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Metal–Organic Frameworks Functionalized 
Separators for Robust Aqueous Zinc‑Ion Batteries
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HIGHLIGHTS

• Metal-organic frameworks (UiO-66) functionalized glass fiber separator was constructed to accelerate the transport of charge carriers 
and provide a uniform electric field distribution on the surface of zinc anode.

• Zinc anode demonstrates preferential orientation of (002) plane under the control of UiO-66-GF, which effectively inhibits dendrites.

• Density functional theory calculation confirms that the adsorption effect of (002) plane on H is weaker, thus improving corrosion 
resistance and suppressing the hydrogen evolution reaction.

• Symmetric cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h and full cells demonstrate excel-
lent long-term stability (85%) for 1000 cycles.

ABSTRACT Aqueous zinc-ion batteries (AZIBs) are one of the promising 
energy storage systems, which consist of electrode materials, electrolyte, and 
separator. The first two have been significantly received ample development, 
while the prominent role of the separators in manipulating the stability of the 
electrode has not attracted sufficient attention. In this work, a separator (UiO-
66-GF) modified by Zr-based metal organic framework for robust AZIBs is 
proposed. UiO-66-GF effectively enhances the transport ability of charge car-
riers and demonstrates preferential orientation of (002) crystal plane, which is 
favorable for corrosion resistance and dendrite-free zinc deposition. Conse-
quently, Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping 
behavior with long cycle life over 1650 h at 2.0 mA  cm−2, and Zn|UiO-66-GF-2.2|MnO2 cells show excellent long-term stability with 
capacity retention of 85% after 1000 cycles. The reasonable design and application of multifunctional metal organic frameworks modified 
separators provide useful guidance for constructing durable AZIBs. 
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1 Introduction

Aqueous zinc-ion batteries (AZIBs) have a high application 
potential, owing to their simple fabrication process, intrin-
sic safety, and economic feasibility, for a new generation of 
energy storage devices [1–3]. However, numerous challenges 
impede their practical application, particularly the inevitable 
issues in zinc anode, including dendrites, hydrogen evolu-
tion reaction (HER), corrosion, and passivation [4–6]. The 
formation and growth of dendrites generated by inhomoge-
neous zinc plating destroy anode–electrolyte interface and 
even induce short circuit, resulting in a short cycle life and 
poor electrochemical performance [7, 8]. Most of the current 
modification studies focus on the interfacial modification 
or structural design of zinc anode and optimal configura-
tion of electrolyte additives to regulate the plating/stripping 
behavior of zinc-ions [9]. As a key part of AZIBs, separator 
plays a crucial role in ions transport and electrolyte carriage. 
The research on separators is still in its infancy, indicating 
that its application potential and research value need to be 
developed urgently [10, 11].

Separator acts to transport ions and prevent physical 
contact between cathode and anode. However, voids with 
different sizes in glass fiber (GF) are the dominant separa-
tor in AZIBs, triggering an inhomogeneous deposition of 
zinc-ions and dendrite growth, eventually causing a short 
circuit. Inspired by lithium-ion batteries (LIBs), various 
multi-functional materials including graphene oxide (GO) 
layer [12], polypyrrole (PPy) layer [13], and Sn coating [14] 
have been used in the separators for uniform zinc deposi-
tion. The large specific surface area of the intermediate layer 
enhances the reaction kinetics, and the good zinc affinity 
makes the zinc-ions flux uniform. Janus separator obtained 
by vertically growing graphene on GF has large surface area 
and three-dimensional (3D) framework, which is favorable 
for the uniform deposition of zinc-ions, thereby suppressing 
the formation of dendrites [15]. To compensate for the defect 
of nonuniform void size of GF, functional supramolecules 
[16] and  BaTiO3 [17] were introduced into GF by vacuum 
filtration. This not only effectively accelerates the transmis-
sion of zinc-ions, but also uniformly distributes zinc-ions 
to the separator-zinc anode interface for highly reversible 
plating/stripping. To reduce the working cost and simplify 
the preparation process, new cost-effective separators, such 
as weighing paper (WP) [18] and commercial cotton towel 

(CT) [19], adsorb zinc-ions through their plenteous func-
tional groups to enhance the reversibility of zinc anode. 
Metal–organic frameworks (MOFs) with large specific 
surface areas and topological structures are ideal materials 
for fabricating high-performance separators and have been 
applied in studies on lithium-sulfur (Li–S) batteries [20]. 
However, their excellent ion transport ability has not been 
embodied in AZIBs.

In this work, we prepared a separator functionalized by 
a Zr-based MOF (UiO-66-GF) via a hydrothermal method, 
used in high-performance AZIBs (Fig. 1a). UiO-66 exhib-
its structural robustness. The strong Zr-O bond coordina-
tion contributes to its stability under thermal, chemical, and 
aqueous conditions, which is the major advantage over other 
MOFs materials [21]. The rich Lewis acidic sites and chan-
nels in UiO-66 also enhance the ion transport ability [22]. 
The large specific surface area and abundant pore structure 
of UiO-66 provide UiO-66-GF with high transport ability 
for charge carriers at separator–electrolyte interface. UiO-
66 induces preferential orientation of (002) crystal plane 
[23], which is conducive to the growth of zinc-ions in the 
horizontal direction without dendrites [24]. Furthermore, 
undesirable side reactions, including corrosion and HER, are 
significantly suppressed, mainly manifested by the reduction 
of by-products on the zinc anode surface. Zn|UiO-66-GF-
2.2|Zn cell enables over 1650 h of reversible plating/strip-
ping with high Coulombic efficiency (CE) and low polariza-
tion (39 mV) [25]. In addition, Zn|UiO-66-GF-2.2|MnO2 cell 
exhibits high specific discharge capacity of 230.8 mAh  g−1 
at 0.1 A  g−1 and excellent long-term stability with capacity 
retention of 85% after 1000 cycles at 1.0 A  g−1. This work 
provides a new concept for the construction of stable zinc 
anode and durable AZIBs [26].

2  Experimental

2.1  Materials

Glass fiber separators were purchased from Tianjin Aiweixin 
Chemical Technology Co., Ltd. Terephthalic acid  (H2BDC) 
was purchased from J&K Scientific Ltd.  ZrCl4 was pur-
chased from Shanghai Aladdin Biochemical Technology 
Co., Ltd. Other chemical substances were of analytical grade 
and had not undergone other treatments.
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2.2  Preparation of Materials

All glass fiber separators were ultrasonically treated with 
absolute ethanol for 0.5 h to clean the impurities on the 
surface and ensure the accuracy of the experimental data. 
UiO-66 was synthesized by hydrothermal method. Firstly, 
0.6 and 2.2 mmol  L−1 of  ZrCl4 (0.14 and 0.513 g) were 
added to a beaker containing 40 mL of N, N dimethylfor-
mamide (DMF), respectively.  H2BDC (0.1 and 0.365 g) and 
4 mL of acetic acid were then added to the mixed solution, 
respectively. Finally, ultrasonic treatment was performed for 
0.5 h. Glass fiber separators were added to the above solu-
tion, soaked for 10 min, transferred to a 100 mL of Teflon-
lined stainless-steel autoclave, and heated in an oven set 
at 120 °C for 16 h. When the hydrothermal reaction was 
completed and the temperature was cooled to 25 °C, glass 

fiber separators were washed with methanol and placed in a 
vacuum drying oven at 80 °C for 8 h. The white solution in 
the stainless-steel autoclave was centrifuged with methanol 
and dried at 80 °C for 8 h to obtain a white powder UiO-
66. According to the amount of  ZrCl4 (0.6 and 2.2 mmol 
 L−1), the obtained MOFs are denoted as UiO-66-0.6 and 
UiO-66-2.2, respectively. The original glass fiber separator 
is denoted as GF. The obtained MOFs in situ grown glass 
fiber separators are denoted as UiO-66-GF-0.6 and UiO-
66-GF-2.2, respectively.

0.3803 g  MnSO4·H2O and 0.237 g  KMnO4 were added 
to 15 mL of distilled water and stirred for 15 min until they 
were completely dissolved. The above  KMnO4 solution 
was then added dropwise to  MnSO4·H2O. After stirring 
for 30 min, the mixed solution was transferred to a 100 mL 
Teflon-lined stainless-steel autoclave and heated at 160 °C 

Fig. 1  Synthesis of UiO-66-GF and characterizations of UiO-66. a Preparation diagram of UiO-66-GF and structural diagram of UiO-66. b 
XRD patterns of UiO-66. c  N2 adsorption/desorption isotherm and pore size distribution of UiO-66. d XPS full spectrum of UiO-66. High-
resolution XPS spectra of e Zr 3d, f C 1s, and g O 1s 
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for 12 h. After natural cooling, the resulting precipitate 
was centrifuged three times with distilled water and then 
placed in a vacuum drying oven at 80 °C to dry for 8 h. 
The obtained α-MnO2 powder was used as cathode material. 
α-MnO2, Super P, and polyvinylidene fluoride (PVDF) were 
mixed in a ratio of 7:2:1 with N-methyl pyrrolidone (NMP) 
as the solvent. After the slurry was formed, it was coated on 
a metal mesh (Φ = 14 mm) and placed in a vacuum drying 
oven at 80 °C for 8 h.

2.3  Characterizations

The crystal structures of the samples were studied by X-ray 
diffraction (XRD, D8 Advance A25 Instrument, Bruker, 
Germany). Morphology was observed by scanning elec-
tron microscopy (SEM, JSM-IT100, JEOL, Japan), and 
energy-dispersive X-ray (EDX) analysis was carried out 
to analyze the surface elemental composition. X-ray pho-
toelectron spectroscopy (XPS, K-alpha Plus Instrument, 
Thermo Fisher, USA) was carried out to study surface 
chemical states. Distilled water was used as the test liquid to 
test the hydrophilicity of the sample by contact angle tester 
(HARKE-SPCA, Beijing Hake Test Instrument Factory, 
China). The surface areas of the samples, degassed at 120 °C 
for 24 h under vacuum, were evaluated using  N2 adsorption/
desorption isotherms at − 196 °C (BET, 3H-2000PM1, BSD 
Instrument, China). Molecular structures and functional 
group types were analyzed by Fourier transform infrared 
spectroscopy (FTIR, VERTEX 80v, Bruker, Germany).

2.4  Electrochemical Measurements

All CR2016 coin cells were assembled in air. Full cell was 
assembled with zinc foil as anode, α-MnO2 as cathode, 
and aqueous solution of 2.0 mol  L−1  ZnSO4 + 0.1 mol  L−1 
 MnSO4 as electrolyte. Zinc foil was used as anode and cath-
ode, and 2.0 mol  L−1  ZnSO4 aqueous solution was used as 
an electrolyte to assemble symmetrical cell. Asymmetric 
cells were assembled with copper foil and titanium foil as 
cathode, zinc foil as anode, and 2.0 mol  L−1  ZnSO4 aque-
ous solution as electrolyte. All cells were placed on LAND 
test system (CT2001A, Wuhan Lanhe, China) for 4 h before 
constant current charge–discharge. Rate performances of full 
cells were analyzed at current densities of 0.1, 0.3, 0.5, 1.0, 
1.2, 1.5, 2.0, 4.0, and 0.1 A  g−1. Cycling performances were 

analyzed at current densities of 0.5 and 1.0 A  g−1. Galvano-
static intermittent titration technique (GITT) was performed 
on LAND test system. Cells were cycled 10 times at 0.5 A 
 g−1 to maintain stability. The current pulse was lasted for 
10 min at 0.1 A  g−1, and then cells were relaxed for 30 min 
to bring the voltage to equilibrium. Rate performances of 
symmetric cells were analyzed at current densities of 0.25, 
0.5, 1.0, 2.0, and 4.0 mA  cm−2. Nucleation overpotential 
(NOP) and Coulombic efficiency (CE) were measured by 
asymmetric cells at 2.0  mA   cm−2. Chronoamperogram 
(CA), linear polarization test, cyclic voltammetry (CV), and 
electrochemical impedance spectroscopy (EIS) were meas-
ured by electrochemical workstation (CHI660E, Shanghai 
Chenhua, China). CA test was performed at a scan rate of 
5 mV  s−1 in 2.0 mol  L−1  ZnSO4 solution, and linear polari-
zation test was performed at a scan rate of 10 mV   s−1. 
The ionic conductivities (σ) of stainless steel (SS)|GF|SS, 
SS|UiO-66-GF-0.6|SS, and SS|UiO-66-GF-2.2|SS cells were 
tested by EIS in the frequency range from 0.1 to 100,000 Hz 
using an electrochemical workstation (CHI660E, Shanghai 
Chenhua, China). The ionic conductivity was calculated by 
σ = d/RbSS, where d is the thickness of the separator and Rb 
and S represent the bulk resistance and the effective area of 
the separator, respectively. CV test of full cell was carried 
out in a range of 0.8–1.8 V at a scan rate of 0.1 mV  s−1. 
CV test of Zn//Ti asymmetric cell was carried out at a scan 
rate of 0.5 mV  s−1. EIS test was carried out in a range of 
0.01–100,000 Hz.

2.5  Density Functional Theory (DFT) Calculation

DFT simulations were performed using the software Visu-
alization for Electronic and Structural Analysis (VESTA). In 
our calculations, we use a 7 × 7 × 7 k-point mesh for Zn opti-
mization, while constructing a p (3 × 3 × 2) supercell of Zn. 
The adsorption energy (Eabs) of Zn atom on Zn (002), (100), 
and (101) planes was calculated by Eabs = EZn-H − EH − EZn, 
where EZn-H, EH, and EZn are the energy after Zn adsorbs 
H, energy of a single H, and energy without H adsorption, 
respectively. Hydrogen adsorption ΔGH was calculated by 
ΔGH = ΔEDFT + ΔEZPE − TΔS, where ΔEDFT, ΔEZPE, and 
TΔS denote the DFT calculated adsorption energy, change 
of zero point energy, and change of entropic contribution, 
respectively. TS term for H adsorbate is considered negligi-
ble, and TΔS ≈ − 0.5 SS

H
2

 = − 0.24 eV.
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3  Results and Discussion

3.1  Synthesis of UiO‑66‑GF and Characterizations 
of UiO‑66

As illustrated in Figs. S1 and S2, UiO-66 with a face-cen-
tered cubic crystal structure has a diameter of approximately 
70 nm. The distributions of C, O, and Zr elements are con-
sistent with the positions of SEM image. Each zirconium 
metal center is linked to 12 benzene-1,4-dicarboxylates 
(BDC) to form a 3D framework, which is favorable for its 
stable existence in GF [27]. According to the amount of 
 ZrCl4 (0.6 and 2.2 mmol  L−1) used in the synthesis process, 
the obtained MOFs are denoted as UiO-66-0.6 and UiO-
66-2.2, respectively. Furthermore, UiO-66-0.6 and UiO-
66-2.2 are in good agreement with XRD pattern (UiO-66 
simulated) obtained by UiO-66 crystal structure parameter 
simulation (Fig. 1b). Characteristic diffraction peaks of UiO-
66 at 7.3°, 8.5°, and 25.6° are consistent with the reported 
results, which demonstrates the successful synthesis of UiO-
66 [28]. There is a sharp peak with weak intensity at 12.0°, 
which is attributed to the residual solvent [29]. Figure 1c 
presents a reversible type I isotherm without hysteresis, 
which corresponds to the typical microporous structure of 
MOFs. The large specific surface area (990.3  m2  g−1) and 
porous structure of UiO-66 provide more transport chan-
nels to facilitate the migration and diffusion of zinc-ions. 
As shown in Fig. 1d, the signals of C 1s, O 1s, Zr 3d, and Zr 
3p are detected in the XPS full spectrum, further implying 
the successful synthesis of UiO-66 [30]. The high-resolu-
tion XPS spectrum of Zr 3d of UiO-66 in Fig. 1e exhibits 
corresponding peaks of Zr 3d5/2 and Zr 3d3/2 at 182.6 and 
185.1 eV, respectively, which indicates that the Zr element in 
UiO-66 exists in the form of  ZrO2 [31]. The C 1s spectrum 
has three peaks including those of C–C (284.8 eV), C–O 
(285.9 eV), and O–C=O (288.8 eV) (Fig. 1f) [32], and O 
1s spectrum has four distinct peaks at 530.4, 531.9, 532.2, 
and 533.2 eV, corresponding to Zr–O–Zr, Zr–OH, –OH, and 
O–C=O, respectively (Fig. 1g) [33].

3.2  Characterizations of UiO‑66‑GF

Due to the poor affinity and attraction for zinc-ions, GF 
is incapable of inhibiting the concentrated and disordered 
Zn deposition on the electrodes [16]. Moreover, although 

abundant porous space on the surface of GF provides a 
prerequisite for a rapid penetration of electrolyte (Fig. 2a), 
uneven distribution of porous space still limits the uniform 
transport of carriers, which is not conducive to the uniform 
plating/stripping of zinc anode, thus facilitating the forma-
tion of dendrites. Sparsely grown MOFs in UiO-66-GF-0.6 
provide inadequate ion transport channels, limiting the effect 
of inducing uniform deposition of zinc-ions (Fig. 2b). On 
the contrary, MOFs inside UiO-66-GF-2.2 are uniform 
and can fill the voids with different sizes in GF (Fig. 2c), 
making the flux of zinc-ions uniform. Therefore, the uni-
form Zn plating layers are obtained instead of dendrites. 
All elements of GF are consistent with SEM image position 
(Figs. 2d and S3a-d). C, O, and Zr elements can also be 
observed in UiO-66-GF-0.6 and UiO-66-GF-2.2 (Fig. 2e and 
S3e–j). Moreover, significant UiO-66 diffraction peaks are 
observed for UiO-66-GF-0.6 and UiO-66-GF-2.2 (Fig. 2f). 
The peak intensity increases with concentration of the solu-
tion, which demonstrates the successful synthesis of UiO-
66-GF. In the FTIR spectra of GF (Fig. 2g), the peak at 
1020  cm−1 is ascribed to the asymmetric stretching vibration 
of Si–O–Si [34]. Among the diffraction peaks of UiO-66, the 
peak at 744  cm−1 corresponds to the characteristic peak of 
Zr–O–Zr, and the peaks at 1402, 1586, and 1659  cm−1 cor-
respond to the vibrational peaks of aromatic benzene ring, 
respectively [35]. In addition, these peaks are also detected 
in UiO-66-GF, reflecting the perfect combination of UiO-66 
and GF. When the electrolyte droplets reach different sur-
faces, droplets can be fully absorbed in 3 s, indicating that 
the surfaces of UiO-66-GF still maintain good wettability 
(Fig. 2h).

3.3  Enhancements in Stability and Reversibility 
by UiO‑66‑GF

To verify the effectiveness of UiO-66-GF, long-term plat-
ing/stripping performances of Zn|GF|Zn, Zn|UiO-66-GF-
0.6|Zn, and Zn|UiO-66-GF-2.2|Zn cells were compared. At 
0.5 mA  cm−2, Zn|GF|Zn cell suffers from serious polari-
zation at initial phase with poor cycling stability of 200 h 
(Fig. S4). Zn|UiO-66-GF-0.6|Zn cell runs for 420 h, while 
Zn|UiO-66-GF-2.2|Zn cell can work stably for 1000  h 
without considerable voltage fluctuation, along with the 
smaller overpotential compared with Zn|GF|Zn cell (33 vs. 
56 mV). When the current density increases to 2.0 mA  cm−2, 
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Zn|UiO-66-GF-2.2|Zn cell still maintains the cycling stabil-
ity for more than 1650 h (Fig. 3a), with a lower overpoten-
tial of 39 mV, while Zn|GF|Zn cell is short-circuited after 
195 h. Although other studies in this area demonstrate good 
performances, the design in this work is more efficient and 
profound (Fig. 3b) [36–47]. Meanwhile, hysteresis voltage 
of Zn|UiO-66-GF-2.2|Zn cell is always lower than that of 
Zn|GF|Zn cell (Fig. S5), favorable for uniform nucleation of 
zinc-ions [48]. Rate performances of symmetric cells at vari-
ous current densities were compared to evaluate the effect 
of UiO-66-GF on reaction kinetics of zinc plating/stripping. 
As revealed by Fig. S6, polarization curves keep steady in 
each 20 cycles test. As current density increases from 0.25 to 
4.0 mA  cm−2, corresponding polarization voltage displays a 
minor increase from 56 to 82 mV for Zn|UiO-66-GF-2.2|Zn 

cell, which is considerably lower than those of Zn|GF|Zn 
and Zn|UiO-66-GF-0.6|Zn cells, indicating a stable and 
reversible zinc anode provided by UiO-66-GF-2.2. CEs of 
asymmetric cells were tested to investigate the persistence 
and reversibility for zinc plating/stripping. As expected, 
Zn|UiO-66-GF-2.2|Cu cell shows longer cycle life (350 
cycles) along with lower polarization and better reversibility 
at 2.0 mA  cm−2, compared with Zn|GF|Cu cell (80 cycles) 
and Zn|UiO-66-GF-0.6|Cu cell (190 cycles) (Fig. 3c, d) [49]. 
A lower NOP corresponds to a more stable and uniform 
zinc plating/stripping process and longer cycle life of cell 
[50]. The NOP of Zn|UiO-66-GF-2.2|Cu cell is 25 mV at 
2.0 mA  cm−2, lower than that of Zn|GF|Cu cell (63 mV), 
demonstrating that UiO-66-GF can reduce the deposition 
barrier of zinc-ions (Fig. 3e) [51]. Cyclic voltammetry (CV) 

Fig. 2  Characterizations of UiO-66-GF. SEM images of a GF, b UiO-66-GF-0.6, and c UiO-66-GF-2.2 at different magnifications. d SEM 
image of GF and element mapping for C, O, and Si. e SEM image of UiO-66-GF-2.2 and element mapping for C, O, and Zr. f XRD patterns of 
GF, UiO-66-GF-0.6, and UiO-66-GF-2.2. g FTIR spectra of GF, UiO-66-GF, and UiO-66. h Contact angle tests for three separators after 0 and 
3 s
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curves of Zn|GF|Ti and Zn|UiO-66-GF-2.2|Ti cells exhibit 
similar oxidation and reduction peaks, and the potential dif-
ference between A and B (B’) is NOP (Fig. 3f). Compared 
with Zn|GF|Ti cell, NOP of Zn|UiO-66-GF-2.2|Ti cell is 
reduced by 16 mV, displaying that UiO-66-GF-2.2 effec-
tively reduces the deposition barrier of zinc-ions [52], which 
is consistent with the results of Fig. 3e.

The corrosion protections of GF and UiO-66-GF for 
zinc anode were analyzed by linear polarization test, 
directly reflected by the corrosion current (Figs. 3g and 
S7). The corrosion currents of Zn|GF|Zn, Zn|UiO-66-GF-
0.6|Zn, and Zn|UiO-66-GF-2.2|Zn cells are 1.4, 1.0, and 
0.9 mA  cm−2, respectively. These results can be explained 
as UiO-66-GF regulates the flux of zinc-ions and prevents a 

Fig. 3  Enhancements in stability and reversibility by UiO-66-GF. a Galvanostatic charge/discharge cycling voltage profiles of Zn|GF|Zn, 
Zn|UiO-66-GF-0.6|Zn, and Zn|UiO-66-GF-2.2|Zn cells at a current density of 2.0 mA  cm−2 for 1.0 mAh  cm−2. b Comparison of cyclic revers-
ibility obtained in this work and previous studies. c CE plots of three cells at a current density of 2.0 mA  cm−2 with a capacity of 1.0 mAh  cm−2. 
d Corresponding plating/stripping profiles of three cells at the  50th cycle. e NOPs of Zn|GF|Cu and Zn|UiO-66-GF-2.2|Cu cells. f CV curves 
of Zn|GF|Ti and Zn|UiO-66-GF-2.2|Ti cells at 0.5 mV  s−1. g Linear polarization curves of Zn|GF|Zn and Zn|UiO-66-GF-2.2|Zn cells. h EIS of 
SS|GF|SS, SS|UiO-66-GF-0.6|SS, and SS|UiO-66-GF-2.2|SS cells for the calculation of ionic conductivities. The electrical field models based 
on i GF and j UiO-66-GF



 Nano-Micro Lett.          (2022) 14:218   218  Page 8 of 14

https://doi.org/10.1007/s40820-022-00960-z© The authors

massive aggregation of cations on zinc anode by inhibiting 
concentration polarization and reduces the space charge 
and surface barrier to accelerate the transport kinetics of 
zinc-ions on electrode surface [53]. Furthermore, UiO-
66-GF can effectively promote charge carrier transport, as 
confirmed by EIS. The ionic conductivities of SS|GF|SS, 
SS|UiO-66-GF-0.6|SS, and SS|UiO-66-GF-2.2|SS cells are 
4.83, 7.91, and 20.97 mS  cm−1, respectively, which can be 
attributed to the ultra-large specific surface area of UiO-
66 yielding an excellent transport process (Fig. 3h) [54]. 
COMSOL finite-element simulations were performed to 
illustrate the role of UiO-66-GF in regulating the interfa-
cial electric field. Zinc anode surface with GF exhibits a 
non-uniformly distributed electric field and the increas-
ing field strength leads to the continuous accumulation 
of charges (Fig. 3i), promoting the preferential deposi-
tion of more zinc-ions at the tip and the final formation 
of dendrites. When UiO-66-GF was employed, electric 
field of zinc anode surface was uniform (Fig. 3j), helping 
to achieve a uniform plating/stripping process [55]. This 
result is consistent with the structure of zinc anode for 
Zn|UiO-66-GF-2.2|Zn cell has a neat and smooth surface 
and cross section after cycling (Fig. S8). The mechanism of 
zinc deposition behavior can be verified by chronoamper-
ometry (CA) tests (Fig. S9), where the two-dimension (2D) 
diffusion process of zinc-ions in Zn|GF|Zn cell is long and 
intense, corresponding to inhomogeneous zinc nucleation 
[56]. In contrast, Zn|UiO-66-GF-0.6|Zn and Zn|UiO-66-
GF-2.2|Zn cells enter a stable 3D diffusion process after 
30 s of planar diffusion and nucleation, which indicates 
that zinc ions are diffused uniformly and grow, likely as 
the confinement effect of UiO-66 inhibits the formation of 
dendrites [57].

3.4  Electrochemical Performances of Full Cells

To evaluate the role of UiO-66-GF (Fig. 4a), full cells with 
α-MnO2 cathode (Fig. S10) were assembled. CV tests were 
performed to investigate the redox reaction and reversibil-
ity during the charge/discharge process. CV curves have 
the same shape and peak position, indicating that UiO-66 
does not change the electrochemical process (Figs. 4b and 
S11). Two groups of redox peaks represent reversible (de)
intercalation of hydrogen ions and zinc-ions from  MnO2, 
respectively [58]. Compared with Zn|GF|MnO2 cell, 

Zn|UiO-66-GF-2.2|MnO2 cell has higher peak current den-
sity and smaller voltage gap, demonstrating a high elec-
trochemical activity and a lower polarization [59]. Charge 
transfer resistance (Rct) of Zn|UiO-66-GF-2.2|MnO2 cell 
(133.6 Ω) is lower than those of Zn|GF|MnO2 (361.2 Ω) 
and Zn|UiO-66-GF-0.6|MnO2 cells (251.4 Ω) (Figs. 4c and 
S12), which confirms fast electrochemical kinetics [60]. Rate 
performance tests exhibit that the capacities of Zn|UiO-66-
GF-0.6|MnO2 and Zn|UiO-66-GF-2.2|MnO2 cells basically 
return to the initial value after cycling, with better reaction 
kinetics than that of Zn|GF|MnO2 cell (Figs. 4d and S13) 
[61]. Overall, Zn|UiO-66-GF-2.2|MnO2 cell has higher 
capacity and more stable voltage platforms (Figs. 4e and 
S14). Furthermore, GITT measurements were performed to 
verify the effect of UiO-66 on zinc-ions transfer. Hyster-
esis voltage generated after intermittency of Zn|GF|MnO2 
cell is almost twice that of Zn|UiO-66-GF-2.2|MnO2 cell, 
reflecting that electrochemical reaction resistance is smaller 
in Zn|UiO-66-GF-2.2|MnO2 cell (Fig. 4f) [62]. The zinc-ions 
diffusion coefficient (DZn) of Zn|UiO-66-GF-2.2|MnO2 cell 
is higher than that of Zn|GF|MnO2 cell (1.30906 ×  10−10 vs. 
1.46465 ×  10−11  cm2  s−1), which indicates UiO-66-GF-2.2 
accelerates the transport of zinc ions at the interface of 
 MnO2 (Fig. 4g) [63].

In addition, long-term cycling stabilities of cells at dif-
ferent current densities were also evaluated. Initial specific 
discharge capacity of Zn|UiO-66-GF-2.2|MnO2 cell is 198.5 
mAh  g−1 at 0.5 A  g−1 along with 81.9% capacity retention 
after 1000 cycles, which is higher than those of Zn|UiO-66-
GF-0.6|MnO2 cell (186.3 mAh  g−1, 68.2%) and Zn|GF|MnO2 
cell (165 mAh  g−1, 58.5%) (Fig. S15). When current den-
sity increases to 1.0 A  g−1, specific discharge capacity of 
Zn|GF|MnO2 cell decreases after only 200 cycles (Fig. 4h), 
while the Zn|UiO-66-GF-0.6|MnO2 is stable for 600 cycles 
(Fig. S16). Zn|UiO-66-GF-2.2|MnO2 cell still provides high 
discharge capacity after 1000 cycles (186.55 mAh  g−1) along 
with a high capacity retention (85%). Meanwhile, zinc anode 
of Zn|UiO-66-GF-2.2|MnO2 cell does not exhibit significant 
surface changes after cycling and there are no obvious den-
drites in cross-sectional SEM image (Fig. S17), reflecting 
UiO-66-GF which enables more uniform flux of zinc-ions, 
promoting uniform nucleation and deposition, and elimi-
nating dendrites [64]. Zn|UiO-66-GF-2.2|MnO2 cell also 
demonstrates excellent self-discharge resistance, owing to 
the protection of the electrodes by UiO-66-GF-2.2 [65]. 
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After resting for 24 h, Zn|UiO-66-GF-2.2|MnO2 cell main-
tains a sufficient discharge capacity due to self-discharge 
reduction [66]. Specific discharge capacity of Zn|UiO-66-
GF-2.2|MnO2 (141 mAh  g−1) is considerably higher than 
those of Zn|GF|MnO2 (31.5 mAh  g−1) and Zn|UiO-66-GF-
0.6|MnO2 (93.7 mAh  g−1) cells after 400 cycles, implying 
that UiO-66-GF-2.2 can effectively improve the stability and 
service life of cells (Fig. 4i).

3.5  Characterization of Zinc Anode during Repeated 
Cycling and Mechanism Analysis

To elucidate the mechanism of UiO-66-GF on the inhibi-
tion of zinc dendrites and corrosion resistance, XRD pat-
terns of zinc anodes before and after cycling were measured 
(Fig. 5a). The diffraction intensity of (101) plane of zinc 
anode becomes higher in Zn|GF|MnO2 cell after cycling, 

Fig. 4  Electrochemical performances of full cells. a Electrochemical behavior of Zn|GF|MnO2 cell. b CV curves of Zn|GF|MnO2 and Zn|UiO-
66-GF-2.2|MnO2 cells. c EIS spectra and corresponding equivalent circuit diagram of Zn|GF|MnO2 and Zn|UiO-66-GF-2.2|MnO2 cells. d Rate 
performances of Zn|GF|MnO2 and Zn|UiO-66-GF-2.2|MnO2 cells. e Charge/discharge profiles of Zn|GF|MnO2 and Zn|UiO-66-GF-2.2|MnO2 
cells at 0.3 A  g−1. f GITT curves and g zinc-ions diffusion coefficients during discharging of Zn|GF|MnO2 and Zn|UiO-66-GF-2.2|MnO2 cells. h 
Cycling performances and CEs of Zn|GF|MnO2 and Zn|UiO-66-GF-2.2|MnO2 cells at 1.0 A  g−1. i Cycling performances after resting for 24 h of 
three cells at 0.5 A g.−1
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indicating that zinc-ions tend to deposit in the vertical direc-
tion. However, zinc anode in Zn|UiO-66-GF-2.2|MnO2 cell 
shows a higher (002) preferred crystal orientation and a sig-
nificantly higher (002)/(101) diffraction intensity ratio after 

cycling, proving that zinc-ions tend to deposit in the horizon-
tal direction (Fig. 5b). The atomic arrangement and interfa-
cial charge density distribution of the (002) and (101) planes 
is different. UiO-66-GF induces the growth of zinc-ions in 

Fig. 5  Characterization of zinc anode during repeated cycling and mechanism analysis. a XRD patterns of pristine Zn, Zn|GF|MnO2, and Zn|UiO-
66-GF-2.2|MnO2 cells after cycling. b Schematic illustration of preferred orientations of Zn crystal plane. Mechanism comparison of the deposi-
tion processes for zinc anodes using c GF and d UiO-66-GF-2.2. e Adsorption energies between H and Zn (002), (100), and (101) crystal planes



Nano-Micro Lett.          (2022) 14:218  Page 11 of 14   218 

1 3

(002) plane, culminating in dendrite-free zinc deposition 
(Fig. 5c-d) [67]. Further analysis of XRD data exhibits that 
UiO-66-GF-2.2 inhibits the formation of by-products such as 
 ZnSO4·3Zn(OH)2·4H2O (JCPDS No. 00-009-0204), which 
also corresponds to EDX results (Fig. S18). In addition, 
adsorption energies between H and Zn (002), (100), and 
(101) crystal planes were analyzed using DFT calculations 
(Fig. 5e) [68]. Zn (002) plane demonstrates lower adsorption 
energy for H (− 1.731 eV) than that of (100) (− 1.954 eV) 
and (101) planes (− 2.369 eV), indicating a weaker adsorp-
tion of H by (002) plane, which is beneficial to improve cor-
rosion resistance and suppress HER. The catalytic activities 
of HER on different crystal planes of zinc were evaluated 
by ΔGH. Theoretically, a large ΔGH implies a high reaction 
overpotential of HER. ΔGH of Zn (002) is 0.759 eV, which 
is larger than those of Zn (100) (0.536 eV) and Zn (101) 
planes (0.121 eV), indicating that the construction of Zn 
(002) plane helps inhibit the side reactions.

In general, HER not only leads to a local pH increase in 
the electrolyte, but also continuously consumes the water in 
the electrolyte, eventually leading to increases in the con-
centrations of  OH− and  SO4

2−. UiO-66-GF-2.2 demonstrates 
preferential orientation of (002) plane. DFT calculations 
exhibit a weaker adsorption of H by (002) plane. There-
fore, UiO-66-GF-2.2 can effectively inhibit HER and further 
reducing the concentration of harmful anions in the elec-
trolyte. Meanwhile, after using UiO-66-GF-2.2, the flux of 
zinc-ions becomes uniform, which makes the concentration 
of zinc-ions reach the surface of zinc anode more consist-
ent. Uniform concentration of zinc-ions in the electrolyte 
near anode can reduce the generation of electrochemical 
corrosion products, thereby slowing down the generation of 
passivation layers, accelerating the rate of ion transfer, and 
enabling durable AZIBs.

4  Conclusion

In conclusion, a separator (UiO-66-GF) modified by Zr-
based MOF for robust AZIBs is successfully proposed. UiO-
66 has large specific surface area and abundant pore struc-
ture, which enables the electrolyte to penetrate uniformly 
and effectively reduces the local current density. Benefiting 
from the well-filled interspace, the sufficient contact of zinc 
anode with electrolyte not only reduces the NOP, but also 
uniformizes the electric field distribution to tune the zinc 

deposition. UiO-66-GF effectively enhances transport ability 
of charge carriers and demonstrates preferential orientation 
of (002) crystal plane due to the uniform interfacial charge 
of (002) deposition, which is favorable for the growth of zinc 
along the horizontal direction. Furthermore, Zn|UiO-66-GF-
2.2|Zn cell enables reversible plating/stripping with long 
cycle life over 1650 h at 2.0 mA  cm−2, and excellent long-
term stability with capacity retention of 85% is obtained 
for Zn|UiO-66-GF-2.2|MnO2 cell after 1000 cycles at 1.0 A 
 g−1. This work provides a facile and economical approach 
for separator modifications, which is beneficial to further 
promote the practical application of AZIBs.
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