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S1 Experimental Section  

S1.1 Characterization 

X-ray diffraction (XRD) patterns of acquired samples were measured by Bruker AXS 

D8 Advance X-ray diffractometer with Cu Kα radiation operating at 40 kV and 40 mA. 

The morphology and microstructures were examed by TEM (TECNAI F-30) operated 

at 300 kV and SEM (Hitachi SU-70) equipped with an energy-dispersive X-ray 

spectroscopy (EDS) detector operated at 5 kV. The content of sulfur in the composites 

was measured by TGA experiment (SDT-Q600 thermal analyzer) at a heating rate of 

10 °C min-1 in an N2 atmosphere. XPS analysis was carried 

out on PHI QUANTUM 2000 (monochromatic Al K X-ray source). Raman spectra 

were performed using an Xplora Raman microscope with an excitation wavelength of 

785 nm. UV-vis absorption tests were performed with UV-vis-near-infrared 

spectrophotometry (UV-Vis, Lambda 750, PerkinElmer). The specific surface area and 

analysis of the pore size distribution were obtained from nitrogen adsorption-desorption 

isotherms (BSD-3H-2000PM2).  

S1.2 Adsorption and Catalytic Studies  

Sulfur and Li2S (99.9%, Alfa Aesar) were dissolved in appropriate amounts of 

DME/DOL (volume ratio of 1:1) solution with a molar ratio of 5:1, and then the mixture 

solution was vigorously magnetic stirred overnight in an Ar-filled glovebox until a dark 

brown solution was obtained. 20 mg of the adsorbent (3DIO FCSe-QDs@NC, FCSe-

QDs@NC, and 3DIO NC cathodes) was poured into a 3.0 mL of 10 mM Li2S6 solution 

to observe the color change of the mixture solution. 
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For the symmetric cell assembly and measurements, the working electrode was 

prepared by mixing host matrices materials and PVDF at a weight ratio of 9:1. 

Symmetric cells were assembled by using two identical electrodes with a Celgard 2400 

membrane as the separator, and 60 µL of Li2S6 electrolyte (containing 1 mol L-1 LiTFSI, 

2 wt% LiNO3, and 0.2 M Li2S6 in DOL/DME solution with a volume ratio of 1:1) as 

electrolyte. The CV curves of symmetric cells were performed within the voltage range 

of -1.0–1.0 V (vs. Li+/Li). EIS was tested by Autolab electrochemical workstation 

(NOVA 1.9) with a frequency ranging from 0.01 Hz to 100 kHz. 

For the Li2S nucleation and decomposition measurement, the cells were assembled by 

the above active electrodes as working electrodes and Li foils as counter electrodes. 25 

µL of 0.5 M Li2S8 and 1.0 M LiTFSI dissolved in a tetraglyme solution were used as 

the catholyte, while 25 µL of 1.0 M LiTFSI dissolved in a tetraglyme solution as the 

anolyte. For the nucleation test, the cells were galvanostatically discharged to 2.06 V at 

0.112 mA and then kept potentiostatically at 2.05 V until the current dropped below 10-

5 A. For the decomposition process, the cells were galvanostatically discharged to 1.7 

V at a constant current of 0.10 mA, then continue galvanostatically discharged to 1.7 V 

at 0.01 mA, and final potentiostatically charged at 2.40 V for 20,000 s. 

For the LSV measurements, a three-electrode configuration was fabricated using glassy 

carbon coated with active material as the working electrode, Ag/AgCl electrode as the 

reference electrode, platinum sheet as the counter electrode, and 0.1 mol L-1 

Li2S/methanol solution as the electrolyte. The LSV tests were conducted using the 

CHI660D electrochemical workstation (Shanghai Chenhua Device Company, China) 

from -0.8 V to -0.1V at a scan rate of 5 mV s-1. 

S1.3 Electrochemical Measurements  

For the sulfur cathode test, the resulting cathode electrodes, Li anode, and Celgard 2400 

separator were employed to assemble the CR2032 coin-type Li-S batteries in an argon-

filled glove box (<1 ppm of O2 and H2O). The electrolyte was lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI) (1 M) in a mixed solvent of 1,2-

dimethoxyethane and 1,3-dioxolane (1:1, v/v) with 2 wt% of LiNO3 additive, and the 

E/S ratio of half-cell tests was maintained at about 20 µL mg-1. Cycling and rate 

performance tests in the cutoff potential of 1.8–2.7 V (vs Li+/Li) were performed on a 

Neware battery test system (CT-4008, 5 V-10 mA, and 5 V-50 mA). CV curves were 

recorded in the voltage range from 1.7–2.8 V (vs Li+/Li).  

For the synthesis of Li metal hybrid anodes, the 3DIO FCSe-QDs@NC (or FCSe-

QDs@NC and 3DIO NC) was firstly mixed with PVDF in NMP solvent with a mass 

ratio of 9:1, coated onto the Cu foils, and cut into discs with the mass loading of about 

1.5 mg cm-2. The Li/3DIO FCSe-QDs@NC, Li/FCSe-QDs@NC, Li/3DIO NC, and 

Li@Cu anodes were prepared by electrochemical deposition. The deposition process 

was performed using CR2032 coin cells with Li foils as the counter electrode and the 

aforementioned Li–S battery electrolyte as the electrolyte. Prior to the test, the cell was 

cycled at 50 µA between 0.01 and 3.0 V (vs Li+/Li) for 5 cycles to form a stable SEI 

film. For Li symmetric battery configurations, both working and reference electrodes 

are the Li-deposited electrodes. Then, 15 mAh cm−2 of Li was deposited on the host 

through galvanostatic discharging. The cycling performances were recorded under a 

variety of current rates and capacities. The full cells were constructed by the obtained 

sulfur cathodes and the corresponding pre-deposited Li anodes with a N/P ratio of lower 

than 5 for routine tests (a Li deposition capacity of 12 mAh cm-2).  
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S1.4 Computational Simulation 

The density functional theory (DFT) calculations were operated in the Vienna Ab-initio 

Simulation Package (VASP) [S1, S2]. The projector augmented waves (PAW) in the 

Perdew-Burke-Ernzerhof (PBE) form were chosen as the pseudopotentials [S3]. The 

Brillouin zone of the supercell was sampled by a 2 × 2 × 1 uniform k-point mesh. The 

energy cutoff of the plane base sets was 500 eV. All the atoms in the structures were 

relaxed until the residual forces were less than 0.01 eV Å-1 and the total energy 

difference was less than 10-5 eV. The binding energy (𝐸𝑏) was defined as the energy 

difference of adsorbed model (𝐸𝑠𝑢𝑟/𝐿𝑖2𝑆𝑛) and the summation of pure Li2Sn (𝐸𝐿𝑖2𝑆𝑛 , n = 

1, 2, 4, 6, 8) molecule and the surface energy (𝐸𝑠𝑢𝑟) according to 𝐸𝑏 = 𝐸𝑠𝑢𝑟/𝐿𝑖2𝑆𝑛 −

𝐸𝐿𝑖2𝑆𝑛 − 𝐸𝑠𝑢𝑟, where more negative values indicated stronger binding interaction. The 

transition state of Li2S decomposition on the surface was located by the nudged elastic 

band (NEB) method. All the calculation models adopted in this work were conducted 

with the ALKEMIE platform [S4]. Charge density difference was obtained from the 

charge difference between the substrate and the adsorbent. 

Theoretical expressions of the current-time transients of four classic electrochemical 

deposition models were presented as follows:  
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Supplementary Figures and Tables 

 

Fig. S1 (a, b) SEM images and (c) XRD pattern of SiO2 spheres 
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Fig. S2 (a) XRD patterns of FCSe-QDs@NC@SiO2 and 3DIO FCSe-QDs@NC. (b,c) 

SEM images and (d-f) TEM images of the 3DIO FCSe-QDs@NC 

 

Fig. S3 (a) TG curve of 3DIO FCSe-QDs@NC in the air with a heating rate of 10 °C 

min-1. (b) XRD pattern of 3DIO FCSe-QDs@NC after calcination in air at 900 °C 

The reaction can be written as: 

6𝐹𝑒2𝐶𝑜𝑆𝑒4 + 37𝑂2 → 6𝐹𝑒2𝑂3 + 2𝐶𝑜3𝑂4 + 24Se𝑂2 

Therefore, the weight ratio of Fe2CoSe4 in 3DIO FCSe-QDs@NC is calculated to be 

about 81 wt%  

 

Fig. S4 (a) High-resolution XPS spectra of N 1s. (b) The ratio of Pyrrolic-N, 

Pyridinic-N and Graphitic-N 
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Fig. S5 (a-c) XRD patterns and (d-f) TEM images of the final products obtained by 

varying the ratios of cobalt and iron, and the insets show the size distribution of QDs
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Fig. S6 (a, b) SEM images, (c, d) TEM images, and (e) XRD pattern of FCSe-

QDs@NC 
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Fig. S7 (a, b) SEM images, (c, d) TEM images, and (e) XRD patterns of Co-based 

oleate and SiO2 mixture after calcination (Co+SiO2), sample after acid treatment 

(NC+SiO2), and 3DIO NC final product 

 

Fig. S8 Raman spectra of 3DIO FCSe-QDs@NC, FCSe-QDs@NC, and 3DIO NC 
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Fig. S9 (a-c) Nitrogen adsorption and desorption isotherms and (d) Supertable of 

3DIO FCSe-QDs@NC, FCSe-QDs@NC and 3DIO NC 

 

Fig. S10 Binding energies and adsorbed structures of LiPSs on 3DIO NC based on 

DFT calculation 
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Fig. S11 Binding energies and adsorbed structures of LiPSs on the (001) lattice plane 

of 3DIO FCSe-QDs@NC based on DFT calculations 

 

Fig. S12 (a) TGA curves of S/3DIO FCSe-QDs@NC, S/FCSe-QDs@NC, and 

S/3DIO NC. (b) XRD patterns, (c) SEM image, and (d-i) corresponding EDS 

elemental mappings of S/3DIO FCSe-QDs@NC 
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Fig. S13 Visual illustration of polysulfide entrapment at different discharge stages for 

S/3DIO NC 

 

Fig. S14 (a) CV curves of the 3DIO FCSe-QDs@NC-based symmetric cells at 

different scanning rates. (b) EIS spectra of three different symmetric cells. The inset is 

the corresponding equivalent circuit  

 

Fig. S15 Local enlargement of different peaks in the CV curve from coin-type cells 

assembled with different sulfur cathodes 
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Fig. S16 Onset potential tests for Li–S redox reactions. Differential CV curves with 

(a, b) 3DIO FCSe-QDs@NC, (c, d) FCSe-QDs@NC and (e, f) 3DIO NC  

Note: The baseline voltage and current density are defined as the value before the redox 

peak, where the variation in current density is the smallest, namely dI/dV = 0. Baseline 

voltages are denoted in Cambridge blue for cathodic peak Ⅰ, Ⅱ, and in black for anodic 

peak Ⅲ, respectively. The CV curves and corresponding onset current density is 10 μA 

cm-2 beyond the corresponding baseline current density (more specifically, 10 μA cm-2 

more negative than baseline current density for the cathodic peaks or 10 μA cm-2 more 

positive than baseline current density for anodic peaks). As shown in the inset, the 

baseline voltages are exhibited, and the colored region indicates the gap in current 

density (10 μA cm-2) [S5]. 
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Fig. S17 (a, b) CV curves at different scanning rates and (c,d) the linear fits of the 

peak currents vs. square root of scan rates from CV curves 

Randles-Sevcik Equation [S6]:  

𝐼𝑝 = (2.69 × 105)𝑛1.5𝐴𝐷0.5𝐶𝑣0.5 

Wherein Ip is the peak current density, n is the number of electrons during reactions, A 

is the electrode area, 𝐷Li+  is the Li+ ion diffusion coefficient, C is the concentration of 

Li+ ion in the electrolyte, and v is the scanning rate. The higher the slope, the stronger 

the ion diffusion ability [S7, S8]. 

 

Fig. S18 SEM images of the final Li2S deposited on 3DIO FCSe-QDs@NC electrode 

Note: On the 3DIO FCSe-QDs@NC electrode surface, the Li2S exhibits 3D granular- 

morphology and is evenly deposited without obvious aggregation of large particles, 

which is mainly driven by the abundant catalytic sites in the 3D porous carbon skeleton. 

Moreover, the smooth LiPSs diffusion and efficient charge transfer profited from the 

conductive carbon skeleton contribute to the rapid Li2S nucleation and uniform 
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deposition on the Li2S/host/electrolyte three-phase interface [S9]. In stark contrast, 

there are many sheet-like self-assembled Li2S agglomerates deposited on the bulk 

FCSe-QDs@NC electrode surface, on account of the limited amount of active sites 

exposed on bulk surfaces and rapidly depleted during the deposition process, which has 

been proved to be universal in ether-based electrolytes (Fig. S17) [S10]. For the 

catalyst-free, the deposited Li2S completely exhibits a 2D sheet-like morphology with 

a rough and uneven surface. And such sheet-like structures would lessen the three-phase 

interface mediated for the electron/ion transfer and further impedes the subsequent 

growth of Li2S (Fig. S18) 

 

Fig. S19 SEM images of the final Li2S deposited on FCSe-QDs@NC electrode 

 

Fig. S20 SEM images of the final Li2S deposited on the 3DIO NC electrode  

 

Fig. S21 Potentiostatic charge profiles at 2.40 V for evaluating dissolution kinetics of 

Li2S for (a) 3DIO FCSe-QDs@NC, (b) FCSe-QDs@NC, and (c) 3DIO NC 
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Fig. S22 In-situ XRD pattern of 3DIO NC electrode 

 

Fig. S23 Cycling performance of the pure 3DIO FCSe-QDs@NC without sulfur 

loading at 0.2 C 

 

Fig. S24 The discharge/charge curves of the 3DIO FCSe-QDs@NC cell at different 

current densities 

 

https://springer.com/40820


Nano-Micro Letters 

S15/S26 

 

Fig. S25 (a) Optical photograph and UV–vis spectra of Li2S6 solutions containing 

different adsorbents after resting for 6 h (A: Li2S6; B: 3DIO CSe-QDs@NC; C: 3DIO 

FSe-QDs@NC; D: 3DIO FCSe-QDs@NC). (b) CV curves of symmetric cells. (c, d) 

Li2S nucleation tests and (e, f) potentiostatic charge profiles. (g) Cycling performances 

and the corresponding coulombic efficiencies of Li–S batteries with S/3DIO FCSe-

QDs@NC, S/CSe-QDs@NC, and S/3DIO S/FSe-QDs@NC electrodes at 0.2 C 
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Fig. S26 The cyclic voltammetry profiles of 3DIO FCSe-QDs@NC electrode at a 

scanning rate of 0.1 mV s−1 between 0.01 and 3.0 V  

Note: During the first cathodic scanning, three reduction peaks at 1.55, 1.29, and 0.51 

V are ascribed to the initial insertion of Li+ into the 3DIO FCSe-QDs@NC electrode, 

and finally result in the formation of Co, Fe, and Li2Se, corresponding to the 

following reaction [S11, S12]: 

𝐹𝑒2𝐶𝑜𝑆𝑒4 + 8𝐿𝑖+ → 2𝐹𝑒 + 𝐶𝑜 + 4𝐿𝑖2𝑆𝑒 

The in-situ formed Co and Fe phase works as the preferred nucleation sites for the 

subsequent Li deposition. While the formed Li2Se phase possesses high ionic 

conductivity, which is favorable for fast Li-ion diffusion. Such mixed conductive 

phases have been proven to effectively regulate the nucleation and deposition of Li 

metal [S13-S15] 

 

Fig. S27 Morphological evolution of 3DIO FCSe-QDs@NC electrode at different 

states 

Note: With the increase of Li deposition capacity, some smooth-surfaced moss-like Li 

deposits are tightly packed on the 3DIO FCSe-QDs@NC matrix, and no obvious Li 

dendrites are observed. This indicates that the 3D-ordered carbon framework combined 

with abundant lithophilic sites is beneficial to tuning the Li plating/stripping behavior 

to harvest dendrite-free Li anode. 
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Fig. S28 Morphological evolution of FCSe-QDs@NC electrode at different states 

 

Fig. S29 Morphological evolution of 3DIO NC electrode at different deposition 

capacities of Li 

 

Fig. S30 Morphological evolution of bare Cu foil electrode at different deposition 

capacities of Li 

 

Fig. S31 The optimized geometry conformation models and corresponding binding 

energies (Eb) of Li atom adsorbed on (a) N-doped carbon and (b) Fe2CoSe4 
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Fig. S32 The corresponding Nyquist plots obtained after cycling at 1 mA cm-2 with a 

plating/striping capacity of 1 mAh cm-2  

 

Fig. S33 TEM images and corresponding EDS mappings of cathode and anode from 

the disassembled 3DIO FCSe-QDs@NC-based full cell after cycling for 2000 cycles 

at 2C  

Note: As shown in Fig. S33, the 3DIO FCSe-QDs@NC host recovered from the 

disassembled cell still exhibits 3D-ordered porous morphology without obvious 

structural damage, indicating good mechanical stability. Importantly, one can clearly 

observe that the FCSe-QDs still maintain a highly dispersed distribution on the carbon 

skeleton without obvious agglomeration or disappearance. And the uniform distribution 

of Se, Fe, and Co elements further confirms the excellent stability of QDs during 

cycling. And, the separators from the disassembled 3DIO FCSe-QDs@NC-based full 

cells (S/3DIO FCSe-QDs@NC||Li/3DIO FCSe-QDs@NC and S/3DIO FCSe-

QDs@NC||Li/Cu) present pale yellow color, while other two controls samples show 

dark yellow-brown color, which indicates that LiPSs diffusion is effectively blocked 

and only a small amount of LiPSs is dissolved into the electrolyte. Furthermore, the Li 

anode of the cycled cell displays relatively smooth and compact surface. And the low 

intensity of the EDS sulfur signal shows a negligible amount of LiPS reaching the anode. 
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Fig. S34 The discharge/charge profiles of the 3DIO FCSe-QDs@NC-based full cell at 

different current rates 

 

Fig. 35 (a) Schematic diagram of pouch battery. (b) The discharge/charge profiles of 

the 3DIO FCSe-QDs@NC-based pouch cell at the first and last cycles. (c) Digital 

photographs of the LED device lit by pouch cell 
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Table S1 Lithium-ion diffusion rates (DLi
+, cm-2 s-1) of 3DIO FCSe-QDs@NCS 

batteries paired with different cathodes 

Sample Peak Ⅰ Peak Ⅱ Peak Ⅲ 

3DIO FCSe-

QDs@NC 
2.15×10-7 3.92×10-7 5.26×10-7 

FCSe-QDs@NC 2.05×10-7 3.91×10-7 5.18×10-7 

3DIO NC 1.85×10-7 3.65×10-7 4.89×10-7 

Table S2 EIS fitting results of Li–S batteries paired with different cathodes before 

cycling 

Sample Rs(Ω) Rct(Ω) 

3DIO FCSe-

QDs@NC 
11.8 52.2 

FCSe-QDs@NC 20.5 75.1 

3DIO NC 25.4 128.8 

Table S3 EIS fitting results of Li–S batteries paired with different cathodes after cycling 

Sample Rs(Ω) Rp(Ω) Rct(Ω) 

3DIO FCSe-

QDs@NC 
1.2 15.2 10.6 

FCSe-QDs@NC 3.1 38.5 33.2 

3DIO NC 5.2 48.7 42.1 

Table S4 EIS fitting results of Li||Li symmetrical cells based on different host matrices 

Sample Rs(Ω) Rct(Ω) 

3DIO FCSe-QDs@NC 1.97 38.5 
FCSe-QDs@NC 3.5 45.6 
3DIO NC 4.1 51.1 

Table S5 Comparisons of the cycling performance of Li||Li symmetric cells with 

different hosts  

Li host 

Current 

density 

[mA cm–2] 

Capacity 

[mAh cm–2] 

Cycle 

time 

[h] 

Overpotential 

[mV] 
Refs. 

3DIO FCSe-
QDs@NC 

1 1 1400 13 

This work 3 3 800 28 

5 5 500 65 

HPTCF 1 1 300 14 [S16] 
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Zn1-HNC 3 3 400 42 [S17] 

Ni2Co@rGO 0.5 1 200 16.6 [S18] 

Co/N-PCNSs 0.5 0.5 350 17 [S19] 

WSe2/NG 3 1 700 18 [S9] 

N/O-codoped 2 2 500 40 [S20] 

MXene/COF 1 1 400 25 [S21] 

N-doped 
graphene 

1 4 800 24 [S22] 

CNF@Ni 0.5 1 1000 25 [S23] 

Nb4N5–Nb2O5 1 1 1000 10.5 [S24] 

TiN-VN@CNFs 2 1 1000 24 [S25] 

Table S6 Comparison of the electrochemical performance based on S/3DIO FCSe-

QDs@NC cathode with reported state-of-the-art works based on TMSes 

Materials 

Rate 

capability 

[mAh g-1] 

Capacity 

retention 

[mA g–1]/Cycle 

numbers 

High S loading 

performance 

[Capacity/Sulfur 

loading] 

Refs. 

3DIO FCSe-

QDs@NC 
781/5 C 

1157/300/0.2 C 3.91/4.5/100 cycles 
This 

work 
661/2000/2 C 6.53/8.5/100 cycles 

Ni0.1Zn0.1Co0.8Se2 681/2 C 495/400/1.0 C 2.76/4.6/100 cycles [S26] 

CC/NiCoSe2-NiO 776/2 C 610/1000/1 C 2.12/3.5/250 cycles [S27] 

Ti3C2/(NiCo)0.85Se 600/5 C 320/2000/1 C 5.3/6.4/80 cycles [S28] 

Co-MoSe2/MXene 759/5 C 670/500/0.5 C 5.33/8.7/200 cycles [S29] 

VSe2 600/8 C 782.2/500/1C 4.04/6.1/200 [S30] 

RGO-CoSe2 695.7/2C 741.2/400/1 4.18/3.8/50 [S31] 

C2N@NbSe2 683/5 752.1/500/1 3.7/5.6/80 [S32] 

MoSe2@rGO 863/2 672/500/2 5.88/4.2/120 [S33] 
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CoSe@C - 715/600/1 5.8/6.2/100 [S34] 

CoZn-Se 844/3 360/2000/2 6.6/7.8/30 [S35] 

CoSe 754.3/3 414.3/1200/1 4.1/5.6/30 [S6] 

ZnSe 743.2/6 743/200/1 3.6/3.2/120 [S36] 

VSe2–VG@CC 450/5 334/800/5 4.9/9.6/0.2 [S37] 

NG/WSe2 570/5 750/500/1 3.4/5.2/350 [S38] 

Table S7 Comparison of the electrochemical performance based on 3DIO FCSe-

QDs@NC with previously reported state-of-the-art full-cell works 

Dual functional host 

Rate 

capability 

[mAh g-1] 

Capacity retention 

[mA g–1]/Cycle 

numbers 

High S loading 

performance 

[Capacity/Sulfur 

loading] 

Electrolyte/

sulfur ratio 
Refs. 

3DIO FCSe-QDs@NC 745/5 C 715/800/2.0 C 

3.91/4.5/100 cycles 4.4 
This 

work 
6.53/8.5/100 cycles 4.1 

ZCNC@GC 600/5 C 849/200/0.5 C 

1.8/3.0/100 cycles 

10 [S39] 

2.67/5.0/100 cycles 

NbC/Co⊂N-PCFs 704/5 C 783/500/0.3 C 6.1/6.7/ 50 cycles 10 [S40] 

CoTe⊂NCGs 692/5 C 513/800/2.0 C 3.31/3.8/50 cycles 4.2 [S41] 

TiN-3VN@CNFs 650/5 C 576/600/2.0 C 5.5/5.6/100 cycles 15 [S25] 

CoSe@C - 715/600/ 1.0 C 5.8/6.2/100 cycles 4.5 [S34] 

Hollow TiO2-TiN 564.7/4 C 639/500/2.0 C 1.8/3.0/100 cycles 15 [S42] 

Ni2Co@rGO 590/2 C 600/300/0.5 C 3.5/4.0/100 cycles 6.0 [S18] 

Co4N/WCP 841/2 C 807/500/0.5 C 3.36/4.0/150 cycles - [S43] 

3DRGO/NC 450/5 C 550/400/0.5 C - - [S44] 
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