Supporting Information for

A Thermoregulatory Flexible Phase Change Nonwoven for All-

Season High-Efficiency Wearable Thermal Management

Hanqing Liu^{1,2,4,#}, Feng Zhou^{2,#}, Xiaoyu Shi², Keyan Sun¹, Yan Kou¹, Pratteek Das^{2,} ⁴, Yangeng Li^{1,4}, Xinyu Zhang^{1,4}, Srikanth Mateti³, Ying (lan) Chen^{3,*}, Zhong-Shuai Wu^{2,*}, Quan Shi^{1,*}

¹ Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China

² State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China

³ Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic 3216, Australia

⁴ University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China

[#]Hanqing Liu and Feng Zhou contributed equally to this work.

* Corresponding autors. E-mail: <u>shiquan@dicp.ac.cn</u>(Quan Shi); <u>wuzs@dicp.ac.cn</u> (Zhong-Shuai Wu); <u>ian.chen@deakin.edu.au</u> (Ying (lan) Chen)

Supplementary Figures and Tables

Fig. S1 Raman spectra of GB nonwoven before and after reduction

Fig. S2 C 1s XPS spectra of (a) GOB-N and (b) GB-N

Fig. S3 Pore size distribution of 4GB-N. Inset is the partial enlarged curve from the pore size of less than 10 nm

Table S1 The mass difference before and after the leakage test of pure eicosane, E-4GB-PCN and E-2GB-PCN

Sample	<i>m</i> before/g	<i>m</i> _{after} /g
blank filter paper	0.8015	0.8024
eicosane	0.7967	1.9445
E-4GB-PCN	0.8012	0.7990
E-2GB-PCN	0.7936	0.7973

Fig. S4 DSC curves of octadecane based GB-PCN

	T_m (°C)	$ riangle H_m(J/g)$	<i>T</i> _c (°C)	$ riangle H_c$ (J/g)
octadecane	28.5	228.1	22.7	227.7
O-2GB-PCN	28.9	189.7	22.7	188.7
O-4GB-PCN	32.2	166.3	21.0	163.2
O-G-PCN	26.9	16.8	23.2	13.6

Table S2 Thermal properties of octadecane, O-G-PCN, O-4GB-PCN and O-2GB-PCN

 Table S3 Thermal properties of eicosane, E-G-PCN, E-4GB-PCN and E-2GB-PCN

	$T_c(^{\circ}\mathrm{C})$	$\Delta H_c(J/g)$	$T_m(^{\circ}\mathrm{C})$	$\Delta H_m(J/g)$
eicosane	30.8	245.5	38.7	248.3
E-2GB-PCN	28.6	202.4	38.8	206.0
E-4GB-PCN	27.3	175.4	37.7	179.6
E-G-PCN	31.3	30.9	36.6	32.2

Fig. S5 DTG curves of eicosane and E-2GB-PCN

Fig. S6 (a) TG and (b) DTG curves of octadecane and O-4GB-PCN

Fig. S7 Cycling stability of O-2GB-PCN

Fig. S8 XRD patterns of O-2GB-PCN before and after 1000 cycles

Fig. S9 UV-vis absorption spectra of eicosane and E-2GB-PCN

Fig. S10 FT-IR spectrum of eicosane, 2GB-N and E-2GB-PCN

S5 / S8

	<i>m</i> (PE)/g	<i>m</i> (cotton-PCN)/g	m(cotton)/g	
0 h	36.4125	38.4947	38.4852	
8.17 h	36.4094	38.3184	38.2803	
20.67 h	36.4058	38.0294	37.9663	
32.08 h	36.4016	37.7634	37.6800	
44.25 h	36.3977	37.5090	37.3745	
56.83 h	36.3935	37.2288	37.0588	

Table S5 Comparative performance of the phase change fabric in previous literatures

Sample	Diameter	Melting	Enthalp	Loading	Water	Refs.
	(µm)	temperature (°C)	y (J/g)	capacity	vapor	
					permeabil	
					ity	
PCF/MCNC	0.23	62.4	69.2	38.4%	-	[S1]
		61.5	83.1	46.0%		
PCM-30 (9 w/w%	0.75	38.46	84.7	38.3%	-	[S2]
PVA)		37.95	48.7	22.0%		
PW@H-KAF	91.8	44.4	135	72.0%	\checkmark	[S3]
OD@F-SiO ₂ -PA	2.66	49.6	56.9	47.8%	-	[S4]
Polyethylene	4.5	51.9	77.5	35.7%	-	[S5]
glycol/polyvinylpyrr						
olidone/ CNTs						
Polyethylene	2.0	36.3	61.2	36.1%	-	[S6]
terephthalate						
particles (PET)/						
lauric acid (LA)						
/palmitic acid (PA)/						
CPCF	0.15-0.4	26.1	43.4	28.1%	-	[S7]
		25.7	56.2	36.4%		
		24.6	72.3	46.8%		
Polyethylene glycol	2.66	49.6	56.9	47.8%	-	[S8]
(PEG)/						
polyvinylpyrrolidon						
e (PVP)/Nano-Al ₂ O ₃						
Commercial hollow	350	37.39	199.9	88.6%	\checkmark	[S9]
Polypropylene/PW						
PW@PU	2	20-35	83.96	41.3%	-	[S10]
			120.46	59.2%		
E-2GB-PCN	about 250	38.8	206.0	83.0%	\checkmark	This work

Supplementary References

- [S1] S. Y. H. Abdalkarim, Z. Ouyang, H.-Y. Yu, Y. Li, C. Wang et al., Magnetic cellulose nanocrystals hybrids reinforced phase change fiber composites with highly thermal energy storage efficiencies. Carbohydr Polym. 254, 117481 (2021). <u>https://doi.org/10.1016/j.carbpol.2020.117481</u>
- [S2] E. Zdraveva, J. Fang, B. Mijovic, T. Lin, Electrospun poly(vinyl alcohol)/phase change material fibers: Morphology, heat properties, and stability. Ind. Eng. Chem. Res. 54(35), 8706-8712 (2015). <u>https://doi.org/10.1021/acs.iecr.5b01822</u>
- [S3] Y. Bao, J. Lyu, Z. Liu, Y. Ding, X. Zhang, Bending stiffness-directed fabricating of kevlar aerogel-confined organic phase-change fibers. ACS Nano 15(9), 15180-15190 (2021). <u>https://doi.org/10.1021/acsnano.1c05693</u>
- [S4] W. Xia, X. Fei, Q. Wang, Y. Lu, M. T. Innocent et al., Nano-hybridized formstable ester@F-SiO₂ phase change materials for melt-spun PA6 fibers engineered towards smart thermal management fabrics. Chem. Eng. J. 403, 126369 (2021). <u>https://doi.org/10.1016/j.cej.2020.126369</u>
- [S5] W. Zhang, X. Zhang, Y. Xu, Y. Xu, J. Qiao et al., Flexible polyethylene glycol/polyvinylpyrrolidone composite phase change fibres: Preparation, characterization, and thermal conductivity enhancement. Polymer 214, 123258 (2021). <u>https://doi.org/10.1016/j.polymer.2020.123258</u>
- [S6] H. Ke, Preparation of electrospun LA-PA/PET/Ag form-stable phase change composite fibers with improved thermal energy storage and retrieval rates via electrospinning and followed by uv irradiation photoreduction method. Fibers Polym 17(8), 1198-1205 (2016). https://doi.org/10.1007/s12221-016-6456-1
- [S7] W. Zhu, Y. Wang, S. Song, H. Ai, F. Qiu et al., Environmental-friendly electrospun phase change fiber with exceptional thermal energy storage performance. Sol. Energy Mater. Sol. Cells 222, 110939 (2021). <u>https://doi.org/10.1016/j.solmat.2020.110939</u>
- [S8] X. Zhang, B. Wu, G. Chen, Y. Xu, T. Shi et al., Preparation and characterization of flexible smart glycol/polyvinylpyrrolidone/nano Al₂O₃ phase change fibers. Energy Fuels **35**(1), 877-882 (2021). <u>https://doi.org/10.1021/acs.energyfuels.0c03370</u>
- [S9] Q. Zhang, Z. He, X. Fang, X. Zhang, Z. Zhang, Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater. 6, 36-45 (2017). <u>https://doi.org/10.1016/j.ensm.2016.09.006</u>
- [S10] J. Wu, M. Wang, L. Dong, J. Shi, M. Ohyama et al., A trimode $$\rm S7\ / S8$$

thermoregulatory flexible fibrous membrane designed with hierarchical coresheath fiber structure for wearable personal thermal management. ACS Nano **16**(8), 12801-12812 (2022). <u>https://doi.org/10.1021/acsnano.2c04971</u>