Supporting Information for

Aqueous Two-Phase Interfacial Assembly of COF Membranes for Water Desalination

Hongjian Wang^{1, 2, ‡}, Jiashuai Zhao^{1, 2, ‡}, Yang Li³, Yu Cao^{1, 2}, Ziting Zhu^{1, 2}, Meidi Wang^{1, 2}, Runnan Zhang^{1, 2, 4}, Fusheng Pan^{1, 2, 4, *} and Zhongyi Jiang^{1, 2, 4, *}

¹Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China

²Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China

³Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China

⁴Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China

[‡]Hongjian Wang and Jiashuai Zhao contributed equally to this work.

*Corresponding authors. E-mail: <u>zhyjiang@tju.edu.cn</u> (Zhongyi Jiang), fspan@tju.edu.cn (Fusheng Pan)

Supplementary Figures and Tables

Fig. S1 Schematic illustration and digital photos of a COF-DhTG_{Cl} and b COF-DhBT_{Cl} membranes

Fig. S2 a SEM, b-c TEM and d SAED measurements on COF-DhBT_{Cl} membrane

Fig. S3 XPS spectra of COF membranes. **a** C 1s, **b** N 1s and **c** O 1s spectra of COF-DhTG_{Cl} membrane. **d** C 1s, **e** N 1s and **f** O 1s spectra of COF-DhBT_{Cl} membrane

Nano-Micro Letters

Fig. S4 ssNMR spectra of COF-DhTG_{Cl} and COF-DhBT_{Cl} membranes

Fig. S5 2D-GIWAXS spectra of a COF-DhTG_{Cl} and b COF-DhBT_{Cl} membranes

Fig. S6 N₂ adsorption measurement of COF membranes

Fig. S7 WCA measurement of a COF-DhTG_{Cl} and b COF-DhBT_{Cl} membranes, respectively

Fig. S8 TGA measurement of COF membranes

Fig. S9 Scheme illustration of fabricating metal organic polymer (metal-organophosphate) membranes using aqueous two-phase interfacial assembly

Nano-Micro Letters

Table S	51	Zeta	potential	of	COF	mem	branes
---------	----	------	-----------	----	-----	-----	--------

Membrane	Zeta potential (ξ, mV)		
COF-DhTG _{Cl}	20.1 ± 1.2		
COF-DhBT _{Cl}	9.8 ± 1.8		

Table S2 Monomer concentration in the recipe for COF-DhTG_{Cl} membrane fabrication

Name	Dh concentration (µmol mL ⁻¹)	TG _{C1} concentration (μmol mL ⁻¹)
M1	0.4	0.25
M2	0.6	0.4
M3	0.8	0.5
M4	1.0	0.7

Table S3 Phase composition and interfacial properties [S1, S2] of ATPS in this study

Name	PEG fraction in solution A (wt%)	DEx fraction insolution B (wt%)	Total polymer fraction (wt%)	Interfacial tension (mN m ⁻¹)
1	2.1	2.6	2.30	0.001
2	5.0	6.4	5.62	0.012
3	10	16	12.6	0.103
4	15	19.2	16.3	0.209
5	20	25.6	21.4	0.381

	Filtration	Pressure (bar)	Water	NaCl	
Membrane	method		permeation	rejection	Refs.
			$(L m^2 h^{-1} bar^{-1})$	(%)	
Graphene/GO	Cross flow	50	0.34 (± 0.1)	85 (± 2)	[S3]
Graphene/GO	Cross flow	50	$0.22 (\pm 0.1)$	54 (± 5)	[S3]
Graphene/GO	Cross flow	50	$0.46 (\pm 0.2)$	85 (± 1)	[S3]
Graphene/GO	Cross flow	50	$0.38 (\pm 0.1)$	85 (± 7)	[S3]
Graphene/GO	Cross flow	50	$0.44 (\pm 0.02)$	83 (± 5)	[S3]
Graphene/GO	Cross flow	50	$0.67 (\pm 0.02)$	79 (± 8)	[S3]
Laminated GO	Dead end	2	4	25	[S4]
GO/TMC	Dead end	3.4	~50	19	[S5]
GO/CNT	Dead end	5	5.5	59	[S6]
GO/PECs	Cross flow	5	0.80	43	[S7]
GO	Dead end	1.5	16.9	50.1	[S8]
GO	Forward	0.28	0.068 (+ 0.007)	90	[92]
00	osmosis	0.28	0.008 (± 0.007)	<i>J</i> 0	[57]
GO	Forward	0.28	$0.029 \ (\pm \ 0.005)$	90	[89]
00	osmosis				[0)]
GO/graphene	Forward	1	0.035	~94	[S10]
8	osmosis			<i>.</i>	[]
GO/graphene	Forward	5	0.007	97	[S10]
	OSMOS1S				
GO	Forward	5	0.0084	60	[S10]
Granhana	Dood and	1	20	40	[\$11]
Graphene/CNT	Dead end	1	11.3	40 51	[511]
Graphene/CNT	Cross flow	5	11.5	39.6	[50]
Graphene	Dead and	5	3 26	42	[50]
MoSe	Dead end	9	3.20	$\frac{42}{825(\pm 6)}$	[511]
MoS	Dead end	9	$33.7 (\pm 13.3)$ 1.6 (± 0.52)	$82.3 (\pm 0)$	[512]
101052	Dead end	7	$1.0(\pm 0.55)$	$07.0 (\pm 3.2)$ 77.0 (±	[312]
MoS_2	Dead end	9	6.7 (± 1.35)	$(1.5)(\pm 17.4)$	[S12]
				1/.7/	

 Table S4 Nanofiltration/reverse osmosis/forward osmosis desalination (NaCl rejection)

 performances of membranes in literatures

Supplementary References

- [S1] E. Atefi, J.A. Mann, H. Tavana, Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. Langmuir 30(32), 9691-9699 (2014). <u>https://doi.org/10.1021/la500930x</u>
- [S2] S.D. Hann, K.J. Stebe, D. Lee, All-aqueous assemblies via interfacial complexation: toward artificial cell and microniche development. Langmuir 33(39), 10107-10117 (2017). <u>https://doi.org/10.1021/acs.langmuir.7b02237</u>
- [S3] A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki et al., Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12(11), 1083-1088 (2017). <u>https://doi.org/10.1038/nnano.2017.160</u>
- [S4] Q. Yang, Y. Su, C. Chi, C.T. Cherian, K. Huang et al., Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16(12), 1198-1202 (2017). <u>https://doi.org/10.1038/nmat5025</u>
- [S5] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47(8), 3715-3723 (2013). <u>https://doi.org/10.1021/es400571g</u>

Nano-Micro Letters

- [S6] Y. Han, Y. Jiang, C. Gao, High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7(15), 8147-8155 (2015). <u>https://doi.org/10.1021/acsami.5b00986</u>
- [S7] N. Wang, S. Ji, G. Zhang, J. Li, L. Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chem. Eng. J. 213, 318-329 (2012). <u>https://doi.org/10.1016/j.cej.2012.09.080</u>
- [S8] G. Zhao, R. Hu, X. Zhao, Y. He, H. Zhu, High flux nanofiltration membranes prepared with a graphene oxide homo-structure. J. Membr. Sci. 585, 29-37 (2019). <u>https://doi.org/10.1016/j.memsci.2019.05.028</u>
- [S9] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380-383 (2017). <u>https://doi.org/10.1038/nature24044</u>
- [S10] J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546-550 (2017). <u>https://doi.org/10.1038/nnano.2017.21</u>
- [S11] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23(29), 3693-3700 (2013). <u>https://doi.org/10.1002/adfm.201202601</u>
- [S12] L. Ries, E. Petit, T. Michel, C.C. Diogo, C. Gervais et al., Enhanced sieving from exfoliated MoS₂ membranes via covalent functionalization. Nat. Mater. 18(10), 1112-1117 (2019). <u>https://doi.org/10.1038/s41563-019-0464-7</u>