Supporting Information for

Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Anode-Free Zn-Iodine Batteries

Yixiang Zhang¹, Lequan Wang¹, Qingyun Li¹, Bo Hu¹, Junming Kang¹, Yuhuan Meng¹, Zedong Zhao^{1, *} and Hongbin Lu^{1, 2, *}

¹State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China

²Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang 322000, P. R. China

*Corresponding authors. E-mail: <u>17110440016@fudan.edu.cn</u> (Zedong Zhao); <u>hongbinlu@fudan.edu.cn</u> (Hongbin Lu)

Supplementary Figures and Tables

Fig. S1 Cu 2p XPS spectra of iodine-treated Cu foil

Fig. S2 XRD patterns of the surface layer of **a** CuI@Cu, **b** CuNC@Cu, **c** bare Cu foil, which is separated from the Cu substrate by transparent adhesive tape

Fig. S3 SEM images of Cu foil **a** before iodine treated, **b** after iodine treated and **c** after reduction to 0.1V

Fig. S4 SEM images and corresponding elemental mapping images of different stages in the CuI reduction process: **a** before reduction, **b** initial stage, **c** late stage and **d** after reduction

Fig. S5 GDC curves of the CuNC@Cu/Zn half-cell with the voltage range of 0.01-1 V

Fig. S6 The nucleation overpotential and alloying process in the **a** 2^{nd} , **b** 5^{th} and **c** 10^{th} cycle galvanostatic deposition curve of CuNC@Cu and Cu electrodes at 5 mA cm⁻²

Fig. S7 a SEM images and b XRD patterns of Cu electrode after nucleation (Current density: 5 mA cm^{-2})

Fig. S8 a SEM images and b XRD patterns of Cu electrode after deposition for 12 min (Current density: 5 mA cm⁻²)

Fig. S9 a SEM images with different magnifications and **b** XRD patterns of CuNC@Cu electrode after nucleation (Current density: 5 mA cm^{-2})

Fig. S10 a-b SEM images with different magnifications of CuNC@Cu electrode after stable deposition for 30s (Current density: 5 mA cm^{-2})

Fig. S11 a-c SEM images with different magnifications and d XRD patterns of CuNC@Cu electrode after deposition for 12 min (Current density: 5 mA cm⁻²)

Fig. S12 SEM images and corresponding elemental mapping images of Zn deposition morphology on CuNC@Cu electrode with a Zn deposition capacity of 1 mAh cm^{-2}

Fig. S13 Galvanostatic Zn deposition/dissolution curves of the 302^{nd} and 303^{rd} cycles of Cu electrodes which is completely short circuit. (1 mAh cm⁻² and 5 mA cm⁻²)

Fig. S14 Coulombic efficiencies of CuNC@Cu and Cu electrodes at high current density. (1 mAh cm^{-2} and 20 mA cm^{-2})

Fig. S15 Aqueous dispersion system of G and G/PVP before and after ultrasonic dispersion for 10 mins

Fig. S16 a-b SEM images of G/PVP@ZnI2 cathode material

Fig. S17 a Dissolution test of PVP in different systems: PVP in H_2O , PVP in 2 M ZnSO₄ and G/PVP electrode in 2 M ZnSO₄. **b** UV-vis absorption spectra of the PVP aqueous solution or the ZnSO₄ electrolyte after immersing a G/PVP electrode for 24 h (both are diluted by 100 times)

Fig. S19 GDC curves and polarization voltages of the G/PVP@ZnI₂ and G@ZnI₂ cathodes at 0.2 A g^{-1}

Fig. S20 GDC curves of the **a** $G/PVP@ZnI_2$ and **b** $G@ZnI_2$ cathodes at 1 A g⁻¹ under high areal mass loading

Fig. S21 Cycling curve and GDC curves of AFZIB without ZnI_2 active substance in the cathode. (Current density: 15 mA cm⁻²)

Fig. S22 a XRD pattern of the surface of Cu foil after cycling in AFZIB, which is separated from the Cu substrate by transparent adhesive tape. **b** Cycling curve of AFZIB at 1 A g^{-1} with a battery configuration of G/PVP@ZnI₂ cathode || Cu anode, which has a Cu foil anode replaced by a Zn foil anode after 200 cycles

 Table 1 Comparison of ACE and cycle number of this work with recently reported Zn half-cells

Deposited substrate	Electrolyte	Current density (mA cm ⁻²)	ACE (%)	Cycle number	Refs.
CuNC@Cu	2M ZnSO ₄ + 5mM ZnI ₆	5	99.88	4000	This work
CuNC@Cu	2M ZnSO ₄ + 5mM ZnI ₆	20	99.91	7000	This work
Ti	2M ZnSO ₄	40	97.3	250	[S1]
Ti	30M ZnCl ₂ + 5M LiCl	1	99.7	2000	[S2]
Fe	2MZnSO ₄ +0.08M ZnF ₂	30	99.87	1000	[S3]
Cu NBs@NCFs	2M ZnSO ₄	5	98.8	1000	[S4]
C/Cu	3M Zn(CF ₃ SO ₃) ₂	1	99.6	300	[S5]
Cu	50%PC-sat.	1	99.93	500	[S6]
Cu	1M ZnSO ₄	4	99.4	100	[S7]
Cu-Ag	3M Zn(TFSI) ₂ /EMC	0.5	99.86	200	[S8]
Cu	2M ZnSO ₄	2	99.55	1000	[S9]
ZIF-8-500	2M ZnSO ₄	1	98.4	200	[S10]

Table 2 Comparison of capacity and cycling performance of this work with recently reported

 AFZBs

Electrode (cathode//anode)	Mass loading	Capacity	Cycle number	Decay per cycle	Refs.
G/PVP@ZnI2// CuNC@Cu	15 mg cm ⁻²	125.7 mAh g^{-1} at 1 A g^{-1} .	200	0.19%*	This work
Prezincated MnO ₂ //C/Cu	/	$200 \text{ mAh } \text{g}^{-1} \text{ at } 1 \text{ mA } \text{cm}^{-2}$	80	0.40%	[S5]
ZnMn ₂ O ₄ //Cu	1.5-2 mg cm ⁻²	85 mAh g ⁻¹ at 0.35 A g ⁻¹	275	0.07%	[S6]
LiMn2O4//Stainless steel	1.2-1.5 mg cm ⁻²	75 mAh g ⁻¹ at 0.4 A g ⁻¹	100	0.23%	[S3]
Zn ₃ V ₃ O ₈ //Carbon paper	1.2 mg cm ⁻²	127 mAh g ⁻¹ at 0.15 A g ⁻¹	60	0.68%	[S11]

* under practical applications conditions: high cathode mass-loading: 15 mg cm⁻² and lean electrolyte addition: 15 μ L mAh⁻¹

Supplementary References

- [S1] Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
- [S2] C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendritefree. Carbon Energy 3(2), 339-348 (2020). <u>https://doi.org/10.1002/cey2.70</u>
- [S3] Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). <u>https://doi.org/10.1002/adfm.202101886</u>
- [S4] Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), 2200342 (2022). <u>https://doi.org/10.1002/adma.202200342</u>
- [S5] Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn-MnO₂ battery. Nano Lett. 21(3), 1446-1453 (2021). <u>https://doi.org/10.1021/acs.nanolett.0c04519</u>
- [S6] F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160-7170 (2022). <u>https://doi.org/10.1021/jacs.1c12764</u>
- [S7] J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). <u>https://doi.org/10.1002/adfm.202001263</u>
- [S8] G. Wang, M. Zhu, G. Chen, Z. Qu, B. Kohn et al., An anode-free Zn-graphite battery. Adv. Mater. 34(29), 2201957 (2022). <u>https://doi.org/10.1002/adma.202201957</u>
- [S9] X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503-510 (2020). <u>https://doi.org/10.1039/c9ee03545a</u>
- [S10] Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289-1300 (2019). <u>https://doi.org/10.1016/j.joule.2019.02.012</u>
- [S11] J. Wu, Q. Kuang, K. Zhang, J. Feng, C. Huang et al., Spinel Zn₃V₃O₈: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Mater. 41, 297-309 (2021). <u>https://doi.org/10.1016/j.ensm.2021.06.006</u>