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Supplementary Figures 

 

Fig. S1 Synaptic characteristics of LixCoO2-based artificial synapses with different top 

electrodes. Analog and Spike-induced synaptic potentiation and depression of a, b 

Pt/LixCoO2/Pt synaptic devices and c, d Ag/LixCoO2/Pt synaptic devices 
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Fig. S2 Sweep rate dependence of analog synaptic behavior. a to e Analog synaptic potentiation 

and depression of the Au/LixCoO2/Pt artificial synapses depending on different sweep rates (20 

V/s to 1 V/s). f 1st sweep of negative sweep (0 V → -1 V → 0 V) for each sweep rate 

 

Fig. S3 Endurance of the LixCoO2 artificial synapses to synaptic weight modulation. Spike-

induced potentiation and depression for 350 cycles with sequential input of 25 negative and 

positive spikes each per cycle sequential input 
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Fig. S4 Multistate LTP retention characteristics. The retention of weight updates at four distinct 

programming states of pristine, 10, 20, and 30 potentiations was measured for 1000 seconds 

 

Fig. S5 Temperature-dependent retention characteristics. For 20 potentiations, LTP retention 

was assed at different temperatures of 25 oC, 50 oC, and 75 oC. As the temperature rises, the 

semiconductor LixCoO2 film becomes more conductive, and the diffusion of Li ions intensifies, 

causing the programming state to deteriorate more 

S1 Nonlinearity Estimation of LTP/LTD Curves  

In this paper, two methods were applied to estimate the nonlinearity of the LTP/LTD curves. 

Fig. S6 displays weight update curves of various curvatures depending on nonlinearity. 

S1.1 Nonlinearity (β) 

The nonlinearity (β) in the synaptic potentiation and depression can be derived from the weight 

update relations below, which are widely used in most synaptic devices [S1–S7].  

𝐺𝑘+1 = 𝐺𝑘 + ∆𝐺𝑃 = 𝐺𝑘 + 𝛼𝑃𝑒
−𝛽𝑃

𝐺𝑘−𝐺𝑚𝑖𝑛
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛

 
                              (S1) 

𝐺𝑘+1 = 𝐺𝑘 + ∆𝐺𝐷 = 𝐺𝑘 − 𝛼𝐷𝑒
−𝛽𝐷

𝐺𝑚𝑎𝑥−𝐺𝑘
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛                               (S2) 

Here, subscripts P and D denote weight updates in potentiation and depression. Gk and Gk+1 

indicate the conductance of the artificial synaptic device after the kth and (k+1)th weight control 
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spikes are applied, respectively. Gmin and Gmax are the minimum and maximum device 

conductance. The internal variable α represents the step size during weight update and β is the 

nonlinearity. The ideal β is 0, and the smaller the value, the more linear the weight update. 

S1.2 Nonlinearity (α) 

Some ion-based artificial synaptic devices employed nonlinearity (α) to predict the curvature 

of LTP/LTD curves [S8–S11]. 

𝐺 = {((𝐺𝑚𝑎𝑥
𝛼 − 𝐺𝑚𝑖𝑛

𝛼 ) × 𝜔 + 𝐺𝑚𝑖𝑛
𝛼 )

1 𝛼⁄
      𝛼 ≠ 0

𝐺𝑚𝑖𝑛 × (𝐺𝑚𝑎𝑥 𝐺𝑚𝑖𝑛⁄ )𝜔                        𝛼 = 0
                            (S3) 

Here, Gmin and Gmax are the minimum and maximum device conductance, respectively. The 

parameter α is a nonlinearity factor that determines the potentiation (αP) or depression (αD) 

behaviors. ω is an internal variable between 0 and 1 that increases (decreases) with the 

application of weight enhancing (weakening) spikes. For an ideal synaptic device with αP = αD 

=1, a perfectly linear and symmetric weight update occurs. The shapes of LTP/LTD curves are 

convex-up if α > 1, and concave-down if α < 1. 

 

Fig. S6 LTP/LTD curves of various curvatures depending on nonlinearity. a The LTP/LTD 

curves for nonlinearity β from 0 to 5. b The weight update curves for nonlinearity α from -3 to 

4. The shapes of LTP/LTD curves are convex-up if α > 1, and concave-down if α < 1 

S2 Symmetricity Determination in Weight Updates 

Figure S7 depicts the LTP/LTD curve programmed 2n times and device conductance states at 

the kth (orange dot) and (2n-k)th (green dot) weight updates. Symmetricity is defined as the 

reciprocal value of the symmetric error (symmetricity = symmetric error-1) [S3]. The symmetric 

error is expressed as follows:  

 

Symmetric error = ∑
(𝐺𝑁(𝑘)−𝐺𝑁(2𝑛−𝑘))

2

𝑛
𝑘=𝑛
𝑘=1 = ∑

((𝐺(𝑘)−𝐺𝑚𝑖𝑛)−(𝐺(2𝑛−𝑘)−𝐺𝑚𝑖𝑛))
2

𝑛(𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛)2  𝑘=𝑛
𝑘=1                    

= ∑
(𝐺(𝑘)−𝐺(2𝑛−𝑘))

2

𝑛(𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛)2
𝑘=𝑛
𝑘=1  , 𝑤ℎ𝑒𝑟𝑒  𝐺𝑁(𝑘) =

𝐺(𝑘)−𝐺𝑚𝑖𝑛

𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛
                             (S4) 

 

Here, GN, Gmax, and Gmin signify the normalized, the maximum, and the minimum value of the 

device conductance, respectively. The complete asymmetry (symmetry error = ∞) and 

perfect symmetry (symmetry error = 0) cases of the LTP/LTD curves are illustrated in Fig. 7. 
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Fig. S7 Symmetricity determination in weight updates. a LTP/LTD curve programmed 2n times 

and device conductance states at the kth (orange dot) and (2n-k)th (green dot) weight updates. b 

The complete asymmetry (symmetry error = ∞) and perfect symmetry (symmetry error = 0) 

cases of the LTP/LTD curves 

 

Fig. S8 The nonlinearity and dynamic range of depression step of SNDP in Fig. 3a. The 

nonlinearities (βD) and dynamic ranges extracted from LTD curves with respect to the different 

number of weight control spikes 

 

Fig. S9 Ratios of synaptic efficacy in different spiking regimes. The ratio of the minimum 

conductance measured in the initial state to the maximum conductance obtained after 

potentiation in a SVDP, b SWDP, and c SVWDP in Fig. 4 
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Fig. S10 The graphical illustration of spike trains used for LTP/LTD customization in Fig. 4e 

S3 Asymmetric Ratio Analysis of LTP/LTD Curves 

The asymmetric ratio (AR) between the two successive LTP and LTD curves, each with n 

weight updates, is defined as 

 

AR = [
𝑚𝑎𝑥|𝐺𝑃(𝑘)|−𝑚𝑎𝑥|𝐺𝐷(𝑘)|

𝐺𝑃(𝑛)−𝐺𝐷(𝑛)
]  𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛                           (S5) 

 

where |GP(k)| and |GD(k)| indicate the average conductance values during potentiation and 

depression, respectively [S8,S9,S12]. The GP(n) and GD(n) represent the device conductance 

after programmed n times. The asymmetric ratio should be zero for an ideal case.  

 

Fig. S11 Four synaptic activities via analog voltage sweeps. Potentiation of the Au/LixCoO2/Pt 

synaptic device during a 10, b 20, and c 30 consecutive negative voltage sweeps (0 V → -1.5 

V → 0 V), respectively, and d depression after 30 times of potentiation along 30 positive 

voltage sweeps (0 V → 1.5 V → 0 V) 
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Fig. S12 ToF-SIMS analysis of the LixCoO2 framework at different synaptic weight states. ToF-

SIMS 3D mappings and depth profiles of a, b the Co2O4 and the c, d LiCoO2 elements in 

Au/LixCoO2/Pt structure at four different weight states. Unlike Li cations, both elements do not 

penetrate into the Au top electrode during weight control but maintain the framework LiCoO2 

crystal structure 

 

Fig. S13 XPS analysis of Co ion at different synaptic weight states. XPS spectra of the Co 2p 

region for LixCoO2 film after a 10 potentiations, b 20 potentiations, and c 30 depressions 
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following 30 potentiations. d The area ratios of Co4+/Co3+ for five different synaptic weight 

states 

 
Fig. S14 Statistics of weight updates in LixCoO2 artificial synapses. Heat map of the ΔG vs. G 

during a potentiation and b depression 

S4 CNN-Based Image Recognition Simulation 

A convolutional neural network (CNN) is a class of deep learning algorithms specialized in 

processing pixel data for image recognition [S13]. Fig. S15a represents a schematic of image 

inference for ImageNet in ResNet50-v1.5, a 50-layer deep CNN model, carrying feature 

extraction and inference [S14, S15]. In the feature extraction step, hierarchical patterns with 

complexity are scaled down and assembled into simpler and smaller patterns embossed on the 

filter. The cumulated data processed stepwise is flattened in one dimension in the inference 

stage and fed into a fully connected layer. The input image is classified by returning the most 

probable result among 1000 classes of ImageNet via the activation function for the input 

weights. Fig. S15b depicts the diagram of data processing and algorithm architecture of the 

ResNet50-v1.5 model. The ResNet50-v1.5 model consists of one max pooling layer, one 

average pooling layer, and five convolutional stages comprised of several residual blocks which 

are the foundational building blocks of the ResNet architecture [S16]. The first residual block 

of each stage is a convolutional block that halves the input scale. Fig. S15c presents the 

topology of a residual block, also known as an identity block, with a skip connection [S17]. The 

identity function is used as a shortcut to permit gradients to propagate directly into a deeper 

layer in networks, bypassing non-linear activation functions. When the desired underlying 

mapping is defined as H(xl), the goal is to optimize the final equation H(xl), which is formulated 

as H(xl) = F(xl) + xl. Here, F(xl) denotes the form of the input xl after going through the 

convolutional layers, batch normalizations, and activation functions ReLU. At this time, since 

the xl is referenced as an input value, the optimization is only discussed on F(xl) = H(xl) - xl. 

The F(xl) behaves like a residual, thus the name 'residual block.' 
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Fig. S15 Image recognition of LixCoO2-based neuromorphic system employing CNNs. a 

Schematic diagram of image recognition in ResNet50-v1.5 carrying feature extraction and 

inference. b The data processing flow and architecture of residual network with 50 layers deep. 

c A building block of residual learning with identity mapping 

 

Fig. S16 Schematic diagram of data processing flow in deep neural networks for image 

recognition 
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S5 MLPs-Based Image Recognition Simulation 

The file type [S18], MNIST [S19], and fashion MNIST [S20] datasets were chosen for image 

recognition. The file type database is classified into 9 categories (AES-256, GZIP, ELF, DOC, 

PDF, GIF, JPG, PNG, and HTMP). Each data type can be identified by evaluating its 

performance across three input spaces: the byte probability distribution, the power spectral 

density, and the sliding window entropy of a sequence of bytes in the file [S18]. The large 

MNIST and fashion MNIST data sets consist of ten types of handwritten digits (0−9) and ten 

types of Zalando's article images (T-shirts, trousers, pullovers, dresses, coats, sandals, shirts, 

sneakers, bags, and ankle boots), respectively. In the image recognition to large MNIST and 

fashion MNIST, the 28 × 28 pixels of images correspond to the 28 × 28 pre-neurons and serve 

as an input layer in the multilayer perceptron. The monochrome images of MNIST and fashion 

MNIST were transformed to grayscale values ranging from 0 to 255 and supplied to the pre-

neurons input. There is a single hidden layer with 300 hidden neurons between the input and 

output layers. The output layer has 10 output neurons, each corresponding to one of 10 types of 

images in the input data set. All neurons in each layer are fully connected to all neurons in the 

following layer via synapses. Each neural network was trained for 40 epochs, with each epoch 

exploring an optimal inferred model by training and testing on assigned training sets at random. 

The training was individually done on an allocated number of training sets of 100, 1,000, and 

10,000 images.  

Forward propagation proceeds through the activation of neurons that transmits a signal from 

the previous neuron to the next according to the synaptic weight. As a nonlinear activation 

function, the sigmoid function controls the firing of neurons. The learning algorithm described 

above is programmed in Python. 

Table S1 Synaptic weight modulation of diverse artificial synaptic devices 

Device structure Mechanism 
Weight control spikes 

Linearity Refs. 
Potentiation Depression 

ITO/MXene-ZnO /Al 
Conductive 

filament 

153 W/cm2 

150 ms 

−8 V 

100 ms 
Good [S21] 

Au/CsCu2I3/ITO 
Conductive 

filament 

−2 V 

5 ms 

2 V 

5 ms 
Good [S2] 

G/DEME-TFSI/VO2/S-D Phase transition 
 84 mW/cm2 

10 s 

−2.5 V 

10 s 
Good [S5] 

Au/LixMoS2/Au  Phase transition 
4 V 

1 ms 

−4 V 

1 ms 
Poor [S22] 

Ag/WO3-x/WSe2/Gr 
Vacancy 

migration 

−4 V 

40 ms 

0.5 V 

5 ms 
Poor [S23] 

Al/ IGZO/ 

Al2O3/TiO2/SiO2/P+-Si 

Vacancy 

migration 

+3 V 

100 ms 

−3 V 

100 ms 
Moderate [S24] 

Au/PEA2MAn−1PbnI3n+1/ITO Ion migration 
+1 V 

1 ms 

−1V 

1 ms 
Moderate [S1] 

 Ion-gel/Gr/WS2/Au Ion migration 
+0.5 V 

50 ms 

−-0.5V 

50 ms 
Moderate [S7] 

Al/GPSi/IGZO/ITO 
Polarization 

change 

+2 V  

200 ms 

−2 V 

200 ms 
Moderate [S25] 

Au/PVDF-TrFE/Au 
Polarization 

change 

+30V 

500 ms 

−30 V 

500 ms 
Moderate [S26] 

Au/WSe2/h-BN/Au Charge trapping 
+0.3 V 

20 ms 

−0.3 V 

20 ms 
Moderate [S4] 

Au/WSe2/h-BN// 

 MoS2/h-BN/Au 
Charge trapping 

+1 V 

20 ms 

+ 1 V 

20 ms 
Moderate [S3] 

Si/LiPON/LixCoO2/Pt Li+ intercalation 
−75 mV  

2 s 

+75 mV  

2 s 
Good [S27] 
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Pt/Si/Li3POxSex/LiCoO2/Pt Li+ intercalation 
+1.5 V 

1 s 

−1.5 V 

1 s 
Good [S8] 

Au/LixCoO2/Pt Li+ intercalation 
+1.5 V 

10 ms 

-1.1 V 

10 ms 
Good 

This 

work 

Table S2 The spike conditions of LTP/LTD customization in Fig. 4 e 

Shape number Potentiation V (V) Depression V (V) Pulse duration (ms) 

1 -1.5 1.1 10 

2 -1.2 → -2.0 2.0 → 1.0 10 

3 -1.2 → -1.6 0.0 → 1.0 10 

4 -1.8 → -1.5 -1.5 → 1.0 10 

5 -1.6 → -1.3 0.0 → 1.0 10 

Table S3 Details of the datasets and neural network models used for image recognition 

Datasets Input shape 
# of 

classes 

Neural networks 

model 
Note Refs. 

File types (16, 16, 1) 9 

DNN 

(256, 150, 9) - [S18] 

Large MNIST (28, 28, 1) 10 (784, 300, 10) - [S19] 

Fashion 

MNIST 
(28, 28, 1) 10 (784, 300, 10) - [S20] 

Large MNIST (28, 28, 1) 10 

CNN 

CNN6 v2 
Four convolutional + two 

dense layers, 119.3K weights. 
[S19] 

CIFAR-10 (32, 32, 3) 10 ResNet56 

Follows the architecture in 

Ref. [S17].  

861.8K weights. 

[S28] 

CIFAR-100 (32, 32, 3) 100 ResNet56 

Follows the architecture in 

Ref. [S17] with 4× more 

channels (16×weights).  

[S29] 

ImageNet (224, 224, 3) 1000 ResNet50-v1.5 
Follows the architecture in 

Ref. [S16]. 
[S15] 
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