [71]. Copyright © 2016, American Chemical Society
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from water and oxygen and thus strongly supplement the 
environmental stability of n-type organic transistors [56]. 
Moreover, 3D integration can also be advantageous to 
improve the environmental stability of the OTFTs. By plac-
ing other layers on top of n-type OTFTs, potential degrada-
tion of the n-type organic semiconductor material caused by 
ambient air can be prevented. Moreover, in the 3D stacked 
structure, it is relatively easy to provide a proper interface 
and dielectric materials with different thicknesses for each 
organic semiconductor, by introducing different dielectric 
materials with different thicknesses, which can lead to the 
systematic optimization of the device performance of each 
OTFT independently. Therefore, high-density, organic inte-
grated circuits have been developed by stacking OTFTs. In 
addition, to maximize the mechanical flexibility as well as 
OTFT performance, organic dielectric materials, mostly 
polymer materials, have been utilized in 3D organic elec-
tronic devices.

As discussed above, the damage to organic materials can 
be minimized by introducing fluoropolymers. Seo et al. [23] 
introduced fluoroethylenepropylene (FEP) that covered the 
pentacene semiconductor (Fig. 3b). This vapor-deposited 
fluoropolymer effectively protected the underlying OTFT, 
and the threshold voltage (Vth) was also slightly decreased 
due to the thermal annealing effect (Fig. 3c). With the iso-
lation layer, vertical integration of the OTFT was demon-
strated. In the following study, by using different operation 
modes of OTFTs according to the dielectric materials, a uni-
polar inverter was demonstrated based on pentacene OTFTs 
[57]. The OTFT with poly(methyl methacrylate) (PMMA) 
dielectric layer was used as a driver transistor with enhance-
ment mode. On the other hand, the OTFT with poly(vinyl 
phenol) (PVPh) dielectric layer could be operated with 
depletion mode, so it was utilized as a load transistor. The 
resulting inverter exhibited full swing in the voltage transfer 
curve (VTC), with high maximum DC gain (13.4 V/V) and 
noise margins (noise margin at the high level,  NMH = 47% 
and noise margin at the low level,  NML = 33%).

CYTOP is another fluoropolymer that can prevent 
potential damage to the underlying organic semiconduc-
tors because fluorinated solvents for CYTOP are generally 
orthogonal to organic semiconductors [58, 59]. Combined 
with other advantages including excellent chemical stabil-
ity and strong hydrophobicity, CYTOP has been used as 

a protective layer as well as a dielectric layer of top-gate 
geometry [60–63]. Kim et al. [20] utilized the bilayer die-
lectric where the CYTOP layer was spin coated and  Al2O3 
was deposited by atomic layer deposition (ALD) thereon 
(Fig. 3d). A top-gate, p-type OTFT based on 6,13-bis(t
riisopropylsilylethynyl) pentacene (TIPS-pentacene) and 
poly(triarylamine) (PTAA) blend semiconductor (TIPS-
pentacene/PTAA) was fabricated by using the CYTOP/
Al2O3 bilayer dielectric. A low-voltage operation of less 
than 7 V was achieved owing to the high dielectric con-
stant of  Al2O3, even though the metal oxide layer can 
limit the mechanical flexibility. A bottom-gate, n-type 
[6,6]-phenyl  C61 butyric acid methyl ester (PCBM) OTFT 
was fabricated on top of the p-type OTFT with the shared 
gate electrode, leading to the low-voltage complementary 
inverter with high DC gain (24 V/V) (Fig. 3e). However, 
further optimization of the device geometry was required 
to improve the air stability, because ambient-instable 
n-type OTFT was positioned on the higher floor.

Parylene has been considered an attractive material for a 
dielectric layer as well as an ultrathin substrate because of its 
robust dielectric strength and excellent thermal and chemical 
stability [64–66]. In general, parylene can be fabricated by 
using the chemical vapor deposition (CVD) process, which 
makes it more attractive in the 3D stacked organic electron-
ics (Fig. 3f). Takeda et al. [67] demonstrated the printed 
complementary inverter by utilizing parylene as a dielec-
tric layer and substrate. The n-type benzobis (thiadiazole) 
(BBT) derivative (TU-3) OTFT was fabricated with a top-
gate structure, and the p-type, bottom-gated 2,8-difluoro-
5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-
ADT)/polystyrene (PS) OTFT was fabricated on top of the 
n-type OTFT by using a shared gate electrode (Fig. 3g,h). 
Those OTFTs were based on bottom-contact geometry, 
and the self-assembled monolayer (SAM) treatment was 
attempted on the source/drain (S/D) electrodes to improve 
the OTFT performance. The total thickness of the stacked 
device was less than 3 μm owing to the ultrathin parylene 
substrate (~ 1 μm), and it could be detached from the sup-
porting glass substrate by introducing the peeling layer. 
Using this scheme, more complicated circuits were demon-
strated including a 3-stage ring oscillator. The ring oscillator 
was affixed to the pre-stretched elastomer, and there was 
only a slight change in its force with the compressive strain 
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as high as 20%. Another important advantage of the parylene 
CVD is its relatively low process temperature (~ 120 °C), 
which allows this process to be compatible with thermally 
vulnerable substrates.

An ink-jet printing process has gained huge attention for 
fabricating organic electronics due to its low-cost, large-area 
processability [68–70]. Also, a pattern can be defined during 
the printing procedure, which makes it more attractive to fab-
ricate electronic devices. Kwon et al. [71] demonstrated 3D 
stacked organic integrated circuits by utilizing ink-jet printing. 
All the components consisting of the OTFT were fabricated via 
ink-jet printing, except for the parylene dielectric layer based 
on the CVD process. The p-type diF-TES-ADT/PS OTFT 
was vertically integrated with the bottom n-type poly{[N,N′-
bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-
2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} [P(NDI2OD-T2)] OTFT 
by sharing the shared gate electrode and this complementary 
OTFT structure (Fig. 3i,j), which was used as a building block 
for the integrated circuits. The ink-jet printed devices exhib-
ited high yield with uniform electrical characteristics as well 
as long-term environmental stability. Based on the robust 
printing process and high uniformity therewith, the complex 
integrated circuits including the full adder were successfully 
demonstrated.

Typically, n-type organic semiconductors exhibit lower 
charge transport performance (i.e., carrier mobility) compared 
to p-type ones. In the 3D organic integrated circuits, matching 
the charge transport properties between p- and n-type OTFT 
can be achieved by varying/optimizing the dielectric materials 
and their thickness, which makes 3D stacking advantageous 
to achieve high-performance integrated circuits [72]. On the 
other hand, the electrical characteristics of the integrated cir-
cuits could also be optimized by implementing the dual-gate 
TFT structure, which allows for the precise Vth controllability 
as well as the improved device performance [73]. The ink-
jet printable dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dith-
iophene (DTBDT-C6) and TU-3 were used as p- and n-type 
organic semiconductor, respectively. A large-scale, printed 
logic circuit with 3D stacked structure was indeed fabricated 
on the flexible poly(ethylene naphthalate) (PEN) substrate, 
which exhibited high operational and environmental stability 
as well as low operating voltage (< 5 V). Those results showed 
the potential applicability of the printed organic integrated cir-
cuits to various computing system in flexible and wearable 
electronics.

3.2  Metal Oxide‑Based Vertical Integrations

Metal oxide semiconductors have been widely utilized in 
various research fields as well as display industries owing to 
their excellent electrical characteristics (i.e., high mobility) 
and intrinsic transparency [74–76]. Due to the tremendous 
research efforts in process optimization, the process tem-
perature has been continuously reduced, which resulted in 
the reduction in thermal budget and demonstration of metal 
oxide semiconductors-based 3D integrated devices. Vari-
ous n-type oxide semiconductor materials have been discov-
ered including zinc oxide (ZnO) [77, 78], indium(III) oxide 
 (In2O3) [79, 80], and indium gallium zinc oxide (IGZO) 
[81, 82]. These various n-type metal oxide semiconductors 
typically exhibit the excellent electron mobility, originated 
from oxygen vacancies [83]. However, it has been studied 
that the movement of hole carriers is relatively limited com-
pared to that of electrons because the valence band of metal 
oxide semiconductor comprises hybrid orbitals of p and d 
orbitals [84]. As a result, it has been challenging to develop 
high-performance p-type metal oxide semiconductors. Nev-
ertheless, with the great research efforts, the charge transport 
characteristics of p-type metal oxide semiconductors such 
as copper (II) oxide (CuO) [85, 86], and tin (II) oxide (SnO) 
[87, 88] have been improved, which expands their applica-
bility into metal oxide semiconductor-based complementary 
inverters and logic circuits.

Dindar et al. [24] fabricated a complementary inverter 
with a shared gate structure in which p-type CuO TFT 
and n-type IGZO TFT were vertically integrated (Fig. 4a). 
They optimized the electrical characteristics of the CuO 
TFTs according to the thickness of the CuO (Fig. 4b). 
When the thickness of CuO was above 20 nm, CuO was 
highly conductive and the off-state could not be secured 
in CuO TFT. On the other hand, when the CuO thickness 
was reduced to 10 nm, the current on/off ratio (Ion/Ioff) 
was secured up to 3.9 ×  102 due to the improved off-state, 
which is sufficient to operate as a p-type TFT. Based on 
the improved p-type TFT, they demonstrated the vertically 
integrated inverter based on the metal oxide semiconduc-
tors, with a maximum gain as high as 120 V/V (Fig. 4c). 
The CuO TFT and IGZO TFT showed relatively unbal-
anced noise margins due to the large on-current differ-
ence. It was also noted that the device performance can be 
further improved by optimizing the channel geometry of 
the two TFTs and the thickness of the gate dielectric. Joo 
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et al. [25] implemented the vertically integrated inverter 
using SnO, another p-type metal oxide semiconduc-
tor, along with IGZO TFT. A shared gate structure was 
utilized to achieve the inverter, and the interconnection 
between the drain electrodes of the top and bottom TFTs 
was made through via-holes formed by etching (Fig. 4d). 
They designed the channel width/length ratio of SnO TFT 
to be 7 times larger to compensate for the relatively low 

carrier mobility of the SnO TFT compared to that of the 
IGZO TFT. Thereby, the balanced inverter characteris-
tic was achieved and the DC gain of the inverter reached 
33.6 V/V with the supply voltage (VDD) of 10 V (Fig. 4e). 
They investigated how the characteristics of the inverter 
are modulated with respect to wavelength and intensity 
of light, to utilize the vertically integrated inverter as an 
optical sensor. With the light irradiation, the Vth of the 

Fig. 4  a Schematic diagram of a complementary inverter in which a p-type copper oxide transistor is vertically stacked on top of an n-type 
α-IGZO transistor. b Transfer curve of CuO TFT when CuO thickness is 10, 20, and 30 nm. c Voltage transfer characteristics of a vertically 
stacked inverter composed of a copper oxide transistor and an α-IGZO transistor [24]. Copyright © 2011, AIP Publishing. d A schematic of 
vertically stacked complementary inverter composed of a p-type SnO and an n-type IGZO TFTs. e Voltage transfer characteristics of a comple-
mentary inverter in which n-type IGZO TFT and p-type SnO TFT are vertically stacked when VDD is 6, 8, and 10 V. f Change in the inverter 
characteristics according to red, green, and blue light application [25]. Copyright © 2019, MDPI. g Optical image and cross-sectional schematic 
of vertically stacked metal oxide TFT arrays for high-resolution active-matrix organic light-emitting diode backplanes. h PBTS measurement 
results for switching and driving TFTs, which are the first and second TFT layers for the backplane realization of high-resolution TFTs [89]. 
Copyright © 2020, John Wiley and Sons
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SnO TFT located on the top layer shifted into positive 
direction, which induced positive shift in the VTC of the 
vertically integrated inverter. The amount of shift in VTC 
became larger as the wavelength of light decreased and the 
intensity increased (Fig. 4f). Through this achievement, it 
can be noted that the functionality per unit area can also be 
improved through 3D integration of the logic and optical 
sensor devices. The 3D integration can also be attractive 
when applied to a display device. Lee et al. [89] demon-
strated a two-layered IGZO TFTs backplane for driving a 
high-resolution display (Fig. 4g). The IGZO TFTs in the 
1st and 2nd layers were utilized as switching and driving 
TFTs, respectively, and  N2O plasma was applied to secure 

the stability and reliability of the IGZO TFT. As a result, 
stable TFT characteristics were achieved even in the posi-
tive bias temperature stress (PBTS) under VGS = 20 V and 
60 °C for 10,000 s (Fig. 4h). The basic circuit of the OLED 
display is composed of the TFT that derived the OLED 
and a switching TFT that transmits voltage data. Through 
these vertically stacked structures and the data line placed 
under the switching TFT, they were able to reduce the 
pixel size by 83%, compared to the standard structures, 
which realized high resolution display. In addition, a dual 
gate structure was introduced, which led lower subthresh-
old swing (0.14 V  dec−1) compared to those obtained in 
the single (bottom or top) gate structure.

Fig. 5  Schematic diagram of a vertical stacked p-type organic semiconductor and n-type metal oxide hybrid inverter capable of complementary 
operation
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3.3  Organic–Metal Oxide Hybrid Combinations 
for Vertical Integrations

The hole mobility in metal oxide semiconductors is rela-
tively limited compared to the electron mobility, as we 
mentioned above. On the other hand, the charge transport 
characteristics, as well as environmental stability, are supe-
rior in p-type semiconductors compared to n-type ones in 
organic materials. Therefore, the 3D integration of TFTs 

utilizing p-type organic semiconductors and n-type metal 
oxide semiconductors is an attractive way to overcome the 
shortcomings of each material (Fig. 5).

Nomura et al. [90] fabricated the complementary inverter 
by vertically integrating p-type poly-(9,9-dioctylfluorene-
co-bithiophene) (F8T2) OTFT and n-type IGZO TFT 
(Fig. 6a). The vertically stacked inverter could be fabricated 
on a flexible polyethylene terephthalate (PET) substrate 
because all the manufacturing processes could be carried 

Fig. 6  a Schematic diagram of a vertically stacked inverter with a structure in which the F8T2 TFT and the IGZO TFT share a gate electrode. 
b Output curves of the F8T2 TFT and IGZO TFT. c Voltage transfer characteristics of the vertically stacked organic-metal oxide hybrid inverter 
[90]. Copyright © 2010, AIP Publishing. d Schematic diagram of the vertically stacked organic-metal oxide hybrid inverter composed of IGZO 
TFT and pentacene TFT. e, f Voltage transfer characteristics and DC gain profiles of IGZO-pentacene vertically stacked inverters at VDD of 4, 
5, and 6 V [91]. Copyright © 2011, Elsevier. g Schematic device structure of a vertically stacked complementary inverter based on vertical 
Schottky barrier transistors composed of pentacene and IGZO. h, i Realization of inverter characteristics by controlling the Schottky barrier of 
junction between pentacene and graphene, IGZO and graphene through Fermi level modulation of graphene [15]. Copyright © 2019, American 
Chemical Society
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out at temperature below 120 °C. They utilized the bottom-
contact structure of the OTFT to prevent potential thermal 
damage to the organic semiconductor because the highest 
process temperature was required for the S/D electrode pat-
tern of the F8T2 OTFT. Parylene was employed not only as 
of the gate insulator of IGZO TFT but also as the protection 
layer for F8T2 OTFT. Both F8T2 OTFT and IGZO TFT 
showed a low off-current of about  10–13 A and an Ion/Ioff of 
over  107. Also, each output curve showed a clear current 
saturation (Fig. 6b). The resulting vertically stacked inverter 
showed full swings from VDD to ground (GND) (Fig. 6c). 
However, due to the relatively low dielectric constant of 
the gate insulator for the F8T2 OTFT and IGZO TFT (3.6 
and 2.8, respectively), the operating voltage was relatively 
high (~ 30 V). Therefore, introducing a high-k dielectric was 
highly required to lower the driving voltage of the vertically 
stacked devices. Kim et al. [91] demonstrated a vertically 
stacked inverter capable of low-voltage operation by utiliz-
ing  Al2O3 as a gate dielectric layer. The IGZO TFT and pen-
tacene OTFT were fabricated on the bottom and top layers, 
respectively (Fig. 6d). The pentacene OTFT was placed on 
the top layer to prevent damage to the organic semiconduc-
tor in forming  Al2O3 in the ALD process. They designed the 
channel width/length ratio of pentacene OTFT to be 10 times 
that of IGZO TFT, and the thickness of the gate insulator 
was independently controlled for the pentacene OTFT and 
IGZO TFT to achieve the balanced electrical characteristics 
between pentacene OTFT and IGZO TFT. As a result, the 
resulting inverter showed the switching voltage formed at 
the half of VDD, high DC gain (= 61 V/V) as well as low 
operating voltage (Fig. 6e,f). More complex logic circuits 
have been demonstrated based on vertical integration, by 
utilizing organic and oxide semiconductors. Kudo et al. [26] 
implemented vertically stacked inverter, NAND, and NOR 
circuits using the solution-processed TIPS-pentacene OTFT 
and ZnO TFT. They used silicone resin as a gate insulator 
and interconnected each electrode through via-holes formed 
by photolithography for NAND or NOR circuit implemen-
tation. Most of the existing vertically stacked inverters 
employed a shared gate structure and required a connection 
between the upper and lower layers of drain electrodes. On 
the other hand, Choi et al. [15] demonstrated the vertically 
integrated inverter without complex interconnection, by 
using graphene. Figure 6g shows a schematic diagram of 
the vertically stacked inverter based on the proposed vertical 
Schottky barrier transistors. The Schottky barrier formed 

at the junction between graphene and each semiconductor 
(pentacene and IGZO) was indirectly controlled by ion-gel 
dielectric and a gate electrode that was positioned laterally 
away from the graphene/semiconductor heterojunction. 
As a result, a full swing inverter characteristic was real-
ized by controlling the Schottky barrier between pentacene 
and IGZO through the Fermi level modulation of graphene 
according to the gate voltage (Fig. 6h,i).

3.4  2D Materials‑Based Vertical Integration

With the unique and excellent electrical and optoelectronic 
properties as the thickness reduces to atomic scale, 2D 
semiconductors have emerged as next-generation electronic 
materials. In particular, TMD materials including molyb-
denum disulfide  (MoS2) and tungsten diselenide  (WSe2) 
showed the excellent charge transport characteristics as 
well as tunable bandgap according to the number of layers 
in the 2D structure [92]. In addition to these advantages, 
3D integration has been actively studied due to their unique 
heat dissipation mechanism and improved density due to 
atomic scale thickness. In the vertically stacked structure, 
it becomes difficult for the upper layer to dissipate the heat 
generated during operation with the increasing integration 
density. Therefore, thermal conductivity is an important fac-
tor to consider in the 3D integration. It has been studied that 
the atomically thin thickness of 2D materials can signifi-
cantly reduce the thickness of each layer and the thickness of 
the insulating film between layers, thereby minimizing total 
dielectric thermal resistance and self-healing. Furthermore, 
the great potential of 2D materials has been reported, in that, 
it is possible to improve the density by more than 10 times 
compared to the conventional TSV-based 3D integration 
and 2.5 times compared to the conventional monolithic 3D 
integration [93, 94]. The following introduces the footprints 
of several researchers to realize 3D integration of the 2D 
material-based devices.

In the early stage, mechanical exfoliation is a useful 
method to discover and investigate the electrical charac-
teristics of 2D materials. However, large-area synthesis is 
eventually required not only to secure the practical use with 
high reproducibility but to demonstrate complex, vertically 
stacked devices. Kang et al. [95] grew highly uniform mon-
olayer  MoS2 and tungsten disulfide  (WS2) on a large-area 
substrate with a yield of over 99% using the metal–organic 
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chemical vapor deposition (MOCVD) process. Highly 
uniform and excellent electrical characteristics including 
mobility independent of the channel length of the transis-
tor were demonstrated. They fabricated  MoS2 channels in 
three different layers by repeatedly depositing  SiO2 and 
 MoS2 based on the optimized MOCVD process, which led 
to the first demonstration of the large-area, 3D integration 
of the 2D material-based TFTs (Fig. 7a). However, due to 
the global back gate operation, the drain current level of 
the  MoS2 TFT fabricated in the upper layer was reduced 
compared to the  MoS2 TFT in the first layer, which can 
cause the increasing operating voltage with the increasing 
number of layers. This problem can be solved by forming 
the gate and the gate dielectric on each TFT device. Zhou 
and Appenzeller [96] stacked two  MoS2 TFTs vertically, 
to increase the effective channel width while maintaining 
the device area. Then, the gate electrodes of the two  MoS2 

TFTs were connected to each other, and the drain and source 
electrodes were also configured identically to demonstrate 
high current driving capability (Fig. 7b). Furthermore, Tang 
et al. [13] demonstrated 3D integration of three  MoS2 TFTs 
where all the components consisted of 2D materials, includ-
ing the channel material as well as the gate, gate dielectric, 
and S/D electrode (Fig. 7c). By connecting electrodes with 
the same function, the effective channel width was improved 
while maintaining the device area so that the current level 
of the  MoS2 TFT increased in proportion to the number of 
devices (Fig. 7d,e). Despite simple stacking of the  MoS2 
TFTs, these researches directly showed the advantage of the 
vertical integration, where high current driving capability 
can be achieved by improving an effective channel width 
within the given area.

Yu et al. [97] demonstrated a complementary inverter by 
vertically integrating graphene,  Bi2Sr2Co2O8, and  MoS2 as 

Fig. 7  a Two-layer  MoS2 TFTs manufacturing process through MOCVD process and optical microscope image of fabricated device and output 
curve characteristics of  MoS2 TFT located on each layer [95]. Copyright © 2015, Springer Nature. b Schematic diagram of vertically stacked 
multi-channel  MoS2 FET structure to improve current driving capability through effective channel length reduction [96]. Copyright © 2018, 
IEEE. c Illustration of a vertically stacked structure of three  MoS2 TFTs, all layers of which are composed of 2D materials. d, e Current in out-
put curve and transfer curve increasing with the number of vertically integrated  MoS2 channels [13]. Copyright © 2020, John Wiley and Sons
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shown in Fig. 8a. The vertically integrated inverter could 
be driven with this structure because the electric field of 
the bottom gate penetrated the p-type  Bi2Sr2Co2O8 device 
and modulated the n-type  MoS2 channel due to the weak 

screening effect of graphene. Consequently, a vertically inte-
grated inverter was demonstrated and logic can be imple-
mented in this relatively simple structure. On the other 
hand, as in the vertically integrated organic and metal oxide 

Fig. 8  a Illustration of a vertically stacked inverter based on vertical transistors composed of  MoS2 and  Bi2Sr2Co2O8 [97]. Copyright © 2013, 
Springer Nature. b A schematic diagram of a vertically stacked inverter with a structure in which n-type  MOS2 TFT and p-type  WSe2 TFT share 
a gate. c Voltage transfer characteristics of the vertically stacked inverter [12]. Copyright © 2017, AIP Publishing. d, e Schematic and optical 
microscopy images of the thermal deposited Te TFT-based vertically stacked inverter structures. f Voltage transfer characteristics of Te-based 
vertically stacked inverter [32]. Copyright © 2020, Springer Nature. g Circuit diagram of differential amplifier (bottom layer) and common 
source amplifier (top layer) designed using  MoS2 and  WSe2. h Output of differential amplifier (bottom layer) and common source amplifier (top 
layer) circuit for an input signal with a peak-to-peak voltage of 50 mV [98]. Copyright © 2016, John Wiley and Sons
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semiconductor devices, a shared gate structure has been 
utilized in the 3D integration of 2D material-based TFTs. 
Sachid et al. [12] demonstrated a complementary inverter 
using n-type  MoS2 TFT and p-type  WSe2 TFT by sharing the 
gate electrode as shown in Fig. 8b. They employed a high-k 
 ZrO2 gate dielectric layer that led to low operating voltage 
(~ 3 V) of the TFTs and resulting vertically stacked inverter 
(Fig. 8c). The inverter exhibited full swing from VDD to GND 
with a maximum voltage gain as high as 45 V/V.

As we mentioned above, it is important to secure large-
area uniformity of 2D materials for reliable and reproducible 
device fabrication. Most large-area synthesis of 2D TMDs 
has relied on MOCVD, and a high process temperature is 
required to ensure the excellent charge transport character-
istics. Zhao et al. [32] fabricated wafer-scale tellurium (Te) 
TFTs through simple thermal evaporation. Moreover, the 
process temperature was optimized to be as low as − 80 °C, 
which is fully compatible with plastic substrates. The fab-
ricated Te TFT had hole mobility of 25–35  cm2  V−1  s−1, 
regardless of the substrate. By using the Te TFTs, they 
demonstrated several digital circuits such as lateral inverter, 
NAND, full adder, and 2-bit multiplier with high uniform-
ity. In addition, the vertically integrated inverter was imple-
mented by interconnecting Te TFTs on the top and bottom 
layers where one Te TFT was used as an active load and the 
other Te TFT acted as a driver, which proved the possibility 
of 3D integration of Te TFT (Fig. 8d,e). The fabricated 3D 
inverter showed DC gain characteristics of 12 V/V, and the 
operating voltage was as low as 2 V owing to the use of the 
high-k  ZrO2 dielectric (Fig. 8f). In addition to the digital 
circuits, research efforts have been performed to implement 
functional analog circuits through the 3D integration of 
2D semiconductor material-based TFTs. Sachid et al. [98] 
implemented analog circuits including the differential ampli-
fier, common source amplifier, and signal mixer as well as 
digital circuits, by using  MoS2 and  WSe2 TFTs. Figure 8g 
shows the circuit diagram of the implemented differential 
amplifier (bottom layer) and common-source amplifier (top 
layer). The differential amplifier in the bottom layer was 
operated in single-ended operation mode. An output signal 
of a peak-to-peak voltage of about 270 mV and a voltage 
gain of 5.4 V/V was obtained with the applied peak-to-peak 
voltage of 50 mV as an input signal (Fig. 8h).

As discussed above, integrated circuits by vertically inte-
grating 2D material-based TFTs have been widely inves-
tigated. On the other hand, other kinds of devices such as 

sensors and memory can be vertically integrated to implement 
specific functions, as we discussed in the vertically integrated 
devices based on organic and metal oxide semiconductors. 
An important example in 2D semiconductor materials can 
be optoelectronic devices such as photodetectors and pho-
totransistors, as TMDs exhibit excellent photoresponsivity 
with monolayer thickness. Yang et al. [99] implemented a 
phototransistor by transferring CVD-synthesized monolayer 
 MoS2 onto the Si nanowire FET-based logic/memory hybrid 
3D integrated circuits (Fig. 9a). Moreover, the sensing range 
can be controlled in this structure by using another monolayer 
TMDs including  WS2,  WSe2, and  MoSe2 with a different band 
gap in addition to monolayer  MoS2. In the photodetector, it 
is important to generate current by absorbing light without 
recombination of the photogenerated hole and electron in the 
channel. Therefore, the use of high conductivity materials such 
as graphene can be a great option to separate excess photogen-
erated carriers and effectively generate high photocurrent. 
Goossens et al. [16] demonstrated a high-performance image 
sensor array through 3D integration of complementary cir-
cuits and graphene (Fig. 9b). The graphene layer was inserted 
between the lead sulfide quantum dots (PbS QDs) photoac-
tive layer and the CMOS read-out circuit. Through this struc-
ture, photogenerated holes and electrons from PbS QDs are 
transported to graphene. The optical sensing signal could be 
detected by the change in the conductivity of graphene, which 
showed significantly improved results compared to the devices 
without graphene. These studies highlighted the advantages 
of optoelectronic devices developed by vertical integration 
of the devices based on 2D materials including TMDs and 
graphene. In addition to the excellent semiconducting proper-
ties of TMDs, 2D materials can also exhibit high electrical 
conductivity (graphene) and insulating properties [hexagonal 
boron nitride (hBN)]. Exploiting these electrical properties 
of 2D materials, Tang et al. [13] demonstrated all 2D materi-
als-based electronics, by utilizing  MoS2, hBN, and graphene 
as semiconducting, insulating, and contact/gating materials, 
respectively. They also manufactured the vertically stacked 
electronic device, where different functional devices based 
on 2D materials including memory, logic (inverter, NAND), 
and sensor (optical sensor) were stacked (Fig. 9c). Figure 9d–f 
shows the electrical characteristics of each device based on the 
independent operation. Furthermore, they demonstrated coop-
erative operation between different devices by interconnect-
ing the memory device (1st layer) and the optical sensor (3rd 
layer) to show the change of the memory state according to 
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the photoresponse of the optical sensor. Despite the relatively 
small-scale fabrication, it is still meaningful that all layers 
composed of the devices were implemented by 2D materials. 
The improved integration density and large-area processing 
technology are still required in 2D material-based electronics. 
However, considering the excellent electrical characteristics 
of 2D materials and the extensive researches on 2D materials, 

we believe significant progress in vertical integration of 2D 
material-based devices should be achieved in near future.

3.5  CNTs‑Based Vertical Integration

CNTs have been spotlighted because they have advantages 
such as high electrical conductivity, thermal conductivity, 

Fig. 9  a Schematic diagram of a monolithic 3D image sensor with a monolayer TMD phototransistor array integrated on Si nanowire FET-
based logic/memory hybrid 3D integrated circuits [99]. Copyright © 2016, IEEE. b Back-end-of-line CMOS integration of CVD graphene with 
388 × 288 pixel image sensor read-out circuit [16]. Copyright © 2017, John Wiley and Sons. c Schematic diagram in which various functions 
such as memory, logic, and optical sensor based on 2D materials are vertically stacked on different layers. d‑f Independent operation character-
istics of memory (1st layer), logic (2nd layer), and optical sensor (3rd layer) located in each layer [13]. Copyright © 2020, John Wiley and Sons
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and mechanical strength even with light weight. In addition, 
the electrical characteristics of carbon nanotube field effect 
transistors (CNTFETs) can be modulated into p-type, n-type, 
and ambipolar charge transport, through passivation [100, 
101]. These characteristics make it possible to implement a 
complementary logic device only with CNTFETs.

Kanhaiya et al. implemented a vertically stacked comple-
mentary inverter by only using CNTFETs [17]. To imple-
ment a complementary inverter, p-type and n-type transistors 
are required, respectively. However, it was confirmed that 
the fabricated CNTFETs showed p-type characteristics in 
the ID–VG curves. They applied  HfOx, a high-k dielectric, 
as the gate dielectric for the vertical stacking of CNTFETs. 
Interestingly, when  HfOx, a high-k dielectric layer, was 
deposited on the CNTFETs, the CNTFETs were modulated 
into n-type CNTFETs by electrostatic doping. They demon-
strated a NOR gate as well as a vertically stacked inverter by 
utilizing a lower CNTFET with  HfOx that can be operated 
as n-type TFT with an upper p-type CNTFET. Furthermore, 
they successfully demonstrated 500 CNTFET-based verti-
cally stacked NOR gates on a wafer scale.

In addition, several applications with vertically stacked 
structures using CNTs have been implemented. For example, 
a vertically stacked complementary inverter was fabricated 
by using p-type CNTFET with n-type IGZO TFT, and the 
integrated temperature sensor was demonstrated [102]. In 
addition, a CNT-based gas sensor in which the electrical 
properties of CNTs were modulated by gas molecules was 
also implemented [19]. Furthermore, the integrated elec-
tronic system based on more complicated vertically stacked 
structure including CNTFET was demonstrated [18], which 
will be discussed in the following section.

4  Emerging Applications Based on Vertical 
Integration

4.1  Vertical‑Integrated Sensors and Optoelectronic 
Devices

The sensor is one of the most important functional com-
ponents in a wearable electronic system, as it can actively 
monitor the surrounding environment and provide informa-
tion to a user [103–105]. Many excellent review papers cov-
ered efforts on the development of the sensors [106–110], so 

we briefly introduced the vertically integrated sensors along 
with their strategies in this review.

In the vertically integrated sensor, the sensor device 
should be positioned to the uppermost layer and be exposed 
to the external environment in order to improve the sensi-
tivity of the sensor. Therefore, various sensors such as pho-
totransistors, temperature sensors, and gas sensors have been 
implemented on the top layer of the vertically integrated 
element (Fig. 10a). On the other hand, the position of the 
sensing layer is relatively free in the phototransistors and 
LED applications if they are fabricated on transparent sub-
strates. In general, a transparent electrode such as ITO less-
ens the requirement that a photoactive or photo-generation 
layer resides on top of a vertical stack. In addition, in the 
vertical stacking of metal oxides and organic semiconduc-
tors, organic semiconductors are commonly placed on top 
of metal oxide semiconductors in order to prevent damage 
to the organic semiconductors from complex processes such 
as sputtering of metal oxides and consequent thermal stress. 
Alternatively, in the case of organic semiconductors that can 
be damaged by the ambient air, they are located on the bot-
tom of the vertical stack and are encapsulated by the upper 
layers/devices. Including these vertical stacking designs 
and application rules, interesting structures of vertically 
stacked inverters in which various semiconductor materials 
are combined have been reported. Park et al. [27] demon-
strated vertically stacked inverters based on pentacene and 
gallium zinc tin oxide (GZTO) semiconductors. They intro-
duced a shared gate structure for manufacturing the verti-
cally stacked inverter and placed a GZTO TFT on the bottom 
layer and a pentacene OTFT on the top layer (Fig. 10b, c). 
The low-voltage operation (< 3 V) was achieved by using 
 Al2O3 as a gate dielectric layer, and the fabricated inverter 
showed full swing characteristics and obtained a DC gain 
up to 52 V/V. The photo-gating effect was demonstrated, by 
measuring the electrical characteristics of the inverter under 
red, green, and blue LEDs (Fig. 10d). It was found that the 
switching voltage of the inverter was positively shifted only 
under the blue LED, and the photo-gating characteristics 
when the pulse of the blue LED was applied were examined 
for the input voltage of the inverter (Fig. 10e).

Peng et al. [22] fabricated the OTFT based on the parylene 
dielectric layer and used it as an active-matrix (AM) array 
for light-emitting diode (LED). The driving dinaphtho[2,3-
b:2′,3′-f] thieno[3,2-b] thiophene (DNTT) OTFT was inte-
grated into LED by connecting the electrodes through a 
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Fig. 10  a Overview of top layers suitable for placing sensor elements in vertically integrated structures. b, c Illustration and optical microscopy 
image of a vertically stacked inverter with a gate-sharing structure composed of pentacene and GZTO. d, e Response characteristics of the verti-
cally stacked inverter according to a blue LED pulse [27]. Copyright © 2011, Elsevier. f Schematic diagram of the structure that connects the 
LED and the driving TFT, DNTT OTFT, through a laser drill. g Image showing the fabricated paper-based AM LED array [22]. Copyright © 
2014, Springer Nature. h Schematic diagram of a vertically stacked device of CNTFET and IGZO based CMOS inverter and temperature sensor 
on a flexible substrate. i Real-time temperature measurement according to human hand contact [102]. Copyright © 2015, John Wiley and Sons. j 
Illustration of an ammonia gas sensor device based on a vertically stacked SWCNT inverter. k Shift of output voltage curve of vertically stacked 
SWCNT inverter with ammonia gas concentration [19]. Copyright © 2022, RSC Publishing. l Vertically integrated structures of OPS and OTFT 
and their equivalent circuits. m Current density–voltage characteristic of OPS device according to light intensity and curve of measured EQE 
[111]. Copyright © 2010, AIP Publishing
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via-hole created by laser drilling (Fig. 10f). The bias signals 
were applied to AM array by using multiplexers, and the 
paper-based AM LED array was successfully demonstrated 
(Fig. 10g).

Vertical stacking of organic and oxide semiconductors-
based TFTs can also be extended to integrate sensors. As 
an example, Honda et al. [102] implemented a tempera-
ture sensor (3rd layer) into the inverter in which IGZO 
TFT (1st layer) and CNT TFT (2nd layer) were vertically 
stacked (Fig. 10h). They introduced the polyimide (PI) 
layer to prevent cross-talk through isolation between each 
layer. In addition, the photosensitive PI enabled the forma-
tion of via-contacts for interconnection between the bottom 
and top layers through a photolithography process. The 
fabricated vertically stacked inverter showed stable opera-
tion without change in DC gain or switching voltage even 
after 1,000 bending cycles. They demonstrated temperature 
sensing through the time-varying resistance when a human 
finger touched the integrated temperature sensor (Fig. 10i). 
Additionally, the electrical characteristics of the vertically 
stacked inverter were measured with different temperature, 
which revealed that the sensitivity was − 0.0165 V °C−1.

Deng et al. [19] developed a single-walled carbon nano-
tube (SWCNT) integrated circuit on the PI substrate by 
printing process. The ionic liquid crosslinked PVP (IL-c-
PVP) was utilized as a dielectric layer, which enabled low 
operating voltage of SWCNT TFT (< 1 V) and gas sensing. 
The electrical characteristics of the SWCNT TFTs on the 
bottom layer including mobility and Ion/Ioff were not changed 
after the SWCNT TFT fabrication on the top layer. There 
was a slight difference in the device performance of SWCNT 
TFTs between the top and bottom layers because the active 
layer of the SWCNT TFTs on the top layer was exposed to 
ambient air. The SWCNT TFTs and vertically integrated 
inverters fully maintained their electrical characteristics dur-
ing the repeated bending cycles up to 10,000 times. Based on 
the vertically stacked SWCNT inverter, an ammonia gas sen-
sor was demonstrated. As shown in Fig. 10j, when the device 
was exposed to the ammonia gas, the IL-c-PVP dielectric 
layer in the top SWCNT TFTs could absorb the ammonia 
gas. The absorbed ammonia could neutralize holes because 
ammonia is a strong electron donor. Consequently, the chan-
nel resistance of the top SWCNT TFTs was increased and 
Vth was shifted to a negative direction while the electri-
cal characteristics of the bottom SWCNT TFTs remained 
unchanged, which led to the gradual shift in the VTC of the 

SWCNT inverter according to the ammonia concentration 
(Fig. 10k). Also, through the high-temperature desorption, 
the electrical characteristics of SWCNT TFT and inverter 
could be fully recovered to the initial state.

Jeong et  al. [111] developed an organic photosensor 
(OPS) that was vertically integrated with OTFT (Fig. 10l). 
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 
(PEDOT:PSS)-coated indium tin oxide (ITO) was used as 
anode, and poly(3-hexylethiophene)/phenyl-C61-butryic 
acid methyl ester) (P3HT/PCBM) was utilized as an active 
layer in the OPS. For the cathode, the Al electrode was used 
to block the light into pentacene OTFT, thus preventing 
the photoactivation of pentacene. Poly(dimethylsiloxane) 
(PDMS) with 1 mm thickness was prepared to electrically 
isolate the OPS from OTFT, followed by OTFT fabrication, 
and those devices were fabricated on a flexible PEN sub-
strate. The anode-source current (IAS) increased when the 
light intensity increased in different gate bias conditions. 
The photoresponse increased with the increasing gate-source 
voltage (VGS), which showed the tunable optical properties 
of the integrated device according to the channel resistance 
of the OTFT (Fig. 10m).

4.2  Advanced Applications Based on Vertical 
Integration

The most important advantage that can be achieved from 
monolithic 3D integration through vertical stacking is the 
increased data processing capability in the given 2D area, 
as we repeatedly emphasized in this paper. Shulaker et al. 
[18] developed a 3D integrated circuit by combining the 
device technologies based on emerging materials together, 
which is regarded as an important milestone in 3D integrated 
electronics. A prototype of the functional device was dem-
onstrated, where sensing, data storage, and computing could 
be processed in a single chip. The developed nanosystem 
consisted of 4 different layers, each of which has a different 
role (Fig. 11a). The silicon transistors were fabricated on 
the 1st layer due to the high processing temperature. Those 
conventional devices interfaced with other layers to read 
RRAM in the 3rd layer and to steer these data to a CNT-
FET computing system. The CNTFET-based classification 
accelerator on the second layer is computed on the input data 
acquired from the CNTFET gas sensors on the fourth layer. 
The third layer consisted of the non-volatile RRAM cells, 
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which provided data storage by being integrated with the 
silicon select transistors. On the topmost (4th) layer, a huge 
number (more than one million) of CNTFET inverters were 
fabricated and they were operated as chemical vapor sensors. 
Such a complex, high-density integrated circuit was trained 
to distinguish shared gases and vapors including nitrogen, 
the vapors of lemon juice, white vinegar, rubbing alcohol, 
vodka, wine, and beer (Fig. 11b). Also, it is worthwhile to 
note that all the components could be operated within a 

low voltage of less than 3 V. This work showed the process 
compatibility of the emerging materials with current silicon-
based technology, thus demonstrating a functional prototype. 
In addition, the logic devices were successfully integrated 
with memories in a single chip by using a vertically stacked 
structure, which can overcome the main bottleneck arising 
from the data transfer between off-chip memory and on-chip 
logic circuits.

Fig. 11  a Illustration of a nanosystem consisting of four stacked layers with different functions such as silicon FET logic, CNTFET logic, 
RRAM, CNTFET sensor, and logic. b Detection of various gas components by changing the electrical properties of functionalized CNTFET 
gas sensors [18]. Copyright © 2017, Springer Nature. c Organic ternary logic inverter in which flash memory and heterojunction transistors are 
vertically stacked in a via-hole-less metal interconnection scheme. d Optimization of the intermediate logic state of the ternary inverter accord-
ing to flash memory state determined by the programming voltage [113]. Copyright © 2022, Springer Nature. e Schematic illustration of the 
AM micro-LED display. f Luminance and current of 10–40 μm blue and green micro-LEDs with a 1T1D structure normalized by the area of the 
micro-LED. g Optical microscope image of the QR code implemented with the high-resolution AM blue micro-LED display at a system level, 
consisting of 1,024 pixels [116]. Copyright © 2021, Springer Nature. h Schematic diagram of TFT-driven full-color OLED with a structure in 
which red (R), green (G), and blue (B) units are vertically stacked. i Current-luminance characteristics of vertically stacked TFT-driven full-
color OLEDs in which R, G, and B pixels. j Multi-color realization through R, G, and B combination of TFT-driven vertically stacked full-color 
OLED [119]. Copyright © 2020, Springer Nature
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Multi-valued logic (MVL) circuits have been spotlighted, 
as they can increase data processing capability by using the 
intermediate logic states between conventional logic states 
(0 and 1) For example, system complexity can be theoreti-
cally reduced to ~ 63% in a ternary logic circuit compared to 
the conventional binary logic circuit [112]. The intermediate 
logic state can be implemented by utilizing a heterojunction 
transistor, which enables the ternary logic devices without 
increasing number of devices. Choi et al. [113] developed 
the organic ternary logic inverter in a vertically stacked 
structure (Fig. 11c). The dielectric layer was patterned dur-
ing the deposition, which enables metal interconnection in 
different layers. The iCVD process was utilized to fabricate 
the ultrathin polymer dielectric layers, which enabled low-
voltage operation (< 5 V) as well as high uniformity in the 
electrical characteristics of the fabricated devices. Moreover, 
non-volatile flash memory was implemented and integrated 
with the heterojunction transistor in a vertically stacked 
manner. The intermediate logic state of the ternary logic cir-
cuit was systematically optimized with the appropriate pro-
gramming/erasing operation of the flash memory (Fig. 11d). 
In addition, by designing the dielectric materials according 
to their dielectric constant (high-k dielectric for blocking 
dielectric layer and low-k dielectric for tunneling dielec-
tric layer), low-voltage programming/erasing (< 19 V) was 
achieved. The vapor-phase deposited, highly robust polymer 
dielectric materials enabled the excellent retention charac-
teristics of the flash memory, leading to a reliable operation 
of the ternary logic inverter. This study provided a useful 
insight to achieve high-performance MVL circuits and the 
information density per unit area was further improved by 
introducing vertically stacked structures into MVL circuits.

The most important components that consist of AM dis-
plays are TFT and LED. Each pixel is controlled by the indi-
vidual TFT, which makes AM displays have advantages such 
as high response time and color resolution [114, 115]. There 
have been researching efforts to demonstrate high-density 
AM displays in a vertically stacked manner by exploiting 
the emerging materials for next-generation advanced dis-
play systems. Meng et al. [116] demonstrated large-area 
 MoS2 TFTs that were vertically integrated with GaN-based 
micro-LED through the back-end of line (BEOL) integration 
(Fig. 11e). The GaN-based LED was fabricated by MOCVD 
in the bottom layer and the  MoS2 TFT array lay on top of 
the micro-LED. An ultraclean process for  MoS2 TFTs was 
developed, which enabled high mobility (~ 54  cm2  V−1  s−1). 

Combined with the short channel length (~ 1 μm), the on-
current (Ion) reached 210 μA μm−1, which is capable of oper-
ating micro-LEDs. The device yield was as high as 95% 
even with a large number of the fabricated devices (~ 200 
TFTs) owing to the scalable fabrication process. Through the 
monolithic integration, a one-transistor–one-diode (1T1D) 
scheme was realized, which showed extremely high bright-
ness (luminance of 7.1 ×  107 cd  m−2) (Fig. 11f). Moreover, a 
quick response (QR) image was demonstrated as an example 
of the high-resolution AM display at a system level, consist-
ing of 1024 pixels with 20 μm pitch, which corresponds 
to 1270 pixels per inch (PPI) (Fig. 11g). This work shows 
the compatibility of atomically thin semiconductors with 
the existing display technologies and their potential for 
advanced display applications.

Organic light-emitting diodes (OLEDs) have been posi-
tioned as a mainstream of displays including mobile devices 
and TVs owing to their high efficiency, light-weight, and 
high-color gamut [117, 118]. To meet the requirements for 
future display systems such as augmented reality (AR) and 
virtual reality (VR), a high-resolution display is highly rec-
ommended. Choi et al. [119] developed a vertically stacked 
OLED system by using intermediate electrodes. The trans-
parent indium zinc oxide (IZO) intermediate electrodes 
were patterned by the photolithographic process to achieve 
a finely patterned, high-resolution display. The damage on 
the OLED devices potentially caused during the photoli-
thography process was prevented by the additional  SiNx pas-
sivation layers on top of the  Al2O3 thin-film encapsulation 
(TFE), where the insufficient protection of  Al2O3 TFE was 
supplemented by transparent, low-temperature processed 
 SiNx passivation layer. The device structure including the 
thickness of each layer was optimized by the optical simu-
lation to ensure high efficiency and color gamut. Based on 
the optimized structure, the independent control of red (R), 
green (G), and blue (B) units was achieved as well as low-
operating voltage (turn-on voltage lower than 2.6 V) and 
sufficient luminance (up to 930 cd  m−2) in the fabricated 
vertically stacked OLEDs. Finally, TFT-driven full-color 
OLED was demonstrated based on the vertically stacked 
structure (Fig. 11h). Al-doped In–Zn–Sn–O (IZSO) driv-
ing TFTs were fabricated before the OLED deposition due 
to their high processing temperature, and they showed the 
low Vth of 0.29 V as well as high saturation mobility of 
16.3  cm2  V−1  s−1, which resulted in adequate on-current 
characteristics. By adopting two transistor-one capacitor 
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(2T-1C) pixel structures, TFT-driven individual R, G, and B 
units were successfully demonstrated, yielding 90, 230, and 
120 cd  m−2 of luminance, respectively (Fig. 11i). Various 
colors could be expressed by combining individual colors 
(Fig. 11j). By developing the photolithography-processed 
fine pattern of the intermediate electrodes, they demon-
strated the vertically stacked, full-color OLED driven by 
TFT for the first time, which showed the great potential of 
OLED for a high-resolution display system.

5  Conclusion and Outlook

In summary, we reviewed recent progress in mono-
lithic 3D integration of electronic devices (Fig. 12 and 
Table 1). Numerous research efforts have been dedicated 
to achieving vertical integration by exploiting emerging 
semiconductor materials including TMDs, organics, metal 
oxides, and CNTs. Also, bottom-up processes that can be 

suitable for emerging semiconductor materials have been 
established. The primary benefit that can be achieved 
from vertical integration is increased device density. The 
number of transistor per given area can be enhanced in 
vertical integration, and the integration density can be 
further increased as the circuit become complex where 
the required number of the transistor is increased. In addi-
tion, by placing the transistor with the ambient-instable 
semiconductors such as n-type organic materials and some 
2D semiconductors on the bottom layer, the air stability 
of the device can be improved. Furthermore, compared 
to lateral structure, it is relatively easy to optimize the 
dielectric interface and charge injection for each semicon-
ductor material. In other words, dielectric materials and 
their thickness, and work function of S/D electrodes can 
readily be adjusted in vertical structure, to improve the 
device performance. In addition to the logic circuits, verti-
cal integration of transistors with other functional devices 
including sensors, memories, and light-emitting diodes 
has been recently demonstrated to develop advanced 

Fig. 12  An overview of 3D integration based on reliable metal interconnections and future applications of various semiconductor materials
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Table 1  Summary of previously reported emerging material-based vertical stacking applications

1st layer 2nd layer (3rd 
layer or more)

Dielectric Layer (#) Structure Inter-con-
nection

Applica-
tion

Operating 
voltage 
(V)

References

Organic semiconductor-based vertical stacked devices
Pentacene Pentacene PMMA 2 Separated devices – –  − 80 [23]
Pentacene Pentacene PMMA, 

PVPh
2 Single gate Shadow 

mask 
pattern

Inverter  − 20 [57]

TIPS-
pentacene/
PTAA 

PCBM CYTOP/
Al2O3, 
 Al2O3

2 Shared gate – Inverter 8 [20]

DNTT LED Parylene 2 Active matrix Via-hole
(Laser 

drilling)

Active-
matrix 
driver

 − 80 [22]

P(NDI2OD-
T2)

TIPS-pentacene CPVP, 
CYTOP/
CPVP

2 Shared gate Externally 
connec-
tion

Inverter, 
NOR, 
NAND

30 [72]

TU-3 diF-TES-ADT/
PS

Parylene 2 Shared gate Via-hole
(Laser 

drilling)

Ring oscil-
lator

1 [67]

P-24-PNDI-
TVT

P-29-DPP-SVS CYTOP/
CPVP, 
PMMA

2 Shared gate – Inverter 30 [120]

PTCDI-C13 PTCDI-C13
(DNTT, DNTT, 

DNTT)

pV3D3 5 5 separated gates Via-hole-
less 
(Dielec-
tric pat-
terning)

Inverter, 
NOR, 
NAND

8 [39]

TU-3-PαMS TU-3-PαMS
(C8-BTBT-

PαMS)

Parylene 3 Single gate, shared gate Via-hole
(Laser 

drilling)

SRAM 3 [121]

Oxide semiconductor-based vertical stacked devices
CuO IGZO Al2O3 2 Shared gate – Inverter 10 [24]
SnO IGZO Al2O3 2 Shared gate Via-hole

(Wet etch-
ing)

Inverter, 
photo-
sensor

6 [25]

Organic oxide-based vertical stacked devices
F8T2 IGZO – 2 Shared gate – Inverter 10 [90]
GZTO Pentacene Al2O3, 

P(VDF-
TrFE)

2 Shared gate Wet etch-
ing

Inverter, 
photo-
sensor, 
memory

3 [27]

IGZO Pentacene Al2O3 2 Shared gate – Inverter 4 [91]
ZnO TIPS-pentacene Silicone 

resin
2 Shared gate Via-hole

(Photoli-
thogra-
phy)

Inverter, 
NAND, 
NOR

10 [26]

CNT-based vertical stacked devices
IGZO CNT

(CNT-
PEDOT:PSS)

Al2O3/
SiOx

3 2 separated gates Via-hole
(Wet etch-

ing)

Inverter, 
tem-
perature 
sensor

5 [102]

CNT CNT HfOx 2 Shared gate – Inverter 1 [17]
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sensors, circuits, and display systems, as we revisited in 
this review. However, there are still challenges that need 
to be resolved as follows:

 (i) Heat dissipation and power consumption should be 
considered. With the increasing number of the tran-
sistor devices per unit area, more heat can be gener-
ated. Moreover, in the vertically stacked structure, 
heat is hard to dissipate, since the device on the bot-
tom layer is buried in the insulating films. Therefore, 
it is highly demanded to develop materials and archi-
tectures for heat sink that can properly release heat 
generation from the vertically integrated devices. 
The power consumption is another important factor 
that should be taken into account, as the integration 
density is increased. Since the dielectric capacitance 
determines operating voltage of the unit transistor, it 
is important to reduce the thickness of the insulating 

layer. However, the dielectric layers fabricated via 
bottom-up processes (deposition processes) typically 
showed the limited insulating performance compared 
to the standard thermally grown silicon dioxide. Fur-
thermore, mechanically flexible insulating films such 
as polymers typically show poor insulating perfor-
mance compared to the inorganic materials when 
the thickness is reduced. The use of high-k dielectric 
materials is alternative way to achieve low-voltage 
operation; however, potential side effects including 
charge scattering and trap generation at the semicon-
ductor/dielectric interface should be considered. In 
addition, appropriate circuit design should be accom-
panied to reduce power consumption, as in the lateral 
device structure.

 (ii) High uniformity and device yield should be secured. 
Most bottom-up processes for transistor devices 
based on emerging semiconductors require thermal 

Table 1  (continued)

1st layer 2nd layer (3rd 
layer or more)

Dielectric Layer (#) Structure Inter-con-
nection

Applica-
tion

Operating 
voltage 
(V)

References

CNT CNT IL-c-PVP 2 2 separated gates Via-hole
(Laser 

drilling)

Inverter, 
gas sen-
sor

0.3 [19]

2D materials-based vertical stacked devices
Bi2Sr2Co2O8 MoS2 SiNx 2 Vertical transistor – Inverter  − 2 [97]
MoS2 MoS2 SiO2 2 Global back gate – – – [95]
MoS2 WSe2 ZrO2 2 Shared gate - Inverter, 

NAND, 
NOR, 
ampli-
fier, 
mixer

0.5 [98]

Si nanowire MoS2 – 2 – – Phototran-
sistor

40 [99]

Si Graphene
(PbS QDs)

– 3 Photoconductor – Image 
sensor 
array

– [16]

MoS2 WSe2 ZrO2 2 Shared gate – Inverter 0.5 [12]
MoS2 MoS2 Al2O3/

HfO2

2 Gate-all-around – – – [96]

MoS2 MoS2
(MoS2)

hBN 3 Gate-all-around – Memory, 
inverter, 
NAND, 
pho-
totransis-
tor

1 [13]

Te Te ZrO2 3 Single gate Via-hole
(Wet etch-

ing)

Inverter 2 [32]

MoS2 MoS2 or  WSe2 HfO2 2 Gate-all-around, shared gate – Inverter 3 [14]
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treatment to improve the film quality and electrical 
characteristics of each layer. The deposition pro-
cesses can also induce thermal stress on the under-
lying layers and devices. In the vertically stacked 
structure, thermal stress can be accumulated with the 
increasing number of integration, which may cause 
degradation in the underlying devices. Therefore, it 
is critically important to optimize the process condi-
tions that can minimize the change in the electrical 
characteristics of the underlying devices, to ensure 
uniformity and yield in the vertical direction. The 
via-hole forming process to make electrical contact 
between metals in different layers, is another sen-
sitive procedure. Laser drilling and soft etching by 
organic solvents have been suggested to remove the 
organic layers in a selective area, and wet etching 
has been widely utilized for patterning the inorganic 
layers. However, such destructive methods may cause 
the damage to the underlying devices and substrates, 
because the semiconductor materials and flex-
ible substrates are vulnerable to thermal energy or 
chemicals. Therefore, considerable efforts are highly 
demanded to develop reliable methods to selectively 
remove or pattern dielectric layers according to the 
material properties.

 (iii) Device performance and pattern resolution should be 
improved. It is worthwhile to discuss the device per-
formance and pattern resolution, even though these 
are also highly required in the lateral devices. The 
high charge mobility and low bulk/interface trap den-
sity, as well as mechanical deformability, are impor-
tant in the next-generation electronics. With the huge 
research efforts in last two decades, electrical and 
mechanical properties of organic semiconductors 
have been improved. However, their electrical char-
acteristics are still far from satisfaction, compared 
to the silicon devices. Metal oxide semiconductors 
typically exhibit high charge mobility; however, their 
mechanical flexibility and operational stability need 
to be improved. Also, discovering high-performance 
p-type metal oxide semiconductors is still demanded. 
Atomically thin 2D materials including TMDs are 
emerging semiconductors because of their unique 
electrical properties. Nevertheless, current 2D semi-
conductor devices rely on mechanical exfoliation 
and large-area synthesis methods require high pro-
cess temperature. Therefore, appropriate processes 
should be established to utilize the excellent elec-
trical properties of 2D semiconductor materials for 

practical use. Reducing channel length is another 
way to obtain a large amount of current. However, 
conventional photolithography-based patterning may 
not be directly applied to some emerging semicon-
ductors due to their limited thermal and environmen-
tal stability; thus, developing an alternative way to 
achieve short channel devices is required. In addition, 
patterning dielectric layers are important to reduce 
overall dimension, as well as to make a metal inter-
connection between different layers.

In the vertically stacked structure, there are big differ-
ences in material selection and process design, compared to 
conventional lateral device geometry. In spite of the chal-
lenges discussed above, vertical integration has been spot-
lighted, because this approach can enable us to circumvent 
the scaling limitation that current silicon technology encoun-
ters. Therefore, huge research efforts are still desperate to 
maximize the advantages of vertical integration. We believe 
the vertical 3D integration based on emerging semiconduc-
tors is an attractive strategy to accommodate high demand of 
data processing in future wearable electronics and Internet-
of-Things (IoT).
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