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MXene‑Based Composites as Nanozymes 
in Biomedicine: A Perspective

Siavash Iravani1 *, Rajender S. Varma2 *

HIGHLIGHTS

• The development of nanozymes with lower manufacturing cost, higher catalytic stability, and ease of modification than natural enzymes 
ought to be a priority for scientific research.

• MXene-based nanozymes have attracted considerable attention in the field of bio- and nanomedicine due to their unique catalytic and 
physicochemical properties.

• Due to the fascinating properties of MXene-based nanozymes, these materials can open up considerable new horizons in the future 
of bio- and nanomedicine.

ABSTRACT MXene-based nanozymes have garnered considerable 
attention because of their potential environmental and biomedical appli-
cations. These materials encompass alluring and manageable catalytic 
performances and physicochemical features, which make them suitable 
as (bio)sensors with high selectivity/sensitivity and efficiency. MXene-
based structures with suitable electrical conductivity, biocompatibility, 
large surface area, optical/magnetic properties, and thermal/mechanical 
features can be applied in designing innovative nanozymes with area-
dependent electrocatalytic performances. Despite the advances made, 
there is still a long way to deploy MXene-based nanozymes, especially 
in medical and healthcare applications; limitations pertaining the peroxi-
dase-like activity and sensitivity/selectivity may restrict further practical 
applications of pristine MXenes. Thus, developing an efficient surface 
engineering tactic is still required to fabricate multifunctional MXene-
based nanozymes with excellent activity. To obtain MXene-based nanozymes with unique physicochemical features and high stability, 
some crucial steps such as hybridization and modification ought to be performed. Notably, (nano)toxicological and long-term biosafety 
analyses along with clinical translation studies still need to be comprehensively addressed. Although very limited reports  exist pertain-
ing to the biomedical potentials of MXene-based nanozymes, the future explorations should transition toward the extensive research and 
detailed analyses to realize additional potentials of these structures in biomedicine with a focus on clinical and industrial aspects. In this 
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perspective, therapeutic, diagnostic, and theranostic applications of MXene-based nanozymes are deliberated with a focus on future per-
spectives toward more successful clinical translational studies. The current state-of-the-art biomedical advances in the use of MXene-based 
nanozymes, as well as their developmental challenges and future prospects are also highlighted. In view of the fascinating properties of 
MXene-based nanozymes, these materials can open significant new opportunities in the future of bio- and nanomedicine.

KEYWORDS MXenes; MXene-based nanozymes; Therapeutics; Diagnostics; Theranostics

supercapacitors [25], triboelectric nano-generators, drug 
delivery [26–29], cancer theranostics [14, 30], desalina-
tion, water treatment [31], tissue engineering, regenera-
tive medicine [13], and conductive coatings, among others. 
This is due to their unique architectures (sheet morphol-
ogy), excellent potentials in reduction/oxidation reac-
tions, superb metallic conductivity, light weight, optical 
properties, tunable surface chemistry, unique mechanical 
features, and easy solution processability [13, 14, 32–34]. 
Assorted flexible nanozyme sensors have been fabricated 
for the purpose of intelligent sensing using MXene-based 
structures [35].

Despite several advantages of natural enzymes such as 
appropriate catalytic/biological activities and robust sub-
strate specificity, these enzymes suffer from limitations/
challenges namely higher costs, poor reusability, low envi-
ronmental stability, and difficulty in isolation/extraction/
purification, thus restricting their large scale biomedical 
applications [36, 37]. Consequently, studies on enzyme mim-
ics have been investigated to provide a low-cost and highly 
stable alternative to natural enzymes. Finding nanomaterials 
with fascinating enzyme-like characteristics comparable to 
those of catalase, superoxide dismutase, oxidase, peroxidase, 
etc., have prompted researchers to perform additional stud-
ies on functional nanomaterials with biomimetic enzymatic 
characteristics (termed nanozymes) [38–40]. Compared to 
natural enzymes, the nanozymes have displayed advantages 
of cost-effectiveness, longer durability/better reusability, 
superior chemical stability, robust catalytic activities, and 
the ease of synthesis/functionalization, which make them 
promising candidates for biomedical diagnostic, therapeutic, 
and theranostic applications [36, 41]. With the significant 
advancements in nano(bio)technology, bio-/nano-catalysis, 
artificial intelligence science, and computational design, 
a variety of two-dimensional (2D) material-based func-
tional nanozymes have been introduced based on graphene, 
transition metal oxide nanosheets, metal–organic frame-
works (MOFs), layered transition metal dichalcogenides 

1 Introduction

Nanostructured artificial enzymes (nanozymes) have shown 
promising enzyme-like catalytic features [1], which make 
them prime candidates for biomedical applications such 
as biosensing, catalytic therapeutics, cancer theranostics, 
and immunoassays [2–8]. As an example, to augment the 
low therapeutic efficacy of ferrotherapy in cancer treat-
ment, a hybrid semiconducting nanozyme with significant 
efficiency of photothermal conversion was constructed 
for second near-infrared (NIR) photothermal ferrotherapy 
guided by photoacoustic imaging [9]. Feng et al. [10] intro-
duced ultrasmall  SnFe2O4 nanozyme for simultaneous 
photothermal, photodynamic, and chemodynamic cancer 
therapy. In addition, an injectable nanozyme hydrogel was 
introduced as reservoir of aggregation-induced emission 
luminogen as well as release controller for tumor therapy 
with high efficiency [11]. Among the nanostructures/nano-
systems designed for biomedical and catalytic applications, 
MXenes with unique lamellar structures possess high con-
ductivity properties, and can be applied for improving the 
photo-electrocatalytic performances of nanocomposites 
as co-catalysts [4, 12–14]. These materials with excellent 
photocatalytic activity and photostability have been widely 
explored in designing a variety of (nano)photocatalysts 
[15]. In one study, after the formation of magnetic α-Fe2O3/
ZnFe2O4 heterojunctions through a one-step hydrothermal 
synthesis, the photocatalyst was prepared utilizing MXenes 
as co-catalysts through ultrasonic-assisted self-assembly to 
disperse obtained magnetic heterojunctions on the surface 
of MXene  (Ti3C2) [16]. Besides, MXene-based structures 
exhibit a large surface area, high electrical conductivity, 
excellent functionalization potentials, and electrochemi-
cal properties, which make them promising candidates 
for conductive and energy storage applications [17–20]. 
They have been broadly explored in the field of bioimaging 
[21], (nano)sensors [22, 23], battery technology, energy 
storage [24], electromagnetic interference shielding [12], 
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nanosheets, and MXenes owing to their high surface area, 
good electronic conductivity, and numerous available active 
sites [36, 42].

MXene-based composites as nanozymes have been 
recently explored for environmental applications such as 
cobalt-doped MXene  (Ti3C2) nanosheets [43] or MXenes/
DNA/platinum (Pt) nanocomposites [44], with strong per-
oxidase-like features as sensing nanosystems with multi-
modal potentials [20, 35, 45, 46]; however, very limited 
studies have been explored the biomedical applications of 
MXene-based composites as nanozymes with advantage of 
tunable catalytic properties (Table 1). MXenes with unique 
chemical structures, high surface area, elastic mechani-
cal strength, thermal/electrical conductivity, and optical/
mechanical properties have been widely synthesized using 
chemical vapor deposition [47], hydrothermal fabrication 
[48], electrochemical production [49], etching techniques, 
urea glass methods, and bioinspired techniques; the selec-
tion of suitable optimization conditions and techniques 
for the synthesis of MXenes significantly depends on 
their MAX precursors [19, 50–55]. The construction of 
distinctly functionalized MXene-based structures with 
improved adsorption, flexibility, electric/photothermal 
conductivity, and optical/mechanical properties, offer 
access to innovative nanozymes with high efficiency and 
stability deployable for biomedical purposes [56–58]; how-
ever, systematic studies ought to be envisioned to uncover 
challenges and the prospects of this field of science [13, 
14, 59–62]. Several studies have reported the enzyme-
mimicking activities of MXene-based composites, such as 
peroxidase (to break down  H2O2), glutathione oxidase (to 
consume glutathione), and catalase (to produce  O2 from 
 H2O2 for enhancement of the photodynamic therapy) [36, 
63, 64]. However, intrinsic catalytic activity of MXenes 
alone (such as their peroxidase-like activities) still needs 
improvement to be competitive with other nanozymes 
(such as metals or metal oxides) [7, 43, 65]. Thus, efforts 
have focused on hybridization of MXenes with other nano-
materials (copper sulfide (CuS),  Mn3(PO4)2, or NiFe lay-
ered double hydroxide) to improve their catalytic character-
istics [66]; noble metal nanomaterials can be employed in 
designing MXene-metal nanohybrids as enzyme mimetics 
with enhanced catalytic activities [43, 46, 66, 67]. Herein, 
biomedical prospects of MXene-based nanozymes with 
recent advancements, challenges and future directions are 

deliberated to motivate researchers for additional explora-
tions in this field of science.

2  Biomedical Prospects

2.1  Therapeutics

MXenes have been applied for development of nanozyme-
based catalysts, offering attractive capabilities in the field 
of biotherapy and immunoassay. Notably, MXenes with 
inherent photothermal activities and suitable photostabil-
ity (under laser irradiation) revealed plasmon-enhanced 
photocatalytic features, which render them alluring can-
didates for effective photo-responsive nanomedicine [15]. 
For instance, a novel strategy was introduced based on 
plasmonic enhanced nanozymes via the construction of 
biomimetic photo-induced plasmonic assembly consisting 
of MXenes  (Nb2C), Pt nanozyme, anticancer drug (doxo-
rubicin), and tumor cytomembrane (Fig. 1) [70]. Accord-
ingly, after homologous targeting and internalization 
into tumor cells, the hot-electrons could be excited from 
MXenes under NIR-II laser irradiation, facilitating the 
catalase- and oxidase-like performances of Pt nanozyme 
to form  O2 and reactive oxygen species (ROS) in concert 
with tumor-penetrating photothermal nanotherapy. In addi-
tion, under hyperpyrexia and acidic conditions, the release 
of doxorubicin was enhanced by inhibiting P-glycoprotein-
mediated drug efflux ensued by ROS and  O2. Compared to 
the pristine nanozyme, this MXene-based nanozyme could 
efficiently reduce the viability of HeLa cells (~ 38.67%), 
offering a novel nanozyme-based treatment strategy with 
improved tumor suppression. Such biocatalysis-based nan-
otherapy tactics deploying MXene-based biomimetic plas-
monic assembly should be further evaluated, especially for 
targeted cancer nanotherapy [70].

To overcome the low activities of nanozymes in the 
tumor microenvironment that may cause the restricted 
therapeutic effects, MXene  (Ti3C2)/CeO2-polyvinylpyrro-
lidone nanocomposites with photo-enhanced dual enzyme 
performances (promoting catalase and peroxidase) were 
constructed for synergistic tumor therapy (Fig. 2) [71]. 
The catalase- and peroxidase-like performance of these 
MXene-based nanozymes alleviated hypoxia and elevated 
oxidative stress in the tumor microenvironment; they 
also exhibited excellent capability for the degradation 
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of glutathione to improve the tumor ablation. These 
nanozymes could generate large amounts of ·OH via the 
catalytic decomposition of hydrogen peroxide  (H2O2) in 
the tumor microenvironment, causing apoptosis of tumor 
cells. The photothermal effects and dual enzyme-like 
functions could result in improved tumor nanotherapy 
(the inhibitory effect of tumor growth was ~ 92%), pav-
ing the way for efficient nanozyme catalytic therapy [71]. 
Similarly, photothermal ablation of tumors by warming 
along with the increased ROS,  O2 formation, and glu-
tathione reduction could alleviate the hypoxia of tumors 
and promote catalytic treatments with  MnO2 nanozyme-
loaded MXenes. These nanosystems can be harnessed for 
bimodal photothermal-chemodynamic cancer therapy with 
good biocompatibility and high efficiency of tumor abla-
tion [68].

MXene-based nanozymes (named MXenzyme) constructed 
from 2D vanadium carbide  (V2C) MXene could serve as 
remarkable multifunctional inorganic analogs of thiol and 

glutathione peroxidase, catalase, haloperoxidase, peroxidase, 
and superoxide dismutase, mimicking naturally occurring 
enzymes along with the intracellular antioxidant defense sys-
tem against serious oxidative damages mediated by ROS such 
as lipid peroxidation, DNA damages, and protein carbonyla-
tion. Based on the fascinating enzyme-mimicking character-
istics of the MXenes, they have been contemplated as attrac-
tive candidates for neoteric catalytic biomedicine [73] as they 
exhibited high biocompatibility (both in vitro and in vivo) 
with efficient cytoprotection against oxidative stress (in vitro), 
introducing MXenzyme for the redox homeostasis without dis-
turbing the endogenous antioxidant status. However, future 
explorations ought to focus on relieving the damages mediated 
by ROS to pave a way for in vivo treatment of neurodegenera-
tive diseases as well as ROS-mediated damages/inflammatory 
(Fig. 3) [73]. Since the enzyme-mediated enhancement of ROS 
at the tumor sites is one of the efficient techniques for modulat-
ing intracellular redox status to treat cancers, a camouflaged 
bionic cascaded-enzyme nano-reactor was designed deploying 

Fig. 1  A The preparative process for biomimetic photo-induced plasmonic assembly for targeted cancer nanotherapy in NIR-II bio-window (in 
vivo). B The catalase- and oxidase-like performance of Pt nanozyme, and C related mechanism of drug release and tumor suppression (I–V). M 
MXene, DOX doxorubicin. Reproduced with permission from Ref. [70]. Copyright 2021 Elsevier
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nanosheets of MXene  (Ti3C2) for combinational tumor pho-
totherapy/enzyme dynamic therapy along with the deoxy-
genation-activated chemotherapy (hypoxia-activated chemo-
therapy) [74]. The chemical conjugation of chloroperoxidase 
and glucose oxidase was performed onto MXene nanosheets 
loaded with tirapazamine (an anticancer drug). The designed 
MXene-based nanocomposites could embed into nano-sized 
cancer cell-originated membrane vesicles with high-expressed 
CD47 (meTGCT). After the internalization of nanosystems 
into tumor cells, the cascade reaction of glucose oxidase and 
chloroperoxidase generated hypochlorous acid (HClO) for 
enzyme dynamic therapy with high efficiency. Additionally, 
laser irradiation accelerated the rate of catalytic reactions and 
increased the formation of singlet oxygen (1O2). Notably, local 
hypoxia environment with the oxygen depletion by enzyme 
dynamic therapy activated the deoxygenation-sensitive prod-
rug for chemotherapy [74].

2.2  Diagnostics

The combination of MXenes  (Ti3C2Tx) with alkaline phos-
phatase could provide cascading catalytic amplification 
technique utilizing 1-naphthyl phosphate as a substrate, 
thus resulting in electrochemical signal amplification with 
high efficiency (Fig. 4) [65]. Accordingly, on the 2D plane, 
MXenes  (Ti3C2Tx) displayed a suitable area-dependent phe-
nol adsorption with high efficiency to catalyze the electro-
chemical oxidation; they could be applied for oxidation of 
phenolic compounds. Also, on an electrode with biosensing 
application, the MXene was distributed and further deco-
rated with gold (Au) nanoparticles (NPs) to immobilize the 
DNA capture probe. The designed electrochemical biosensor 
based on this technique was further exploited for detecting 
BCR/ABL fusion gene, resulting in superb sensitivity (~ 0.2 
fM-20 nM) and limit of detection (LOD) down to ~ 0.05 

Fig. 2  MXene  (Ti3C2)/CeO2-polyvinylpyrrolidone nanocomposites with photothermal effects, strong catalytic activities, and glutathione degra-
dation capabilities exhibited suitable applicability for hyperthermia-enhanced tumor combinational therapy (in vivo). DMSO dimethyl sulfoxide, 
PTT photothermal therapy, GSH glutathione, PVP polyvinylpyrrolidone. Reproduced with permission from Ref. [71]. Copyright 2022 Elsevier
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fM. The biosensor exhibited excellent potential for specifi-
cally detection of fusion gene for the initial recognition of 
acute lymphocytic leukemia and chronic myelogenous [65]. 
Besides, enzyme-free electrochemical immunosensor was 
fabricated utilizing palladium (Pd), Pt, nonmetallic elements 
(boron and phosphorus), MXenes, and  CuCl2 nanowires for 
specific detection of kidney injury molecule-1 in the urine 

[75]. These MXene-based nanocomposites with large sur-
face area and excellent peroxidase-like catalytic performance 
exhibited suitable analytical activity in the presence of  H2O2. 
Notably,  CuCl2 nanowires were combined with biocom-
patible Au NPs to alter the glassy carbon electrode, and a 
sandwich-type electrochemical immunosensor was prepared 
with outstanding electrochemical performances with a good 

Fig. 3  A  V2C MXenzymes for the treatment of ROS-mediated damages, which could effectively catalyze V2C  O2.−· into  O2 and  H2O2, decom-
pose  H2O2 into  O2 and  H2O, and eliminate ·OH. B The related mechanism of superoxide dismutase (SOD)-like performance of the MXenzyme. 
C The associated mechanism of catalase (CAT)-like performance of the MXenzyme. D The related mechanism of glutathione peroxidase (GPx)-
like performance of the MXenzyme. POD peroxidase, NADP nicotinamide adenine dinucleotide phosphate, GR glutathione reductase, GSSG 
oxidized glutathione, GSH reduced glutathione. Reproduced with permission from Ref. [73]. Copyright 2021 Springer Nature (CC BY 4.0)
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linear response (0.5–100 ng  mL−1) and LOD of 86 pg  mL−1, 
thus providing biosensor with high specificity/selectivity for 
clinical diagnostics [75].

MXene-based nanocomposite catalysts were designed for 
intracellular biosensing purposes [76]. In one study, MXene-
based nanocomposites were assembled using Au, Pt, and 
 Ti3C2Cl2, providing peroxidase and oxidase mimic activi-
ties. They were deployed as colorimetric platforms for in situ 
sensing of  H2O2 released from live HeLa cells (the detection 
range = 50–10,000 μM, LOD = 10.24 μM) and colorimetric 
recognition of glutathione (the detection range = 0.1–20 μM, 
LOD = 0.07 μM) [76]. In addition, a nanosystem based on 
MXene  (Ti3C2Tx)-derived  TiO2/carbon quantum dots was 
prepared through a hydrothermal treatment of tiny and 
few-layered MXene nanosheets for specific nanozyme-
based colorimetry [77]. The oxygen vacancy in  TiO2 on 
the surface of the carbon matrix facilitated the adsorption 
of  O2 in the solution and generated ROS to rapidly oxi-
dize 3,3′,5,5′-tetramethylbenzidine without the presence 
of  H2O2. After inserting glutathione, the oxidized form of 

3,3′,5,5′-tetramethylbenzidine was capable of being restored 
to 3,3′,5,5′-tetramethylbenzidine, causing a reduction in the 
UV/Vis absorbance value (at 652 nm). This nanozyme-based 
assay exhibited improved specificity and excellent sensitivity 
with a LOD of ~ 0.2 μM, thereby opening new window for 
the specific detection of glutathione in biological mediums 
(like human serum) [77].

For label-free and colorimetric sensing of proteins, 
MXenes have been applied exploiting the unique properties 
such as their tunable versatile features. Notably, the intrin-
sic peroxidase-like performance of MXene nanosheets could 
be improved via the adsorption of single-stranded DNA 
(ssDNA) on their surfaces [78]. A simple label-free sens-
ing tactic was designed for specific colorimetric recogni-
tion of biomolecules (thrombin as a model) using MXene 
nanosheets (as peroxidase mimic nanozymes) and ssDNA 
aptamers (as enhancement factors for enzymatic perfor-
mance) [78]. The ssDNA aptamers were desorbed from 
MXene nanosheets in the presence of target biomolecules, 
because of the precise target-aptamer bindings, thereby 

Fig. 4  The working principles of an electrochemical biosensor constructed from 6-mercaptohexanol (MCH), Au NPs, MXene  (Ti3C2Tx), and 
glassy carbon electrode (GCE). Nt.BsmAI nicking endonuclease (Nt.BsmAI). Reproduced with permission from Ref. [65]. Copyright 2022 
Springer Nature (CC BY)
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decreasing the catalytic performance. The designed bio-
sensor (a linear range = 1.0 ×  10−11–1.0 ×  10−8 M) demon-
strated satisfactory results after testing for real blood sam-
ples, signifying that MXenes can be considered as promising 
nanozymes for targeted detection of biomolecules [78]. In 
addition, colorimetric biosensor based on CRISPR-Cas12a 
was introduced for specific detection of hepatitis B virus 
by applying probe DNA regulation of the catalytic perfor-
mance of MXene-probe DNA-silver (Ag)/Pt nanohybrids 
(Fig.  5) [67]. The Cas12a trans-cleavage performance 
could be successfully activated to degrade the DNA probes 
in the presence of hepatitis B virus target, thereby inhibit-
ing DNA metallization and enzyme activity enhancer DNA 
adsorbed on MXene to obtain highly decreased catalytic 
performances. This colorimetric sensing strategy with high 
sensitivity/specificity, good accuracy, and stability could be 
combined with the smartphone platform, permitting visible 
recognition of target DNA with high sensitivity [67].

Nitrogen and sulfur co-doped MXene  (Ti3C2) nanosheets 
with excellent peroxidase-like activity and electrochemical 
activity were deployed to construct a combined colorimetric 
and electrochemical sensing platform for sensitive detec-
tion of uric acid [79]. It was revealed that nitrogen and sul-
fur doping provided additional active sites and improved 
the efficiency of electron transport, offering platform with 
great analytical performance. The uric acid was specifically 

detected in the range of 2–400 μM with LOD of ~ 0.19 μM 
[79]. Besides, the quenching performance of MXenes was 
illustrated by their combinatory utilization with single 
atomic site cobalt (Co) catalysts in UiO-66 metal–organic 
frameworks for developing an immunoassay technique for 
cardiac troponin I on an immunochromatographic test strip 
platform [80]. These Co single atomic site catalysts exhib-
ited significant enhancement effect on luminol chemilumi-
nescent emission. As a result, the dynamic range for quanti-
fication of cardiac troponin I was ~ 1.0–100 pg  mL−1, with 
LOD of ~ 0.33 pg  mL−1 [80].

2.3  Theranostics

MXene  (V2C)-based nanozymes were constructed with 
theranostic potential for treating ischemic stroke; these 
nanozymes exhibited excellent capabilities to exert neu-
roprotection effects by scavenging ROS toward ischemic 
stroke (Fig. 6) [72]. The MXenes fabricated via etching 
and delamination processes demonstrated the inher-
ent multiple enzyme-mimicking features and excellent 
antioxidative capabilities to catalyze toxic/harmful O⋅−

2
 

into nontoxic water and oxygen molecules and scavenge 
highly toxic ·OH, significantly overwhelming the eleva-
tion of ROS. These MXene-based nanozymes protected 
the central nervous system against ischemic stroke injury 

Fig. 5  The principles of CRISPR-Cas12a based colorimetric biosensor designed for specific detection of hepatitis B virus (HBV) DNA using 
MXene-probe DNA-Ag/Pt nanohybrids with catalytic performance. TMB: 3,3ʹ,5,5ʹ-Tetramethylbenzidine. Reproduced with permission from 
Ref. [67]. Copyright 2022 Elsevier
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through the anti-inflammatory, antiapoptotic, antioxida-
tive effects with no noticeable toxicity or adverse effects. 
On the other hand, they could function as contrast agents 
for in vitro/in vivo magnetic resonance imaging (MRI), 
offering MXene-based theranostic nanozymes with excel-
lent therapeutic efficacy toward ROS-related brain dis-
eases or other ROS-related inflammatory diseases [72]. 
Zhu et al. [69] decorated Pt artificial nanozymes on the 
MXene  (Ti3C2) nanosheets to obtain nanocomposites for 
phototheranostic applications. Pt NPs exhibited perox-
idase-like activities in the tumor microenvironment to 
catalyze (in situ)  H2O2 for generating hydroxyl radicals 
(·OH) to stimulate cell apoptosis and necrosis. Notably, 
these nanocomposites illustrated suitable photothermal 
effects upon NIR-II light irradiation with a low power 

density (0.75 W  cm–2). The peroxidase-like activity was 
highly improved by the increased temperature ascending 
from the photothermal effects of  Ti3C2Tx, offering syner-
gistic photothermal/enzyme therapy with photoacoustic 
imaging benefits [69].

3  Biosafety Aspects

Despite the fascinating applications of MXenes and their 
derivatives, their toxicity and potential environmental risks 
ought to be systematically analyzed [81, 82]. Although 
several biocompatible MXene-based composites have been 
introduced, more explorations are still necessitated for the 
comprehensive in vitro/in vivo evaluations of their toxicity 

Fig. 6  MXene  (V2C)-based nanozymes with intrinsic multiple enzyme-like performances as theranostic nanoplatforms for treating ischemic 
stroke through the alleviation of oxidative stress, suppression of cell apoptosis and reduction of inflammation. HF hydrogen fluoride, PVP poly-
vinylpyrrolidone; MR magnetic resonance. Reproduced with permission from Ref. [72]. Copyright 2022 Elsevier
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and biosafety issues [81]. In this context, toxicological, 
cytotoxicity, and biocompatibility properties are crucial 
aspects for clinical translation of MXene-based nanozymes 
in biomedicine [83–87]. Overall, physicochemical features 
of these materials along with their cellular interaction and 
accumulation in targeted sites can significantly affect their 
possible toxic effects [88]. Thus, methodical toxicological 
and cytotoxicity assessments (both in vitro and in vivo) as 
well as clinical translation studies are highly demanded, 
especially regarding their endocytosis, ROS/oxidative 
stress, penetration/attachment, DNA damages, apopto-
sis, inflammatory reactions, etc. [59, 62, 89, 90]. It was 
revealed that MXenes caused toxicity on zebrafish embryo 
models (in vivo) with dose dependent behavior [81]; how-
ever, no noticeable teratogenic effects could be detected at 
100 μg  mL−1. On the other hand, neurotoxicity evaluations 
revealed that MXenes had no meaningful toxic effects on 
neuromuscular activities at 50 μg  mL−1. They are catego-
rized as practically non-toxic structures at concentrations 
below 100 μg  mL−1, based on the Acute Toxicity Rating 
Scale by the Fish and Wildlife Service [81].

Possible toxic effects of MXenes have been evaluated on 
the early stage of the embryo [91]. MXenes could adversely 
affect the early stage of embryogenesis, since ~ 46% of 
MXene-exposed embryos died during 1–5 days after expo-
sure. They inhibited angiogenesis of the chorioallantoic mem-
brane of embryo after 5 days incubation, showing possible 
toxicity of these structures on the early stage of embryogen-
esis [91]; however, still more explorations are necessary to 
address the related toxicity mechanisms along with the other 
crucial aspects regarding their long‐term biosafety, biodegra-
dation, biocompatibility, dispersibility, and solubility [91]. In 
one study, after hemocompatibility and excretion analysis of 
MXene  (Ti3C2)-soybean phospholipid structures, no noticeable 
acute toxicity and high histocompatibility could be detected; 
these materials are normally excreted out of the body through 
feces and urine with total excretory amount of ~ 10.35% [89]. 
Besides, after biocompatibility assessment of surface-func-
tionalized MXenes, no noticeable defects could be identified 
in hematological indexes, behavior, biochemical factors, and 
body weight of examined mice, showing no chronic patho-
logical toxic effects [62].  MnOx/MXene  (Ti3C2) composites 
functionalized with soybean phospholipid displayed improved 
stability along with high biocompatibility and dispersibility, 
thus introducing suitable candidates for clinical purposes [92].

4  Challenges and Perspectives

In addition to toxicity and biosafety issues, surface modifi-
cation/functionalization, environmentally benign synthesis 
techniques, optimization conditions, and large scale pro-
duction are important challenging issues that need to be 
further explored [84, 93, 94]. Several crucial parameters 
such as the concentration and chemical structures can sig-
nificantly affect the optical, mechanical, electronic, mag-
netic, and thermal properties of MXenes and their compos-
ites [95]. Designing simple, cost-effective, and eco-friendly 
synthesis techniques with high yield and low-cost benefits 
ought to be further explored, especially to find real-life 
applicability and commercial viability of MXenes and their 
derivatives in clinical and biomedical applications [83, 96, 
97]. Challenging issues regarding the stability of MXenes 
and their possible oxidation or aggregation ought to be 
taken into account. Surface functionalization using suitable 
functional groups would also help to improve the stability 
of MXenes [98].

Suitable hybridization using polymers, carbon materi-
als, and other inorganic materials can significantly improve 
the stability and functionality of MXene-based composites 
[99–101]. To reduce or prevent the oxidative decomposition, 
crucial parameters regarding the synthesis and storage con-
ditions (e.g., pH, storage media, temperature, and aqueous 
dispersions concentration) need to be optimized [19, 102, 
103]. Notably, to improve biocompatibility, pharmacokinet-
ics, and biodegradability of these structures, studies ought 
to focus on environmentally benign synthesis approaches 
(with safer and non-hazardous agents), the hybridization of 
MXenes with biocompatible and biodegradable polymers 
(e.g., cellulose or chitosan), and the optimization of reaction/
synthesis conditions. Surface functionalization of pristine 
MXenes with abundant functional groups on their surfaces 
deploying covalent and non-covalent modifications can 
also help to improve the targeting properties (selectivity/
specificity), oxidation/thermal stability, and biocompatibility 
of MXenes, thus avoiding off-target effects and undesired 
defects (e.g., aggregation or accumulation) [60, 81, 92, 
104–107]. In this context, the control of surface termina-
tions, surface modifications using small molecules, surface-
initiated polymerization, and single heteroatom approaches 
are some of the introduced strategies for surface function-
alization of MXenes [108].
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For the large-scale production of MXenes and their com-
posites, studies need to focus on optimization of synthesis/
reaction conditions and their repeatability to avoid struc-
tural defects and produce MXene-based nanozymes with 
excellent environmental stability, robust enzymatic activi-
ties, recyclability, suitable catalytic performances, and high 
specificity/selectivity [109–111]. In addition, simplicity, 
eco-friendly sustainable features, and cost effectiveness 
are crucial issues in translating the laboratory synthesis 
to industrial scale. Despite a variety of introduced syn-
thesis techniques such as solvothermal treatment, calcina-
tion procedures, electrostatic self-assembly, hydrothermal 
synthesis, mechanical/ultrasonic mixing, chemical vapor 
deposition, among others, efforts are still required to focus 
on yield of production, feasible analyses, stability of final 
products, biosafety of chemical agents, and the reproduc-
ibility of processes [112, 113]. Some techniques such as 
mechanical/ultrasonic mixing strategies have shown inter-
esting simplicity for fabrication of MXenes [112]. Mean-
while, MXenes with fascinating properties have been 
synthesized using electrostatic self-assembly and hydro-
thermal/solvothermal techniques [114]. Several etching 
approaches such as acid-, electrochemical-, and molten 
salt etching have been introduced. In synthesis techniques 
based on wet etching process, different etchants such as 
hydrogen fluoride, lithium fluoride, zinc chloride, etc., have 
been applied for manufacturing MXenes and their deriva-
tives. Delamination procedures by assisting techniques of 
ultrasonication, flash freezing, and mechanical milling can 
efficiently applied for fabricating single- and few-layered 
MXenes. However, low stability and oxidation tendency are 
crucial challenges for etching and delamination of MXenes. 
In this context, still the adjustment of concentration and 
duration of etching processes ought to be addressed; higher 
temperatures, poor crystallinity, purity requirements, and 
high energy consumption are critical challenging issues 
that need to be resolved for the large scale production of 
MXenes; based on the external strain and the number of 
layers in the crystals and thin films of MXenes, their proper-
ties can be inventively adjusted [115, 116]. Chemical vapor 
deposition techniques can be considered for production of 
MXenes with high quality and defect-free structures [47], 
but only after optimization processes since these techniques 
may suffer from low yield of synthesis and complex treat-
ment procedures [117].

5  Conclusions and Future Outlooks

The development of nanozymes with lower manufacturing 
cost, higher catalytic stability, and ease of modification 
than natural enzymes ought to be a high priority for scien-
tific research. Among the introduced nanozymes, MXene-
based nanozymes have garnered considerable attention in 
the field of bio- and nanomedicine (especially, medical 
diagnostics) due to their unique catalytic and physico-
chemical properties. However, limitations regarding the 
peroxidase-like activity and sensitivity/selectivity may 
restrict further practical applications of pristine MXenes. 
Thus, developing an efficient surface engineering strategy 
is highly necessitated to obtain MXene-based nanozymes 
with multifunctionality and excellent performance. In this 
context, sulfur and nitrogen co-doping strategies can be 
applied to promote the peroxidase-like and electrochemi-
cal activity of MXene nanosheets, thus providing further 
active sites and improving the electron transport efficiency. 
Since related catalytic mechanisms using MXene-based 
composites (especially regarding the way of promoting 
reactions and the role of active sites on their surfaces) are 
not comprehensively illustrated, future studies should be 
directed toward improving the experimental/computational 
analyses as well as pre-/clinical studies to identify the 
underlying catalytic/enzymatic mechanisms, improve the 
properties/multifunctionality, and discover the advanced 
MXene-based nanozymes with responsive drug delivery 
and cancer nanotheranostic applications. The integration 
of nanotechnology with artificial intelligence can signifi-
cantly help to expand the applications of these nanosys-
tems in personalized medicine and nanomedicine.

MXenes exhibited suitable manageable catalytic per-
formances, which can be further exploited for developing 
MXene-based biosensors with significant sensitivity and 
functionality. Notably, these structures can be contemplated 
as promising candidates in designing nanozymes with area-
dependent electrocatalytic activity. Other 2D nanomaterials 
such as MOFs, transition metal dichalcogenides, layered 
double hydroxides, and transition metal oxides with enzyme-
like features should be further explored along with MXenes 
for a variety of biomedical purposes owing to their alluring 
physicochemical properties of large specific surface area, 
ease of modification/functionalization, tuneable composi-
tion, ultrathin thickness, etc. In addition, future studies ought 
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to transition toward the design of novel MXene-based nan-
oplatforms with excellent dual enzyme-like (oxidase- and 
peroxidase-like) catalytic activities to mimic biofilm micro-
environment. These materials with suitable photothermal 
conversion efficiency in NIR-II window and enhanced dual 
enzyme-like catalytic functions along with no noticeable off-
target side effects can be applied for effective anti-infective 
nanotherapy.
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