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S1 Supplementary Experimental Section 

S1.1 Mechanical Property Test 

Tensile and compressive measurements were tested on the hydrogels using a universal tensile-

compressive tester (INSTRON instrument, Model 5576, USA). For tension, hydrogel 

membranes with a length of 50 mm, a width of 13 mm and a thickness of about 1.5 mm were 

measured at the speed of 50 mm·min-1. For compression, columnar hydrogels with a height of 

about 10 mm and a diameter of 15.5 mm were tested at the speed of 2 mm min-1. Young’s 

modulus was calculated from the initial linear region of the stress-strain curves. The fracture 

energy (toughness) was calculated from full region of the stress-strain curves. 

S1.2 Adhesion Performance Testing of Hydrogel Samples 

The adhesion strength was determined by the lap-shear test using a universal test machine 

(INSTRON instrument, Model 5576, USA). The glass, plastic, wood, metal substrates and pig 

skin without contaminants were cut into rectangle with a length of 40 mm and a width of 15 

mm. Hydrogel samples (10 × 10 × 1.5 mm3) were sandwiched between two substrates with an 

area of 10 × 10 mm2. After preloaded by 1kg weight for 10 min, the specimens were tested by 

the standard lap-shear test at a velocity of 10 mm min−1 under ambient conditions. The adhesion 

strength was calculated by dividing the maximum force by the adhesion area. Additionally, the 

adhesion-strip cyclic tests were also conducted to evaluate the effect of a cycle load on the 

adhesion strength of the hydrogels. 

S1.3 Conductivity Assessment 

Ionic conductivity of the hydrogels was measured by the electrochemical impedance 

spectroscopy (EIS) using an electrochemical workstation 165 (CHI760E, CH Instruments Ins) 

operated in the frequency range of 100 to 100 kHz and the amplitude of 5 mV. The hydrogels 
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were sandwiched between two carbon cloths for the measurement. The ionic conductivity (σ, S 

m−1) of the hydrogels was calculated according to the following equation: 

𝜎 =
𝐿

𝑅𝑆
                                                                (S1) 

where L (m), S (m2), and R (Ω) was the length between two carbon cloths, the contact area of 

the hydrogel with carbon cloths, and resistance obtained by the intercept at the real part in 

Nyquist plots, respectively. 

S1.4 Electrical Measurement 

The electrical signals of the hydrogels were recorded by a capacitance meter (CAPACITANCE 

TESTER, UC2652, UCE Technologies). The change in the relative resistance/capacitance of 

the hydrogel sensors was examined using the above-mentioned capacitance meter at a constant 

voltage of 1 V, on the basis of different strains, and human motions. Relative changes in 

resistance and capacitance were calculated as the following equations: 

∆𝑅

𝑅0

=
𝑅−𝑅0

𝑅0

× 100%                                                      (S2) 

∆𝐶

𝐶0

=
𝐶−𝐶0

𝐶0

× 100%                                                     (S3) 

where R0, C0 and R, C are the original resistance, capacitance at the strain of 0% at room 

temperature and the real-time resistance, capacitance at a certain strain, respectively. 

S1.5 Characterization 

1H NMR spectra were recorded on a Bruker Avance-III 400 MHz spectrometer at room 

temperature. Field emission scanning electron microscopy (FESEM, Zeiss, SIGMA, Germany) 

was used to characterize morphologies of lyophilized hydrogels. Fourier transform infrared 

spectroscopy (FT-IR) of lyophilized hydrogels were tested by a Nicolet 170-SX (Thermo 

Nicolet Ltd., USA) in the wavenumber range from 4000 to 400 cm−1. X-ray photoelectron 

spectra (XPS, ESCALAB250Xi, Thermo Fisher Scientific, America) analyses were recorded 

using a Kratos XSAM800 X-ray photoelectron spectrometer. Optical transmittance of the 

hydrogel films with a thickness of 1.5 mm was observed with a UV-vis spectrometer (UV-6, 

Shanghai Meipuda Instrument Co., Ltd., China) at a wavelength from 900 to 200 nm. Raman 

spectroscopy and spatial Raman mapping were performed using a Raman imaging microscope 

(Thermo Scientific DXR xi, USA). The wavelength of the excitation laser was 532 nm. The 

collected spectra were preprocessed using cosmic ray removal, noise filtering, and 

normalization techniques. The multivariate curve resolution (MCR) method developed by 

OMNICxi software was applied for calculating the proportion of interaction domains. 
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S2 Supplementary Videos 

Video S1 (.mp4 format). Demonstration of the strong self-adhesive properties of the CTA 

hydrogel by vigorously swinging the hand.  

Video S2 (.mp4 format). The proof-of-concept demonstrations of the CTA hydrogel as a 

human-machine interactive system. 

Video S3 (.mp4 format). Demonstration of the CTA hydrogel in the field of tactile sensing as a 

tactile switch. 

S3 Supplementary Figures 

 

Scheme S1 Synthesis route of CECT 

 

Fig. S1 1H NMR spectra of (a) CMCT, (b) CECT 
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Fig. S2 Preparation of CTA hydrogel 

 

Fig. S3 Photographs of the stretching behavior for CTA hydrogel under a weight loading of 200 

 

Fig. S4 Photographs of compressing the cylindrical CTA hydrogel with a heavy loading 
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Fig. S5 Corresponding elemental mapping images of the CTA hydrogel 
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Fig. S6 EIS Nyquist plot of CTA hydrogel 

 

Fig. S7 Current values of C11T4A20 hydrogel in different deformation states 
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Fig. S8 SEM images of (a) C5T4A20, (b) C7T4A20, (c) C9T4A20, (d) C13T4A20, (e) C11T2A20, (f) 

C11T6A20, (g) C11T8A20, (h) C11T4A15 and (i) C11T4A25 hydrogels. Scale bar: 2 μm 

 

Fig. S9 SEM image of C0T0A20 hydrogel 
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Fig. S10 FT-IR spectra of monomer AAm and C11T4A20 hydrogel 
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Fig. S11 N 1s XPS spectra for C0T0A20 and C11T4A20 hydrogel 
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Fig. S12 Equilibrium swelling curves of CTA hydrogels in water 
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Fig. S13 Equilibrium swelling ratios of CTA hydrogels in water 
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Fig. S14 Raman spectra of individual hydrophilic domains (blue) and hydrophobic domains 

(green) within (a) C5T4A20, (b) C7T4A20, (c) C9T4A20, (d) C13T4A20, (e) C11T2A20, (f) C11T6A20, 

(g) C11T8A20, (h) C11T4A15 and (i) C11T4A25 hydrogels. The insets are the reconstructed MCR 

Raman mappings of hydrophilic domains (blue) and hydrophobic domains (green) obtained 

from -OH and -NH stretching mode intensities (3000-3400 cm-1). All bars are 20 μm 

 

Fig. S15 (a) Dissipated energy of C11T4A20 sample under various tensile strains. (b) Magnifying 

stress-strain curves between 0–100% for checking residual strain after stretching 
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Fig. S16 (a) Successive loading−unloading curves of C11T4A20 under 400% strain for 15 cycles. 

(b) Dissipated energy of C11T4A20 sample under tensile loading-unloading cycles 

 

Fig. S17 (a) Tensile recovery test of C11T4A20 sample with different recovery times. (b) Tensile 

dissipated energy and maximum stress during the tensile recovery test with different recovery 

times 

 

Fig. S18 Dissipated energy of C11T4A15 sample under various compressive strains 
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Fig. S19 (a) Successive loading−unloading curves of C11T4A15 under 70% strain for 15 cycles. 

(b) Dissipated energy of C11T4A15 sample under press loading-unloading cycles 

 

Fig. S20 (a) Press recovery test of C11T4A15 sample with different recovery times. (b) Press 

dissipated energy during the press recovery test with different recovery times 

 

Fig. S21 Comparison of adhesion strength and tensile strain of reported conductive hydrogels 

[S1-S12] 
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Fig. S22 Cyclic sensing behaviors of the C11T4A20 hydrogel-based sensor upon stretching 

towards high strains ranging from 300% to 800% 

 

Fig. S23 Dynamic response of the encapsulated C11T4A20 hydrogel-based sensor being placed 

in environment with 5 ºC, 48% humidity for 2 months to cyclic loadings 

 

Fig. S24 Relative capacitance changes versus applied pressure within pressure range of 0–

0.13 kPa of C11T4A15 
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Fig. S25 Comparison of sensitivity and pressure range with literatures [S13-S22] 

  

Fig. S26 The response time of the C11T4A15 hydrogel-based sensor to the applied pressure 

 

Fig. S27 Cyclic stability test of the C11T4A15 hydrogel-based sensor under 50% compressive 

strain for 2000 cycles 
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Fig. S28 Responsive signals of C11T4A20 hydrogel-based sensor in monitoring tiny muscle 

movement of eating, chewing and drinking 

 

Fig. S29 Responsive signals of C11T4A20 hydrogel-based sensor in monitoring tiny muscle 

movement of (a) smile, laughing and (b) raise, frown 

 

Fig. S30 Responsive signal of three different respiration modes: shallow breath, fast breath 

and deep breath 
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Fig. S31 Relative resistance changes with bending of the elbow 

 

Fig. S32 Photograph of sensor attached on a knee joint, and corresponding signals of 

standing, walking, running, and jumping 

 

Fig. S33 (a) Photograph of a flexible tactile switch and a digital thermometer/hygrometer. (b) 

Photograph of a volunteer turning on the digital thermometer/hygrometer by pressing the 

flexible tactile switch 
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Fig. S34 (a) Photograph showing three weights distributed on the surface of an integrated 10 × 

10 pressure sensor array (scale bar: 3 cm). (b) Corresponding signal map showing the precise 

pressure distribution in (a) 

 

Fig. S35 The stress-strain curve of C11T4A20-VHB based single-electrode CTA-TENG 

 

Fig. S36 VOC and QSC of CTA-TENG that lasted for ~10000 cycles of contact-separation 

motions 
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Fig. S37 Comparison of VOC and QSC of CTA-TENG before and after storage in ambient 

environment for at least 40 days 

S4 Supplementary Tables 

Table S1 Effect of molar ratio on the properties of CECT 

Sample Feed ratioa) DSCOONa
b) Water-solubility 

CECT-5 5:1 0.51 soluble 

CECT-7 7:1 0.58 soluble 

CECT-9 9:1 0.69 soluble 

CECT-11 11:1 0.75 soluble 

CECT-13 13:1 0.86 soluble 

a) Molar ratio of acrylamide to glucose units; b) Calculated from 1H NMR
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Table S2 Preparation and physical properties of CTA hydrogels 

Sample DSCOONa
a) 

cCECT
 
 

(wt%) 

cAAm
 
 

(wt%) 

Water 

content 

 (wt%) 

Tension Compression 

σ
b
 (kPa) ε

b
 (%)

 
 E (kPa) W

f
 (kJ m-3) σ

b
 (MPa) ε

b
 (%) E (kPa) W

f
 (kJ m-3) 

C0T0A20 0 0 20 74.8 57.65 735.43 30.93 227.72 0.68 90 16.75 44.98 

C5T4A20  0.51 4 20 67.4 213.93 1157.73 60.69 1031.74 2.93 90 43.59 156.54 

C7T4A20  0.58 4 20 68.7 213.78 1291.52 47.59 873.73 2.87 90 30.19 175.62 

C9T4A20  0.69 4 20 70.3 186.41 1252.12 45.15 739.70 2.76 90 28.15 157.85 

C11T4A20  0.75 4 20 69.7 192.67 1585.77 43.26 1299.71 1.31 90 19.35 77.43 

C13T4A20  0.86 4 20 69.6 191.15 1307.11 53.75 1030.17 2.89 90 33.09 173.32 

C11T2A20  0.75 2 20 73.58 121.26 1109.54 39.16 498.93 0.97 90 13.45 59.48 

C11T6A20  0.75 6 20 69.60 226.84 1090.83 54.67 838.47 2.38 90 49.82 139.54 

C11T8A20  0.75 8 20 66.50 140.74 835.57 66.62 505.57 2.96 90 52.92 153.45 

C11T4A15  0.75 4 15 76.60 195.32 1341.41 24.98 924.08 0.38 90 9.76 24.65 

C11T4A25 0.75 4 25 66.10 184.71 852.57 90.28 671.33 3.32 90 57.77 248.94 

a) Calculated from 1H NMR 

σ
b
 is the stress. ε

b
 is the strain. E is the Young’s modulus. W

f
 is the fracture energy
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Table S3 Comparison of conductivity of CTA hydrogel and the reported conductive composites 

Materials Conductive medium Conductivity (S m-1) Refs. 

A-MXene/D-PDMS A-MXene 5.27×10­2 [S23] 

TPU/CNCTT CNT 1×10-2 [S24] 

HSAH/PHEAA DESs 0.19 [S25] 

ELO/PANI PANI 8.64×10-4 [S26] 

AHS SBMA/HEMA 0.39 [S12] 

PEDOT:PSS-PAAm PEDOT:PSS-PAAm 1.08×10-2 [S27] 

NAGA-co-AAm/LiCl Li+, Cl- 0.69 [S28] 

XSBR/SSCNT CNT 7.08×10-2 [S29] 

ICE [Emim][OAc] 0.77×10-2 [S30] 

PTCM-Gly5 MXene 0.19 [S31] 

Ionogel-HPC [Bmin]Cl 10.2×10-3 [S32] 

MMCOH CNT 1×10-3 [S33] 

MASTA-PANI5 PANI 7.8×10-4 [S34] 

Ionogel-4050 [EMIM][TFSI] 0.29 [S35] 

CPH BzMe3NOH 0.46 [S36] 

CTAs Na+, K+, OH- 0.62 This work 

Table S4 A table lists the letters corresponding to International Morse code 

Code Letter Code Letter Code Letter Code Letter 

• ― A • • • • H ― ― ― O • • • ― V 

― • • • B • • I • ― ― • P • ― ― W 

― • ― • C • ― ― ― J ― ― • ― Q ― • • ― X 

― • • D ― • ― K • ― • R ― • ― ― Y 

• E • ― • • L • • • S ― ― • • Z 

• • ― • F ― ― M ― T   

― ― • G ― • N • • ― U   

Table S5 Comparison of the electrical output of the TENG device with previous literature 

Literature Friction materials Fre (Hz) P Refs. 

Yao et al. CNFs-FEP 10 140 mW/m2 [S37] 

Gao et al. PEDOT:PSS-PLA 5 211 mW/m2 [S38] 

Yeh et al. Ecoflex-Liquid metal / 19.04 mW/m2 [S39] 

Kim et al. PTFE-Al/Tin / 147 mW/m2 [S40] 

Zheng et al. PLGA-PCL 1 32.6 mW/m2 [S41] 

Wang et al. Chitosan-Ecoflex 0.5 17.5 μW/m2 [S42] 

Pang et al. Alginate-Al 1 9.5 μW [S43] 

Pan et al. PLA-Gelatin 5 5 W/m2 [S44] 

Liang et al. SA-PVA 1 3.8 mW/m2 [S45] 

S. Parandeh et al. Paper-PCL/GO 3 72.5 mW/m2 [S46] 

Sriphan et al. Ti2NbO7 NSs-BC / 28 μW [S47] 

Lu et al. Sugar-Nickel 4 4.21 W/m2 [S48] 

Wu et al. PBS-SR 5 1.25 W/m2 [S50] 

Chi et al. Rice paper-PVC 5 376 mW/m2 [S51] 

Zhang et al. Chitin-VHB 3 1.25 W/m2 [S52] 

Yang et al. Weighing paper-PTFE 4 13 mW [S53] 

/ Latex-VHB 1 1.17 W/m2 This work 
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