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HIGHLIGHTS

• The mechanism of the change in lithium-ion transport behavior caused by the incorporation of inorganic fillers into the polymer matrix 
is reviewed.

• The intrinsic factors of inorganic fillers to enhance the ionic conductivity of composite polymer electrolyte (CPEs) are investigated 
in depth.

• The contribution of inorganic fillers to inhibit dendrite growth and side reactions in CPEs is summarized.

ABSTRACT With excellent energy densities and highly safe performance, solid-
state lithium batteries (SSLBs) have been hailed as promising energy storage devices. 
Solid-state electrolyte is the core component of SSLBs and plays an essential role in 
the safety and electrochemical performance of the cells. Composite polymer elec-
trolytes (CPEs) are considered as one of the most promising candidates among all 
solid-state electrolytes due to their excellent comprehensive performance. In this 
review, we briefly introduce the components of CPEs, such as the polymer matrix 
and the species of fillers, as well as the integration of fillers in the polymers. In par-
ticular, we focus on the two major obstacles that affect the development of CPEs: the 
low ionic conductivity of the electrolyte and high interfacial impedance. We provide 
insight into the factors influencing ionic conductivity, in terms of macroscopic and 
microscopic aspects, including the aggregated structure of the polymer, ion migration 
rate and carrier concentration. In addition, we also discuss the electrode–electrolyte 
interface and summarize methods for improving this interface. It is expected that this 
review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for 
improving the compatibility of the electrode–electrolyte interface. 
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1 Introduction

Traditional liquid electrolytes are used with safety issues 
such as flammability and leakage. Replacing liquid electro-
lytes with solid-state electrolytes is expected to fundamen-
tally solve the safety problems of lithium-ion batteries [1, 2]. 
Moreover, solid-state electrolytes exhibit excellent mechani-
cal strength and chemical neutrality, which can reduce the 
side reactions with lithium metal and inhibit the growth of 
lithium dendrites [3, 4]. Therefore, solid-state electrolytes 
are considered as a promising route for the preparation of 
lithium batteries with high safety performance, high stability 
and high energy density [5, 6].

To date, the solid-state electrolytes have been divided into 
three categories: solid polymer electrolytes (SPEs), inor-
ganic solid electrolytes (ISEs), and composite polymer elec-
trolytes (CPEs) [7]. Solid-state electrolytes should exhibit 
high ionic conductivity, a broad electrochemical window, an 
outstanding lithium-ion transference number  (tLi

+), enough 
mechanical strength, and great electrode compatibility [8]. 
ISEs, such as oxide electrolytes (garnet, NASICON, perovs-
kite), sulfide electrolytes  (Li10GeP2S12,  Li2S–P2S5,  Li6PS5X) 
and halide electrolytes  (Li3YCl6,  Li3ScCl6,  Li3YBr6), have 
been widely investigated [9, 10]. ISEs show high mechanical 
robustness and excellent conductivity, which is even equal 
to that of liquid electrolytes. However, the commercial 
application of ISEs is limited by drawbacks such as poor 
electrode–electrolyte interfaces and processing properties. 
In contrast, SPEs with good flexibility can solve interface 
compatibility and processing problems [11, 12]. Due to the 
good solid–solid contact, the electrolyte can be well fitted to 
lithium metal for high-performance batteries. Many typical 
SPEs have been extensively studied, such as polyacryloni-
trile (PAN) [13], poly (vinylidene fluoride‐hexafluoropro-
pylene) (PVDF‐HFP) [14], polyethylene oxide (PEO) [15], 
and poly(ethylene glycol) dimethacrylate (PEGDMA) [16]. 
However, SPEs always suffer from poor ionic conductivity 
and low voltage tolerance.

CPEs, which consist of polymers, inorganic fillers and 
lithium salts, not only succeed in the virtues of processabil-
ity and flexibility of SPE, but also bridge the discrepancy 
between SPE and ISEs by incorporating fillers [17]. Usually, 
the amount of filler is different in CPEs. When the filler con-
tent is lower than 50%, the filler can be approximately con-
sidered as being incorporated into the polymer. Otherwise, 

the polymer can be regarded as being incorporated into the 
filler. In recent years, CPEs have attracted much attention 
for their excellent electrochemical and safety properties 
[18–21]. However, in practical applications, CPEs cannot 
support the high-performance SSLBs, due to disappointing 
ionic conductivity and interfacial stability. Consequently, it 
is necessary to adopt some strategies to enhance the ionic 
conductivity and alleviate the interfacial issues of CPEs [19, 
22].

Surprisingly, the inorganic fillers have an important 
effect on several properties of CPEs. Inorganic fillers can 
be divided into two categories: passive fillers and active fill-
ers. Generally, active fillers (perovskite, garnet, LISICON, 
etc.), which can form continuous ion channels in the bulk 
phase and facilitate fast-ion transport, have a superior ionic 
conductivity.  Li3xLa(2/3−x) TiO3 (LLTO) is a representative 
active filler with a high ionic conductivity of  10–3 S  cm−1 
[15, 23, 24]. In regard to passive fillers,  SiO2,  Al2O3,  TiO2, 
MgO and ZnO are the most researched. These fillers do not 
possess ion transport capabilities [25]. Nevertheless, the 
enhancement of the ionic conductivity of CPEs with pas-
sive fillers depends on the filler–polymer interface.

Thanks to the extensive studies of CPEs doped with differ-
ent fillers, a fundamental understanding of the ion transport 
mechanisms in CPEs has been obtained. Inorganic fillers 
can disrupt the aggregated structure of the polymer matrix, 
reduce the crystallinity and increase the number of poly-
mer chain segments that can be conducted [26]. Meanwhile, 
structural design and surface modification of inorganic fillers 
can facilitate the dissociation of lithium salts or establish 
new ion conduction channels. For example, some vertically 
aligned structures can minimize the distance of ion move-
ment. The functional groups on the surface of the inorganic 
fillers will also have an effect on the carrier concentration 
in CPEs and the motion of polymer chains. Therefore, many 
factors of the filler can affect the performance of CPEs [27]. 
These changes in performance are reflected in the intrinsic 
ion transport. This interaction is mainly attributed to two 
categories: filler–polymer and filler–lithium salt. In CPEs, 
ion transport is dominated by polymer chains. Therefore, 
filler size, concentration and hybridization strategies are 
key steps in the fabrication of high-performance CPEs. In 
addition, some fillers can optimize the electrode–electro-
lyte interface through synergistic effects and reduce the ion 
transport resistance at the interface [28]. For example, good 
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chemical stability can be matched with high-voltage cathode 
materials, and excellent mechanical strength can effectively 
inhibit the growth of lithium dendrites [29]. In addition, 
the internal Lewis acid–base interaction induces the uni-
form deposition of lithium ions and uniform ion transport 
flux and reduces the large accumulation of charges at the 
electrode–electrolyte.

In this review, we first introduce the composition of 
CPEs, including polymer matrix and species of fillers. 
Second, the contribution of fillers in CPEs is presented in 
terms of the bulk phase and interface. Regarding the bulk 
phase, the interactions are focused on the filler–polymer and 
filler–lithium salt. The former mainly affects the aggregated 
state structure of the polymer, as reflected by the changes 
in the crystallinity (Xc), glass transition temperature (Tg) 
and spherulite morphology of CPEs. The latter influences 
the ionic conductivity, and  tLi

+. From the perspective of 
the basic theory of physical chemistry, all of these factors 
are responsible for the ionic conductivity. For the elec-
trode–electrolyte interface, the contributions of inorganic 
fillers at the cathode–electrolyte and anode–electrolyte inter-
face are summarized. Both lowering the HOMO energy level 
of the CPEs and inducing uniform lithium deposition can 
effectively regulate the interfacial compatibility. Finally, we 
offer some suggestions for the development of CPEs with the 
hope of promoting the industrialization of high-performance 
solid-state lithium batteries.

2  Overview of Composite Polymer 
Electrolytes

2.1  Polymer Matrices

Polymer electrolytes have been studied for many years. 
In 1973, Wright et al. [30] revealed that PEO with alkali 
metal salts possesses ionic conductivity. This finding set a 
precedent for the development of ion-conducting polymer. 
PEO, as a typical ion-conducting polymer, contains abun-
dant ether-oxygen groups that can dissolve lithium salts and 
form complexes with lithium ions [31, 32]. In SPEs, lithium 
salts and polymers form complexes. Under this condition, 
the driving force of propulsion generated through the move-
ment of the amorphous polymer chains promotes the jump-
ing of anions and cations at the adjacent coordination sites. 
Directional motion, which is referred to as an ion-conducting 

process, is achieved under the external electric field. There-
fore, it is generally agreed that ionic conduction mainly 
happens in the amorphous region of the polymer. Most ion-
conducting polymers are semicrystalline at RT, including 
PAN, polyvinyl carbonate (PVC), polyvinylidene fluoride 
(PVDF), PVDF-HFP, polymethyl methacrylate (PMMA), 
polyethylene (glycol) diacrylate (PEGDA), tetraethylene 
glycol dimethacrylate (TEGDMA), and tetraethylene gly-
col dimethyl ether (TEGDME) [33, 34]. Common polymer 
matrices and their chemical structures are summarized in 
Fig. 1. And the molecular weight of common polymers is 
listed in Table 1. Due to the semicrystalline nature of these 
polymers, chain segment movement is difficult at RT. The 
ionic conductivity of these polymers at RT ranges from only 
 10–6 to  10–8 S  cm−1 [35]. The addition of hydrogen bonds or 
π-conjugated groups in polymer chains is an effective way to 
enhance the ionic conductivity [36, 37]. Hydrogen bonding 
can occur through interactions with polar groups to relieve 
the coordination of strong polar groups with lithium ions to 
increase the carrier concentration. The π-conjugated groups 
can form new ion conduction channels [38].

However, a few studies have suggested that crystalline 
polymers can also conduct lithium ions [39, 40]. In contrast 
to conventional ion conduction, lithium-ion movement in 
crystalline polymers does not depend on relaxed segments, 
but on jumps in helical channels. PEO chains fold in an 
ordered framework to form an interlocking cylinder (chan-
nels). Lithium ions are present in the channels and the anions 
are located outside [41]. In addition to PEO, some plastic 
crystals are also attracting attention. The plastic crystals are 
a kind of material with a disordered direction and ordered 
position due to the rotational motion of molecules or ions at 
a certain temperature, such as succinonitrile (SN) and seba-
conitrile. Because of the special structure, plastic crystals 
have excellent plasticity and diffusion rate. As a result, this 
type of solid-state electrolyte has a high ionic conductivity. 
SN, as a typical molecular plastic crystal, exhibits plastic 
crystal behavior at − 35∼62 °C [42]. Below − 35 °C, the 
SN molecule exists only in gauche conformation and all 
rotational motions are frozen. In contrast, the orientation 
disorder of the plastic phase of SN at room temperature (RT) 
is formed by the coexistence of trans and gauche isomers. 
The trans-isomer increases the defects in the lattice and thus 
decreases the activation energy for ion migration. Also in 
trans-gauche isomeric, which includes molecules rotating 
around the central C–C bond, the SN molecule contributes 
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to increasing the ion mobility [43]. Yet, the mechanical 
strength of such solid-state electrolytes is not sufficient for 
their practical applications. Therefore, the incorporation of 
high-strength polymers is the main way to solve the prob-
lem. Zhou et al. [44] prepared a solid-state electrolyte based 
on nitrile material. Cyanoethyl polyvinyl alcohol (PVA-
CN) was polymerized in situ in the SN-based solid-state 
electrolyte. This solid-state electrolyte was filled in a PAN 
fiber network. The cross-linked PVA-CN polymer backbone 
enhances the mechanical strength of the SN. PVA-CN/SN 
SPEs exhibit appreciable ionic conductivity of 0.3 S  cm−1.

Currently, the plastic crystal materials used for SPEs are 
mostly nitrile materials. However, the compatibility between 
nitrile and lithium metal is poor. As well, the mechanical 
strength of nitriles is low. Modified lithium metal, with a 
supporting membrane, mixed with high-strength polymer 
can solve the above problems. The research on plastic crystal 
materials is still in the beginning stage, and more research 
is needed to succeed.

2.2  Inorganic Fillers

The uniform mixing of inorganic fillers with polymers has 
been extensively investigated. Inorganic fillers in poly-
mers reduce the tendency of the polymer to crystallize and 

accelerate the lithium salt dissociation. Furthermore, such 
an abundant composite solid electrolyte interface may pro-
vide multiple transfer routes for lithium ions, resulting in 
improved ionic conductivity. Inorganic fillers can be grouped 
into two categories: passive fillers and active fillers.

2.2.1  Passive Fillers

Passive fillers are lithium-ion insulators. They cannot con-
duct lithium ions by themselves. However, the existence of 

Fig. 1  Chemical structure of commonly polymers  [45–64]

Table 1  The molecular weight of common polymers

Polymer Mn (g  mol−1) References

PEO ≤  103 [45, 46]
103–105

≥  106

PEGDA 102–104 [47, 48]
PPC ≤  105 [49–51]
PTMC ≤  106 [52]
PMMA ≤  104 [53]
PEGDMA ≤  103 [54, 55]
PVC ≤  106 [56–58]
PAN ≤  106 [59, 60]
PVDF 105–106 [61, 62]
PVDF-HFP 105–106 [63, 64]
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these fillers can affect the ability of polymer chain segments 
to transport ions [65]. First, passive filler is added to the 
polymer matrix as small molecule plasticizers. This can 
increase the amorphous phase in the polymer matrix, thus 
inhibiting the polymer crystallization kinetics and reducing 
the Tg. Moreover, with an increase in the localized amor-
phous region, the ion transport efficiency is elevated. Sec-
ond, based on Lewis acid–base theory, the surface groups 
of passive fillers would interact with ion pairs to promote 
further dissociation. In recent decades, many passive fillers, 
including  TiO2 [66],  Al2O3 [67],  SiO2 [68] and  ZrO2 [69], 
have been widely applied in CPEs owing to their advan-
tages of easy synthesis, controllable size and stable physi-
cal and chemical stability. Table 2 shows typical passive 
fillers and their ionic conductivity. There is another type 
of passive filler called ferroelectric ceramic fillers, such 
as  BaTiO3 [70]. Different from oxide fillers, ferroelectric 
ceramic fillers interact with polymer chains through spon-
taneous polarization to improve the ionic conductivity in the 
interfacial region. Besides, clays are also involved. This kind 
of passive filler can provide a large specific surface area. 
The free lithium ions are increased at the interfacial area 
between polymers and fillers. However, the mechanism of 
this interaction is relatively complex, and there is no clear 
explanation for this process.

2.2.2  Active Fillers

Compared to passive fillers, lithium fast-ion conductors 
serving as active fillers can improve the electrochemical per-
formance of CPEs more effectively by facilitating the migra-
tion of lithium ions. Table 3 shows the ionic conductivity of 
typical active fillers incorporated with polymers. Active fill-
ers always exhibit a high ion conductivity (>  10–4 S  cm−1). 
This can be attributed following factors: The many con-
tinuous defects in active fillers with low activation energy 
enable easy ion hopping. Moreover, active fillers themselves 
can supply a large number of lithium ions, enhancing the 
concentration of free lithium ions at the interface between 
the active filler and the polymer. Therefore, the total ionic 
conductivity is improved. Generally, active fillers include 
perovskite, garnet, LISICON, etc. When the percentage of 
active filler is less than 40 wt%, the CPEs can supply a high 
concentration of free lithium ions. However, the concentra-
tion of active filler exceeds a certain threshold, it forms a 

fully permeable network. At this moment, the ion transport 
behavior changes.

2.3  Distribution of Fillers in Polymers

The incorporation of inorganic fillers with polymers can 
allow one to take full advantage of CPEs. For example, 
inorganic fillers can be used to elevate the ionic conductiv-
ity,  tLi

+ and electrochemical stability window of SPEs [98]. 
Besides, they also show excellent performance in alleviating 
the interfacial stability between the electrolyte and electrode. 
Therefore, in recent years, CPE has a broad application pros-
pect in the field of lithium batteries and has attracted more 
and more attention.

In the early phases of research, scholars were devoted to 
the Lewis acid–base interactions between inorganic fillers 
and polymers. This model assumes that fast-ion-conducting 
channels can be constructed on the surface of fillers. Since 
then, many studies have focused on the construction of fast-
ion-conducting channels. This fast-ion transfer percolation 
channel is related to the orientation (ordered or disordered 
arrangement) and morphology (1D, 2D, 3D) of the filler in 
the polymer. Therefore, the main goal of this section is to 
present the integration method of inorganic fillers in CPEs 
and their influence on the ionic conductivity.

Table 2  CPEs incorporated with passive fillers

Passive fillers Polymer Ionic con-
ductivity 
(S  cm−1)

Tem-
perature 
(°C)

References

TiO2 PPC 1.52 ×  10−4 RT [71]
SiO2 PPC 8.5 ×  10−4 60 [72]
SiO2 PEO-PEGDA 1.1 ×  10−4 30 [73]
Mg2B2O5 PEO 1.53 ×  10–4 40 [74]
V2O5 PVDF 2.2 ×  10−3 RT [75]
UIO-66@67 PEO 9.2 ×  10−4 25 [76]
CeO2 PEO 1.1 ×  10−3 60 [77]
MnO2 PEO 1.95 ×  10−5 30 [78]
ZIF-8 PEO 2.2 ×  10−5 30 [79]
ZrO2 PMMA-SAN 2.32 ×  10–4 RT [80]
ZnO2 PEO 1.5 ×  10−5 25 [81]
Ce-MOF PEO 3.0 ×  10−5 30 [82]
BaTiO3 PEO 1.5 ×  10−5 25 [83]
Y2O3 PEO 5.95 ×  10−5 RT [84]
Halloysite 

nanotubes
PEO 9.23 ×  10–5 25 [85]
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2.3.1  Disordered Fillers in CPEs

Usually, inorganic fillers are mainly dispersed disorderly in 
the polymers. The presence of inorganic fillers disturbs the 
crystallization of the polymers and thus increases the ionic 
conductivity of CPE. However, the fillers inevitably prefer 
to aggregate in the polymer, which hinders the formation 
of percolation network. Facilitating the dispersion of fillers 
in polymers is an effective method for forming percolation 
networks [99].

Li et al. [100] prepared HPDA fillers, as shown in Fig. 2a, 
in which hollow silica was used as a template and covered 
with a layer of polydopamine. Compared with silica alone, 
the thin polydopamine layer facilitated the dispersion of 
HPDA in PEO by providing a surface that was more com-
patible with the PEO matrix. As a consequence, the ionic 
conductivity of HPDA-PEO CPEs was 0.189 ×  10−3 S  cm−1 
(60 °C), as shown in Fig. 2b. Huang et al. [101] coated 
a layer of polydopamine (PDA) in situ on the surface of 
LLZTO. The modified LLZTO with PDA allowed uniform 
dispersion of LLZTO (80 wt%) in SPEs. PDA lowed the sur-
face energy of LLZTO to promote the dispersion of LLZTO 
nanoparticles in the polymers (Fig. 2c). Thus, the ionic 
conductivity of LLZTO@PDA-PEO CPEs was increased 
to 1.1 ×  10–4 S  cm−1 (at 30 °C) (Fig. 2d). Cui and workers 
[102] introduced a method for the in situ production of inor-
ganic fillers in SPEs (Fig. 2e). Thanks to this in situ polym-
erization,  SiO2 formed a continuous dispersed phase in the 

polymer. Thus, more contact area was provided for Lewis 
acid–base interactions. Moreover, the mono-dispersity  SiO2 
effectively inhibited the crystallization of PEO to promote 
the movement of polymer segments. As a consequence, the 
 SiO2-PEO CPEs showed a superior ionic conductivity of 
4.4 ×  10–5 S  cm−1 at 30 °C (Fig. 2f). Moreover, the elec-
trochemical window was broadened to 5.5 V versus Li/Li+ 
(Fig. 2g).

Chen et al. [103] prepared LLZTO-PEO CPEs by the 
hot-pressing technique. The CPEs, including fillers incor-
porated into polymers and polymers incorporated into fill-
ers, were designed by adjusting the content of LLZTO 
(Fig. 3a). As illustrated in Fig. 3b, Tm of LLZTO- PEO 
CPEs decreases gradually with the addition of LLZTO 
particles. When the LLZTO concentration was low 
enough, the fillers were well dispersed in the polymers 
causing less crystallization of the polymers. However, 
when the LLZTO content exceeded the permeation thresh-
old, it could not be dispersed uniformly, which caused a 
significant increase in the stiffness of LLZTO-PEO CPEs. 
With the increase in LLZTO content, the ionic conduc-
tivity first increased and then decreased, which is due to 
the serious agglomeration of the additional LLZTO. Fig-
ure 3c shows that the ionic conductivity of LLZTO-PEO 
CPEs got a maximum value of 1.17 ×  10–4 S  cm−1 at 10% 
LLZTO. Croce et al. [104] investigated the mechanism of 
ionic conductivity enhancement for  Al2O3 with different 
surface treatments in PEO. As shown in Fig. 3d, there 
were three different surface interactions between  Al2O3 
and PEO. It was assumed that a Lewis acid  (Li+) interacted 
with a Lewis base (–OH groups of  Al2O3). The additional 
interactions weakened the complexation of lithium ions 
with oxygen atoms on the PEO chain to facilitate the trans-
port of lithium ions. As shown in Fig. 3e, the differences 
in ionic conductivity were directly related to the different 
filler surfaces. This can be ascribed to the different micro-
structural interactions that occurred when varying the type 
of ceramic surface states. We will discuss this interaction 
in detail in the next section.

In addition to the above-mentioned 0D inorganic fillers, 
which are randomly dispersed, there are some 1D inorganic 
fillers that are also randomly dispersed in the polymers. Liu 
et al. [105] first fabricated LLTO nanowires by electrostatic 
spinning and dispersed them in PAN to prepare PAN- LLTO 

Table 3  CPEs incorporated with active fillers

Active fillers Polymer Ionic conduc-
tivity (S  cm−1)

Tempera-
ture (°C)

References

LGPS PEO 8.01 ×  10−4 60 [86]
LGPS PEO 1.21 ×  10−3 80 [87]
LLTO PEO 0.16 ×  10−3 24 [88]
LLTO PAN-PVDF 1.43 ×  10−3 RT [89]
LLTO PVDF 2.37 ×  10−3 RT [90]
LLZTO PEO 3.03 ×  10−4 55 [91]
Li3PS4 PEO 8.4 ×  10−6 RT [92]
LATP PEO 1.2 ×  10−5 60 [93]
LSZT PVDF 6.26 ×  10−5 20 [94]
LLZAO PEO 1.33 ×  10−4 25 [95]
LLZO PEO-PVDF 4.2 ×  10−5 30 [96]
LAGP PEO 6.76 ×  10− 4 60 [97]
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NW CPEs (Fig. 4a). LLTO nanowires with a high length-
to-diameter ratio can provide continuous transport channels 
for lithium ions. Furthermore, they can be uniformly dis-
tributed in the polymer matrix as indicated in Fig. 4b. As 
shown in Fig. 4c, the ionic conductivity of PAN-15LLTO 
NW CPEs was higher (2.4 ×  10–4 S  cm−1) than that of PAN-
15LLTO NP CPEs. Subsequently, Chen et al. [106] added 
Ca–CeO2 nanotubes into PEO to prepare Ca–CeO2–PEO 
CPEs. Ca–CeO2 nanotubes can inhibit the reorganization 
and increase the dipole moment of PEO chains. As depicted 
in Fig. 4d, Ca–CeO2 nanotubes can accelerate the dissocia-
tion of LiTFSI through oxygen vacancies on the surface, 
resulting in more free lithium ions. The Ca–CeO2–PEO 

CPEs offered a high  tLi
+ of 0.453 (Fig. 4e). Moreover, the 

Li|Ca–CeO2–PEO CPEs|LiFePO4 battery provided an initial 
discharge capacity of 164 mAh  g−1 at 0.1C. Even at a high 
current density of 2C, 100 mAh  g−1 was obtained (Fig. 4f). 
After 200 cycles, the discharge capacity was maintained at 
93 mAh  g−1 at 1C.

In addition, 2D fillers are also of great interest due to their 
structural characteristics. In practical applications, small-
sized 2D nanosheets are more popular among researchers. 
This is due to the fact that large sizes of 2D nanosheets are 
difficult to provide continuous ion transport paths. And, the 
larger size 2D nanosheets offer limited ability to inhibit the 
crystallization of polymeric matrix. However, 2D fillers are 

Fig. 2  a Schematic of HPDA-PEOCPEs; b Arrhenius plots for HPDA-PEO CPEs. Adapted with permission from Ref. [100]. c Schematic of 
dopamine on the surface of LLZTO particles; d Arrhenius log � ∼ 1000/T of LLZTO@PDA-PEO and LLZTO/PEO CPEs. Adapted with per-
mission from Ref. [101]. e Schematic diagram illustrating the in situ hydrolysis process and the interaction mechanism between PEO chains and 
 SiO2; f Arrhenius plots of  SiO2-PEO CPEs; g Electrochemical stability windows of  SiO2-PEO CPEs. Adapted with permission from Ref. [102]
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Fig. 3  a Schematic illustration for LLZTO- PEO CPEs; b DSC result of different filler contents of LLZTO-PEO CPEs; c Ionic conductivities 
of different filler contents of LLZTO- PEO CPEs. Adapted with permission from Ref. [103]. d Surface interactions between three different type 
 Al2O3 and PEO; e conductivity plots of  Al2O3-PEO CPEs. Adapted with permission from Ref. [104]
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equipped with high specific surface area, ultrathin lamel-
lar structure and large aspect ratio. Once the size of the 
2D nanosheet is small enough, a larger contact area can be 
formed between it and the polymer matrix. A new ionic con-
ductivity will be established between the 2D nanosheet–pol-
ymer interfaces, resulting in a higher ionic conductivity. 
Shi et al. [107] prepared an MXene-based silica nanosheet 
MXene-mSiO2. Due to the large specific surface area of 
MXene-mSiO2 and the abundance of functional groups 
on the surface, a large number of Lewis acid–base inter-
actions existed in the MXene-mSiO2-PPO interface. These 
interactions promote the rapid conduction of lithium ions. 
MXene-mSiO2-PPO CPEs provide an ionic conductivity 
of 4.6 ×  10–4 S  cm−1. Rojaee et al. [108] prepared BP-PEO 
CPEs using a new 2D material, black phosphorus (BP). The 
unique curved structure of BP nanosheets allows the ions 
to be anisotropic at the interface. BP nanosheets can effec-
tively trap TFSI- as well as weaken the bond length of N–Li. 
Therefore, the dissociation of  Li+ is promoted. And Li/BP-
PEO CPEs/Li cells can be cycled for more than 500 h at RT. 
Besides, graphene, vermiculite and double hydroxide also 
have a flake structure. Luo et al. [109] reported an ultrathin 
vermiculite nanosheet VS. The VS-PEO CPEs could pro-
vide ionic conductivity of 1.2 ×  10–3 S  cm−1. In addition, 
the excellent mechanical strength and enhanced dimensions 

stability of VS-PEO CPEs were favorable to inhibiting the 
growth of lithium dendrites.

2.3.2  Ordered Fillers in CPEs

The above-mentioned nanoparticles or nanowires tend to 
be randomly dispersed in the polymer matrix. This struc-
ture is thermodynamically stable, which makes it difficult 
for the fillers to form a continuous conduction route. The 
ion-conducting pathways constructed by randomly dispersed 
microstructures are undesirable. To obtain more efficient ion 
transport, researchers have focused on CPEs that are pre-
pared with directionally aligned ceramic fillers.

Liu et  al. [110] investigated the influence of LLTO 
nanowires of different orientations on lithium-ion trans-
port. As shown in Fig. 5a, LLTO nanowires with differ-
ent orientations (angles of 0° (perpendicular), 45° and 90° 
(parallel)) were prepared by adjusting different positions of 
the collector. The ionic conductivities of the LLTO-PAN 
CPEs made by randomly LLTO nanowires and orientation-
ordered LLTO nanowires (angles of 0°, 90° and 45°) were 
7.82 ×  10–6, 5.02 ×  10–5, 1.78 ×  10–7 and 2.24 ×  10–5 S  cm−1 
at 30 °C, respectively (Fig. 5b). The randomly dispersed 
LLTO nanowires formed a semicontinuous structure in 
CPEs, which facilitated the transportation of lithium ions. 

Fig. 4  a Lithium-ion pathways in nanowire- and nanoparticle-filled PAN CPEs; b SEM pictures for the PAN-LLTO NWs; c Arrhenius plots of 
the PAN-LLTO NWs and PAN-LLTO NPs CPEs. Adapted with permission from Ref. [105]. d Diagram of the enhanced mechanism of lithium-
ion transport in Ca–CeO2-PEO CPEs; e Chronoamperometry curves of Ca–CeO2-PEO CPEs; f Rate performance of PEO-LiTFSI and Ca–CeO2-
PEO CPEs with  LiFePO4 cathode. Adapted with permission from Ref. [106]
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However, the ionic conductivity of CPEs further increased 
when the orientation was parallel to the current direction, 
forming a continuous fast-ion transport channel. Thereaf-
ter, Zhai et al. [111] added a continuous vertical arrange-
ment of  Li1+xAlxTi2−x(PO4)3 (LATP) in PEO/PEG (Fig. 5c). 
The vertically aligned LATPs formed an efficient ionic 
conductivity structure with an excellent ionic conductiv-
ity of 5.2 ×  10–5 S  cm−1 at RT. This value is approximately 
3.6 times higher than that of LATP NP-PEO/PEG CPEs 
(1.5 ×  10–5 S  cm−1). Zhang et al. [112] also reported CPEs 
with a vertically continuous structure. As shown in Fig. 5d, 
surface-modified anodic aluminum oxide (AAO) acted as a 
ceramic backbone rich in continuous nanoscale channels. 
PEO was packed in the pore channel. These AAO-PEO 
CPEs allowed fast lithium-ion transport along the AAO-PEO 
interface. The ionic conductivity of the AAO-PEO CPEs was 
5.82 ×  10–4 S  cm−1 (Fig. 5e). Dai et al. [113] exploited highly 
conductive garnet frameworks equipped with multiscale 

aligned structures through a top-down method. PEO was 
doped into the vertically aligned garnet nanostructure to 
produce flexible LLZO-PEO CPEs (Fig. 5f). The LLTO 
framework inherited the aligned porous structure of the 
wood template (Fig. 5g). Moreover, the LLTO-PEO CPEs 
were flexible (Fig. 5h). They possessed an excellent ionic 
conductivity of 1.8 ×  10–4 S  cm−1 at RT (Fig. 5i).

2.3.3  Three‐Dimensional (3D) Fillers in CPEs

The filler is easily clustered in the polymer matrix. The con-
struction of a 3D skeleton structure by controlling the space 
position of the filler in the polymer is an effective way to 
solve this dispersion problem. Moreover, the inorganic net-
work has high mechanical strength, which can hinder lithium 
dendrite growth and promote cyclic stability performance.

Fu et  al. [114] prepared LLZO-PEO CPEs consist-
ing of interconnected LLZO nanowires and PEO. The 

Fig. 5  a CPEs with different aligned LLTO nanowires; b Arrhenius plots of different aligned LLTO-PAN CPEs. Adapted with permission from 
Ref. [110]. c Schematic diagram of vertically aligned LATP in polymers and the ionic conductivity plots. Adapted with permission from Ref. 
[111]. d Schematics of AAO-PEO CPEs; e Interfacial ionic conductivities of CPEs based on AAO disks. Adapted with permission from Ref. 
[112]. f Schematic of multiscale aligned LLZO incorporated with PEO; g SEM images showing the alignment of channels of LLZO-PEO CPEs; 
h Photograph of the LLZO-PEO CPEs; i Ionic conductivity of LLTO-PEO CPEs and PEO SPEs. Adapted with permission from Ref. [113]
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three-dimensional interconnected LLZO nanowires effectively 
precluded the agglomeration of nanoparticles and formed a 
continuous lithium-ion conduction network, as depicted 
in Fig. 6a. The ionic conductivity of the LLZO-PEO CPEs 
was 2.5 ×  10–4 S  cm−1 at RT. The  SiO2 3D network structure-
enhanced CPEs were fabricated by in situ hydrolysis by Cui 
et al. [115]. As shown in Fig. 6b, the 3D structure of  SiO2 
has a high specific surface area (701  m2  g−1) and continuous 
ion transport channels. This special 3D structure enhanced the 
Lewis interactions and boosted the  tLi

+ of  SiO2-PEO CPEs 
 (tLi

+ = 0.38) (Fig. 6c). The strong Lewis acid–base interac-
tions promote the separation of anions and cations. As shown 
in Fig. 6d–e, the dissociation of LiTFSI in  SiO2-PEO CPEs 
increased from 84.7 to 94.4%. The ionic conductivity of 
 SiO2-PEO CPEs was 0.6 ×  10–3 S  cm−1 at 30 °C (Fig. 6f). The 
Li|SiO2-PEO CPEs|LFP cell exhibited a good performance 
(105 mAh  g−1 at 0.4C), even at 15 °C. It is clear that facilitat-
ing continuous ion conduction pathways is a good strategy for 
promoting lithium-ion migration.

Bruce et al. [116] designed gyroscopically structured 
CPEs by 3D printing (Fig. 6g). This structure formed a bi-
continuous ion conduction pathway, in which the LAGP 
ceramic backbone ensured fast Li-ion transport and the 
polymers guaranteed the efficient dissociation of lithium 
ions and the flexibility of CPEs. This structure exhibited a 
promising ionic conductivity of 1.6 ×  10–4 S  cm−1 at RT. Bae 
et al. [117] fabricated a 3D LLTO framework for high-per-
formance CPEs. Figure 6h shows the 3D structure of LLTO 
with a high content ceramic (44 wt%). In addition, the ionic 
conductivity was increased to 8.8 ×  10–5 S  cm−1 at RT.

In summary, although disordered nanoparticles can 
reduce the crystallinity of PEO and promote the conduction 
of lithium ions through Lewis acid–base interactions, the 
discontinuous lithium-ion transport path and the tendency of 
nanoparticles to agglomerate lead to worse ion conduction. 
In contrast, some ordered structures, especially 1D nanow-
ires aligned parallel to the lithium-ion transport direction, 
can provide the shortest lithium-ion transport paths. There-
fore, the smooth ion conduction in 3D continuous structures 
is the main direction for future development.

2.4  Filler–Polymer Interface

As mentioned above, the ionic conductivity of CPEs can 
be significantly increased by inorganic fillers doped in 

polymers. This is due to the Lewis acid–base interaction in 
filler–lithium salt–polymer. Significantly, Lewis acid–base 
interactions promote further dissociation of the lithium 
salt and increase the free  Li+ concentration in the polymer. 
Moreover, that Lewis acid–base interaction is much more 
obvious in the interfacial phase of the filler–polymer. This 
is highly related to the type, size, concentration, morphology 
and surface properties of the inorganic fillers. Constructing 
fast-ion conduction channels at the filler–polymer interface 
is an effective way to enhance the ion transport efficiency.

In order to enhance the ion transport efficiency at the 
filler–polymer interface, Cheol et al. [118] used purine-
modified MOFs as inorganic fillers to enhance CPEs. 
First, strong hydrogen bonds exist between –NH2 on the 
surface of Bio-MOF11, which promotes the dispersion 
of Bio-MOF11 in PEO and facilitates to increase the ion 
transport-specific surface area. Secondly, the open metal 
sites (Lewis acidic) can effectively trap the anions by 
electrostatic interaction. Therefore, the multiple Lewis 
basic/acidic sites in the Bio-MOF11-PEO CPEs effec-
tively enhance the lithium-ion transport efficiency. Zhou 
et  al. [119] prepared a novel amphoteric ion-modified 
metal–organic framework  NH3

+–SO3
−@ZIFs. At the inter-

face of PEO–  NH3
+–SO3

−@ZIFs, the strong electrostatic 
interaction between the cation and  TFSI− largely inhibited 
the movement of the anion and enhanced the  tLi

+. Chen et al. 
[120] coated a layer of PDA on the surface of  Co3O4. The 
PDA coating can act as a multifunctional medium to finely 
adjust the ion distribution and transport behavior through 
Lewis acid–base interactions. The phenolic hydroxyl and 
o-benzoquinone groups on the surface of the  Co3O4@PDA 
not only alleviate the coordination of PEO with  Li+, but 
also the –NH− can form hydrogen bonding network with 
PEO chains. This can increase the amorphous region of PEO 
and form an effective ion migration pathway at the  Co3O4@
PDA-PEO surface to improve the ionic conductivity.

Apart from the special interactions between the filler–pol-
ymer which affect the formation of the ion permeation net-
work, the size and concentration of the inorganic fillers also 
have a great influence on the properties of the filler–poly-
mer interface. To increase the contact area of filler–polymer, 
some fillers with smaller particle size and larger specific sur-
face area are often used. Hu et al. [121] compared the effects 
of different sizes of  ZrO2 (220, 365, and 470 nm in diameter, 
respectively) on the formation of ion permeation networks in 
PAN-LiClO4. The results showed that the ionic conductivity 
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of  ZrO2-PAN CPEs increased with the decrease in the size of 
 ZrO2. In comparison,  ZrO2 (220 nm) can form more effec-
tive ion transport interfaces. So,  ZrO2 (220 nm)-PAN CPEs 
have the best ionic conductivity of 1.16 ×  10–3 S  cm−1. This 
is for the passive inorganic fillers. At the same time, the filler 
size has a similar effect on the active filler. For example, 
Zhang et al. [122] investigated the effect of the active fillers 
of LLZTO with different sizes (10 um, 400 nm, 40 nm) on 
ionic conductivity. Excluding the disturbance of lithium salts 
in CPEs, LLZTO (40 nm)-PEO CPEs exhibited a greater 
ionic conductivity than LLZTO (10 um)-PEO CPEs. The 
enhanced ionic conductivity of the smaller LLZTO is attrib-
uted to the remarkably high conductive routes along the 
interface of PEO-LLZTO. And the small particles usually 
have a relatively large specific surface area, leading to an 
increase in the coherent conductivity path.

When the size of the filler is certain, the variations in 
the concentration of the filler also greatly influence the 
ion transport behavior in CPEs. With a small volume of 
passive filler in CPEs, the fast ionic conductivity region 
at the filler–polymer interface increases with the increase 
in filler. At this time, the ionic conductivity will show 
the same tendency. However, with the increase in passive 
filler, especially some nano-sized inert fillers, it tends to 
agglomerate. The unfavorable dispersion will reduce the 
filler–polymer contact area and cause a negative growth 
in ion transport rates. Xu et al. [123] prepared Bi/HMT-
MOFs-PEO CPEs. It was found that the ionic conduc-
tivity of Bi/HMT-MOFs-PEO CPEs showed a phenom-
enon of increasing first and then decreasing. When Bi/
HMT-MOFs were increased to 10 wt%, Bi/HMT-MOFs-
PEO CPEs exhibited the highest ionic conductivity 
(3.06 ×  10–5 S   cm−1, 25 °C). The excess amount of Bi/

Fig. 6  a Schematic and ionic conductivity of the LLZO-PEO CPEs. Adapted with permission from Ref. [114]. b Schematic of the 
 SiO2-aerogel-reinforced CPE; c Nyquist plot of electrochemical impedance spectroscopy of Li|SiO2-PEO CPEs|Li cell; d–e FTIR spectra of 
the electrolytes without and  SiO2 aerogel; f ionic conductivity plot of CPEs with and without  SiO2 aerogel. Adapted with permission from Ref. 
[115]. g A diagram of the temples used for the LAGP-PEO CPEs and SEM images. Adapted with permission from Ref. [116]. h Agglomerated 
nanoparticles and three-dimensional continuous framework of LLTO. Adapted with permission from Ref. [117]
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HMT-MOFs may lead to difficulty in forming continuous 
lithium-ion transport channels, and thus the ionic conduc-
tivity decreases when the filler content exceeds 10 wt%. 
However, these changes in the active filler are different 
from the passive filler. At first, the active filler does not 
create a continuous interfacial phase with the polymer 
phase, in which ionic transport does not occur in the bulk 
phase of the active filler. Therefore, the ionic conductiv-
ity tends to first increase and then decrease with a change 
in active filler concentration. But, as the concentration of 
active filler continues to increase, the new ion pathways 
will be established inside the CPEs. Therefore, the ionic 
conductivity will continue to increase again. Wang et al. 
[124] systematically investigated the influence of LATP 
content on ion permeation channels. The results indicated 
that at low content, LATP (4 vol%)-PEO CPEs exhibited 
a high ionic conductivity of 1.70 ×  10–4 S  cm−1. The obvi-
ous enhancement of ionic conductivity was attributed to 
the rapid migration of lithium ions within the LATP-PEO 
surface. As the LATP increases, the ionic conductivity of 
LATP-PEO CPEs starts to decrease. However, when the 
LATP increases to 13 vol%, the volume fraction of the 
interfacial phase can reach a maximum. At this moment, it 
was derived that the ionic conductivity of (13 vol%)-PEO 
CPEs was showing an increasing trend again.

3  Effects of Fillers and the Mechanism 
in CPEs

CPEs consist of polymer matrix, lithium salt and inorganic 
filler. In general, SPEs are strongly limited in terms of ionic 
conductivity by the high crystallinity. Fortunately, CPEs 
prepared by introducing fillers in SPEs can effectively sup-
press the crystallization behavior of polymers, which is indi-
cated to be a more promising method for the development of 
SSLBs [12]. Inorganic fillers can promote the comprehen-
sive electrochemical performance of CPEs, but this mecha-
nism is complex and involves many significant factors such 
as ionic conductivity,  tLi

+, and polymer aggregate structure 
[11]. The complex relationship is shown in Fig. 7.

In CPEs, the polymer, inorganic filler and lithium salt 
interact with one another. This interaction mainly occurs 
in two aspects:

(1) The interaction between the filler and the lithium salt. 
This involves the alteration of the lithium-ion chemical 
environment. And reflected mostly in the changes in 
ionic conductivity and  tLi

+.
(2) The interaction between the filler and the polymer. This 

involves changes in the polymer aggregate structure. It 
can be characterized by the Xc, Tg and spherulites.

In addition to the above two main aspects, some func-
tionalized fillers simultaneously interact with lithium salts 
and polymers to change the coordination mode between 
polymers and lithium ions, which is also worthy of further 
consideration. In the following sections, we will discuss 
the electrochemical enhancement mechanism of inorganic 
fillers for CPEs from the two main factors.

3.1  Interactions Between Fillers and Lithium Salts

The surfaces of inorganic fillers are rich in chemical groups. 
These fillers exhibit strong Lewis acid–base interactions 
with the lithium salts. The categories of such interactions 
include hydrogen bond, hole, and dipole–dipole interac-
tions [125]. On the one hand, the interaction between the 
lithium ions and fillers could expedite the transportation as 
well as enhance the ionic conductivity. On the other hand, 
the filler interactions with anions  (TFSI−,  ClO4

−,  PF6
−, etc.) 

can enhance  tLi
+.

3.1.1  Ionic Conductivity

Ionic conductivity is one of the standards to measure the 
ionic conduction of electrolyte and a key factor in deter-
mining the electrochemical performance of SSLBs. SPEs 
exhibit a low ionic conductivity, which is usually in 
 10–6–10–5 S  cm−1 or even much lower at RT. However, in 
practical applications, the ionic conductivity of solid-state 
electrolytes is expected to be  10–4 S  cm−1. It is obvious that 
SPEs cannot meet the requirements. Notably, CPEs are 
expected to satisfy the requirements by improving the ion 
transport capacity.

The ionic conductivity of CPEs is given by Eq. 1 [126]:

(1)� =

∑

nq�
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Here, n is the number of carriers, q is the ionic charge, 
and u is the carrier mobility. For a given system, q is defi-
nite. Therefore, there are two pathways for boosting the ionic 
conductivity: (1) increase the number of carriers and (2) 
increase the rate of carrier motion.

(1) Increase the number of carriers (n)

In CPEs, when the lithium salt concentration is suffi-
ciently low, all the lithium ions are soluble in the polymer 
matrix. In these circumstances, lithium ions and anions both 
can act as charge carriers. However, with an increasing con-
centration of lithium salts, the dissolution capacity of the 
polymer matrix for lithium ions reaches a saturation state. 
As a result, electrostatic interactions between anions and 
cations cannot be neglected, which could reduce the num-
ber of carriers [36]. As shown in Fig. 8, lithium salt exists 
in the polymer in the form of ionic clusters. The migration 
of ionic clusters in the polymer is much more difficult. So, 
it is necessary to find some solutions to increase the carrier 
concentration.

Inorganic fillers incorporated with polymers are the 
mainstream method for increasing the ionic conductivity of 
CPEs. The main reason is that the inorganic filler can pro-
mote the lithium salt to dissociate, i.e., increasing the carrier 

concentration in the CPEs. Sun et al. [128] proposed a strat-
egy of grafting pyridine N in UiO-66 (CMOF) (Fig. 9a). The 
–N+CH3 on the surface of UiO-66 interacts electrostatically 
with the lithium salt, which can accelerate the dissociation 
of the lithium salt to release a large number of carriers. As 
a result, the dissociation of lithium ions in the CMOF-PEO 
CPEs was 87.4%, which is higher than PEO-LiTFSI. This 
high dissociation of lithium salts endowed the CMOF-PEO 
CPEs with an excellent conductivity of 6.3 ×  10–4 S  cm−1 
(at 60 °C), as demonstrated in Fig. 9b. Chen and coworkers 
[129] introduced cations into a COF to split the ion pairs of 
lithium salts by a stronger dielectric effect. As a result, the 
free lithium-ion concentration increased sharply at 70 °C, 
with ionic conductivity up to 2.09 ×  10–4 S  cm−1 (Fig. 9c). 
Cui et al. [115] doped mesoporous  SiO2 in polymers to fabri-
cate  SiO2-CPEs (Fig. 9d). The interconnected  SiO2 network 
had a high specific surface area and uniformly distributed 
pores. This maximized the interactions between  SiO2 and 
lithium salts. The dissociation of LiTFSI increased from ≈ 
84.7 to 94.4%. Thus, the  SiO2-PEO CPEs displayed a high 
ionic conductivity of 1.0 mS  cm−1 at 40 °C. Recently, some 
studies have revealed that oxygen vacancies on inorganic 
fillers can facilitate the decomposition of lithium salts. Liu 
et al. [130] reported  Y2O3-doped  ZrO2 (YSZ)-PAN CPEs, as 
shown in Fig. 9e. The oxygen vacancy in YSZ is positively 
charged and it can be used in CPEs as the Lewis acid site. 
As shown in Fig. 9f, the dissociation of  LiClO4 was maxi-
mized with 7 mol% YSZ. Moreover, the conductivity of the 
YSZ-PAN CPEs also reached a maximum value. Zhang et al. 
[131] synthesized an ultrasmall  Nb2O5 (3 nm) nanofiller for 
 Nb2O5-PVDF-HFP CPEs.  Nb5+ acted as a Lewis acid center 
that could release more free charge carriers by interacting 
with the  SO2− group in  TFSI−. The ionic conductivity of 
 Nb2O5-PVDF-HFP CPEs was 6.6 ×  10–5 S  cm−1. Sun et al. 
[132] also confirmed that  Al2O3 and  BaTiO3 inorganic fillers 
can effectively enhance the carrier concentration in CPEs, 
which increased the ionic conductivity of the CPEs.

Ideally, all lithium ions are complexed with the polymers. 
Therefore, both anions and cations are carriers. Unfortu-
nately, as the concentration increases, the lithium salt hardly 
dissociates due to the electrostatic effect. Inorganic fillers in 
polymers can increase the concentration of carriers in the 
composite system. In addition, some inorganic fillers that 
contain lithium sources can also contribute to carriers.

Fig. 7  Schematic of the effects of fillers in CPEs for lithium batteries
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Fig. 8  Migration of lithium ion in polymers. Adapted with permission from Ref. [127]

Fig. 9  a Schematic diagram of Li-ion transport in CMOF; b the ionic conductivities of P@CMOF with different temperature. Adapted with 
permission from Ref. [128]. c Schematic illustrations of ion association in COFs with neutral and cationic frameworks, respectively. Adapted 
with permission from Ref. [129]. d LiTFSI was dissolved in PEGDA/SCN and  SiO2 aerogel is the backbone. Adapted with permission from Ref. 
[115]. e Schematic of lithium-ion transport in YSZ; f FTIR spectra from filler-free electrolyte to the 2–7 mol% YSZ. Adapted with permission 
from Ref. [130]
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(B) Increasing the motion rate of carriers (u)

According to Eq. (1), as the ion transport rate increases, 
the ionic conductivity also increases. However, the strong 
polar groups in the polymer chains, such as –CN and 
–C–O–C, are able to form strong complexes with lithium 
ions. This lowers the movement ability of lithium ions. 
The main reason why inorganic fillers can increase the ion 
movement rate is that the special groups on the surface of 
inorganic fillers can coordinate with lithium ions to weaken 
the interactions between lithium ions and polymers to accel-
erate the movement of lithium ions [77, 115]. Moreover, 
some long-term continuous inorganic fillers can form inter-
connected conductive ion channels, which significantly 
increases the ion migration rate. In addition, the 3D ion-
conductive framework can accelerate the ion transport rate.

Wang et al. [133] reported an MOF functionalized with 
–NH2 for PEO@N-MC CPEs (Fig. 10a). In this case, hydro-
gen bonds were formed between the ether oxygen of PEO 
and –NH2, which effectively connected the adjacent MOF 
nanosheets. This particular interaction accelerated ion trans-
port and promoted structural stability. The ionic conductivity 
of the PEO@N-MC CPEs was significantly increased by 
253% compared to that of PEO-LiTFSI. Chen et al. [134] 
designed an inorganic filler with an MB-LLZTO molecular 
brush. It was introduced into PEO, as shown in Fig. 10b. The 
molecular brush with a special structure extends the diffu-
sion pathway of lithium ions in MB-LLZTO PEO CPEs. As 
shown in Fig. 10c, on the surface of the MB-LLZTO CPEs, 
a third component with a value of 0.05 ppm was observed, 
which was introduced by the molecular brush on the LLZTO 
nanoparticles (Fig. 10c, bottom). Moreover, the resonance 
of Li in MB-LLZTO CPEs was significantly narrower than 
that in PEO, which suggested an irregular structure at the 
interface. This irregular structure provides a rapid pathway 
for lithium ions. Therefore, the MB-LLZTO CPEs exhibited 
a high ionic conductivity of 3.11 ×  10−4 S  cm−1 at 45 °C 
(Fig. 10d). Zheng et al. [135] changed the amount of inor-
ganic filler in the polymer matrix, as presented in Fig. 10e. 
As LLZO content increases, the ion transfer route gradually 
shifts from PEO to the percolation network of interconnected 
LLZO particles. This continuous ion conduction channel 
accelerated ion transport. In Fig. 10f, Liu et al. [136] initi-
ated the ring-opening reaction of ethylene carbonate (EC) on 
the LLZTO surface to form oligomers containing ether-oxy-
gen chains. This oligomer provided an ultra-dense and fast 

conduction pathway for lithium ions between LLZTO and 
PEO substrates. The delicate design endowed LLZTO-PEO 
CPEs with a high ionic conductivity of 1.43 ×  10–3 S  cm−1. 
Tian et al. [77] filled  CeO2 nanowires with SPEs, as shown 
in Fig. 10g. The  CeO2 nanowires produced extended con-
tinuous ion transfer pathways, which further improved the 
ionic conductivity (1.1 ×  10–3 S  cm−1 at 60 °C).

The addition of such a surface-functionalized inorganic 
filler contributes to the formation of a fast lithium-ion path-
way. Therefore, the inorganic filler which has a high specific 
surface area allows more flow area. The more continuous 
the ion conduction path is, the faster the ion transfer. How-
ever, some nanofillers may lead to serious phase separation, 
resulting in a lower ion transfer rate and a negative increase 
in ionic conductivity. This interfacial effect of ionic conduc-
tivity depends on the size, shape and content of the embed-
ded filler and the relevant filler/polymer interfacial region.

3.1.2  Lithium‑Ion Transference Number tLi
+

The  tLi
+ is another vital parameter of CPEs, which reflects 

the contribution of lithium ions to the total ionic con-
ductivity. Both lithium ions and anions can move in the 
battery, but the anions prefer to migrate in the oppo-
site direction to the lithium ions. Consequently, a large 
concentration gradient of lithium ions is formed, which 
blocks lithium-ion transport and produces uneven lith-
ium-ion deposition. The relevant theoretical calculations 
suggest that the higher  tLi

+ is, the more uniform the lith-
ium deposition. In this way, the generation of lithium den-
drites can be avoided [137, 138]. However,  tLi

+ of CPEs is 
only 0.1–0.2. The calculation formula is as follows [139]:

As illustrated in Eq. (2), R0 and I0 are the initial interfacial 
impedance and the first current response of the cells, respec-
tively. Rs and Is are the interfacial impedance and current, 
respectively. V is the potential used for constant-potential 
polarization.

ZIF-8-PEO CPEs were prepared by Wang et al. [79], 
as shown in Fig. 11a. ZIF-8, which has a surface with an 
abundance of Lewis acid sites, has a strong interaction with 
 TFSI−. It can inhibit the movement of anion and decrease 
concentration polarization, resulting in a high  tLi

+ of 0.35. 
Wang and coworkers [140] reported BNN-PEGDA-MPEGA 

(2)tLi+=
Is(V − I0R0)

I0(V − IsRs)
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CPEs prepared with 2D boron nitride nanosheets (BNN) 
as inorganic nanofillers, as shown in Fig. 11b. The inter-
penetrating network of BNNs efficiently blocked anions. It 
exhibited an excellent  tLi

+ of 0.79, as illustrated in Fig. 11c. 
Zhang et al. [141] studied a series of single ion-conducted 
ICOFs based on imidazolium, as presented in Fig. 11d. The 
negatively charged groups within the ICOFs shielded the 

anions and permitted only lithium ions to migrate. There-
fore, it showed a high  tLi

+ of 0.81 in Fig. 11e. Shi et al. [142] 
used Fe-MOFs to optimize the electrochemical properties 
of SPEs (Fig. 11f). The ultrafine pores of Fe-MOFs block 
down the anions and the free lithium-ion concentration is 
increased. The  tLi

+ increased to 0.6. Moreover, the Lewis 
acid–base interactions between PEO and Fe-MOFs enhanced 
the lithium-ion migration rate. Thus, the Fe-MOFs-PEO 

Fig. 10  a Schematic diagram of the lithium-ion transfer in PEO@N-MC. Adapted with permission from Ref. [133]. b Figure of diffusion route 
of lithium ions in MB-LLZTO CPE; c 6Li NMR spectra of LLZTO CPEs and MB-LLZTO CPEs; d Ionic conductivity of MB-LLZTO CPEs. 
Adapted with permission from Ref. [100]. e Schematic representation of the lithium-ion route within LLZO (5–50 wt%)-PEO (LiTFSI). Adapted 
with permission from Ref. [135]. f Intermolecular interact on mechanism of LLZTO with in PEO. Adapted with permission from Ref. [136]. g 
Illustration of  CeO2NW-CPEs. Adapted with permission from Ref. [77]
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CPEs displayed an appreciable ionic conductivity of 
2.3 ×  10–5 S  cm−1. Zhang et al. [143] prepared LiMNT-PEC 
CPEs by mixing layer-structured lithium montmorillonite 
(LiMNT) with PEC. 2D LiMNT has an enriched Lewis acid 
center that anchors the anion and releases more lithium ions, 
as illustrated in Fig. 11g. The intercalation structure released 
lithium ions rapidly, allowing the  tLi

+ of the LiMNT-PEC 
CPEs to increase to 0.83.

In general,  tLi
+ increases mainly due to the improvement 

in lithium-ion mobility, the decrease in anion mobility, or 
both. Inorganic fillers may increase  tLi

+ by immobilizing 
anions through abundant Lewis acid sites. In addition, the 
 tLi

+ can also be boosted by the special structures of CPEs. 
For example, ceramic/polymer/ceramic CPEs use a ceramic 
layer to block the transport of anions.

3.2  Interactions Between Fillers and Polymers

As mentioned previously, fillers can significantly increase 
the ionic conductivity and  tLi

+ of CPEs by interacting with 
lithium salts. However, the transport of lithium ion is mainly 
dependent on polymer chain segments. However, poly-
mers exhibit a semicrystalline aggregated structure at RT. 
Spherulites are the most common crystal form of polymers 
[144]. The behavior of ion conduction in CPEs is strongly 
influenced by this aggregated structure. The most evident 
change is ionic conductivity. Introducing inorganic fill-
ers into polymers has proven to be an effective method for 
decreasing the crystalline regions of polymers and improv-
ing ionic conductivity. Therefore, the effects of fillers on the 
aggregated structures of polymers are mainly reflected in the 
changes in crystallinity Xc, glass transition temperature Tg 

Fig. 11  a Lithium-ion conductive mechanism of ZIF-8-PEO CPEs. Adapted with permission from Ref. [79]. b Transport pathway of lith-
ium-ion in BNN-CPEs; c transference number of different content of BNN. Adapted with permission from Ref. [140]. d Li-ion transfer in Li-
ImCOFs; e  tLi

+ of LiImCOF-PEO CPEs. Adapted with permission from Ref. [141]. f Mechanism of ion transport in Fe-MOFs-PEO CPEs. 
Adapted with permission from Ref. [142]. g Intercalation LiMNT-PEC CPEs with enhanced  tLi

+ mechanism. Adapted with permission from 
Ref. [143]
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and spherulite shape [145]. In the following chapters, we 
will discuss the effects of inorganic fillers on the aggregated 
structures of polymers in terms of these three factors.

3.2.1  Glass Transition Temperature Tg

Tg is an important parameter for the motion of polymer 
chain segments. Below the Tg, molecules, atoms or groups 
vibrate only at their respective equilibrium positions. The 
polymer chains are frozen, and the molecules can hardly 
flow. When T > Tg, the polymer segments begin to move 
but the molecular chains do not. The migration of lithium 
ions in polymers matrix happens mostly in the amorphous 
phase, while migration in the crystalline phase is limited. A 
majority of polymers are semicrystalline in character. Such 
polymers have a high Tg. It leads to a decrease in the amor-
phous region of the polymer, which has a detrimental effect 
on ion migration. Therefore, desirable electrolyte materials 
should exhibit at least two characteristics: a high amorphous 
ratio and low Tg. A number of recent studies suggested that 
the addition of nano additives into a polymer matrix can 
reduce the Tg.

Li et al. [146] designed  SiO2-Cs-PEO CPEs for high-
performance CPEs. With the increasing  SiO2, Tg of the 
 SiO2-Cs-PEO CPEs (1–4 wt%  SiO2) decreased to − 40.5, 
− 41.2, − 43 and − 41.7 °C, respectively. It is evident that the 
introduction of  SiO2 may increase the amorphous phase in 
the polymer matrix. In addition, it facilitates the movement 
of polymer chains, which provides a significant increase in 
ionic conductivity. Guo et al. [147] first introduced hydrox-
ide (2D LDH) nanosheets into PEO. These 2D LDH fill-
ers were rich in hydroxide radicals, forming hydrogen 
bonds with PEO chains to inhibit them toward the crystal-
line phase. Therefore, the 2D LDH-PEO CPEs showed a 
decrease in Tg. Xie et al. [81] doped ZnO quantum dots 
into PEO by vapor phase infiltration (VPI). The Tg of ZnO-
PEO CPEs was significantly reduced to − 37.6 °C (compared 
to − 34.8 °C for PEO-LiTFSI). Guo et al. [148] prepared 
ZIF-67-PEO CPEs. Compared to PEO-LiTFSI (− 37.6 °C), 
the ZIF-67-PEO CPEs showed a significant decrease in Tg 
(− 40.0 °C).

Inorganic fillers are advantageous for reducing the Tg of 
CPEs mainly for the following reasons:

(1) The polar groups in the polymer molecule may lead 
to the high rigidity of the molecular chain segments. 
However, the interaction between inorganic fillers and 
polymer chain segments can lower the intermolecular 
forces and enhance the motion of the polymer chains.

(2) Inorganic filler, as a small molecule plasticizer, can 
increase the flexibility of polymer molecular chains.

3.2.2  Degree of Crystallinity Xc

It is widely believed that ionic conduction happens mostly 
in the amorphous. The crystallization process of polymers 
involves two processes: nucleation and crystal growth. 
Nuclei are formed in the nanoregions of polymer chain seg-
ments and then further separated or grown. Xc is the degree 
of long-range ordering of the polymer chains. In CPEs, inor-
ganic fillers act as a solid plasticizer to disrupt the orderly 
arrangement of polymer chains, thereby reducing the crystal-
linity of the polymer.

As shown in Fig. 12a, fillers decrease Xc by disrupting 
the ordered structure of the polymer. A systematic study of 
the relation between the crystallinity and ionic conductiv-
ity of PEO was conducted by Bo et al. [149]. As shown 
in Fig. 12b, the Xc of PEO first decreased with increasing 
LLZTO. The crystallinity of LLZTO-PEO CPEs reached 
the minimum value when the addition of LLZTO was 50 
wt%. Unexpectedly, after continuing to increase LLZTO, 
the Xc was increased. The consequence may be associ-
ated with the spatial distribution of LLZTO particles in the 
PEO substrates. Moreover, with the increase in LLZTO, a 
maximum ionic conductivity of LLZTO- PEO CPEs was 
obtained with 50 wt% LLZTO, then it started to decrease, 
as shown in Fig. 12c. The ionic conductivity of LLZTO-
PEO CPEs showed a completely opposite trend to that of 
the crystallinity. This work suggests a possible relationship 
between the Xc and the ionic conductivity of CPEs. Yang 
et al. [150] introduced nickel–iron-based layered hydroxide 
(NILDH) into the polymer matrix to reduce the crystallin-
ity of NILDH-PEO CPEs (Fig. 12d). It can be observed that 
the intensity of the characteristic diffraction peak of PEO 
gradually decreases with the increase in NILDH (Fig. 12e). 
The NILDH particles disrupt the normal organization of 
PEO chains and prevent the crystallization. As illustrated 
in Fig. 12f, Guan et al. [151] used the hydrogen bonding 
effect between nickel phosphate (VSB-5) nanorods and PEO 
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to disorder polymer chains in VSB-5-PEO CPEs. Wang 
et al. [152] doped phenolic resin nanospheres (RFS) fillers 
into PEO-LiClO4 to investigate the effect of RFS on Xc, as 
shown in Fig. 12g. The surface groups (-OH) of RFS inter-
acted with the PEO through hydrogen bonding. As shown 
in Fig. 12h, PEO showed distinct C–O–C stretching vibra-
tions at 1103, 1147 and 1061  cm−1. When the RFS filler 
was doped, the C–O–C in the amorphous region was shifted 
from 1096 to 1099  cm−1, as illustrated in Fig. 12i. That is, 
the addition of filler changed the conformation of PEO to 
increase the amorphous region.

Semicrystalline polymers usually present a low ionic 
conductivity  (10–8–10–6 S  cm−1) due to the high Xc of the 

polymer matrix. Therefore, in addition to inorganic fillers 
reducing Xc, there are two common methods:

(1) Modifying the polymer by grafting to reduce the degree 
of regularity of the molecular chains.

(2) Adding organic plasticizers into the polymer decreases 
the intermolecular interactions and increase the flex-
ibility of the molecular chains.

Although the above two approaches can effectively reduce 
the crystallinity of CPEs, it would sacrifice the mechanical 
strength. Accordingly, it is necessary to achieve a compro-
mise between Xc and mechanical strength in the following 
work.

Fig. 12  a Schematic illustration of the lithium-ion transfer across crystalline polymer and crystalline polymer with nanofillers; b Xc of PEO on 
LLZTO contents; c the dependence of ionic conductivity on LLZTO contents. Adapted with permission from Ref. [149]. d Structure sketch of 
NILDH-PEO CPEs improving the ionic conductivity; e XRD patterns of NILDH and NILDH-PEO CPEs. Adapted with permission from Ref. 
[150]. f VSB-5-enhanced SPEs for lithium battery. Adapted with permission from Ref. [151]. g Schematic diagram of RFS effect the lithium-ion 
conduction; h-i Attenuated total reflection infrared spectra of PEO and PEO16-RFS. Adapted with permission from Ref. [152]
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3.2.3  Effective of Spherulites for Polymers

Crystalline polymers mainly show many spherulites. 
Spherulite is spherical in shape and varies in size from 
micrometers to a few millimeters. Figure 13a [153] shows a 
transport schematic of lithium ions in PEO. Large spheru-
lites stacked with one another that makes the diffusion of 
lithium ions difficult. When the spherulites become small, 
the amorphous area increases, and the diffusion of lithium 
ions is accelerated. Marzantowicz [154] reported that the 
morphology of spherulites varied with different EO/Li ratios 
(Fig. 13b). When the concentration of lithium salt was low 
(EO/Li = 50), the crystalline phase of PEO mainly domi-
nated. When EO/Li = 6, the spherulites became small. The 
crystalline region was clearly distinguished from the amor-
phous region. However, high concentrations of salt led to 
severe phase separation.

Choi et al. [155] found that different sizes of  Fe3O4 
nanoparticles had completely different effects on 
the aggregated state of PEO. The small size of  Fe3O4 
(0.023  µm, 10  wt%) produced more nucleation sites, 
which led to smaller spherulites, resulting in a decrease 
in crystallinity. However,  Fe3O4 (5 µm, 10 wt%) produced 
significantly larger spherulites due to fewer nucleation 
sites, and the Xc was higher than that of  Fe3O4 (0.023 µm, 
10 wt%). Jang et al. [156] analyzed the effect of differ-
ent surface modifications of  SiO2 nanofillers on spheru-
lites, including  SiO2 (Fig. 13c), methoxy-treated  SiO2 
(M–SiO2, Fig. 13d), carboxylate-treated  SiO2 (C-SiO2, 
Fig. 13e) and amine-treated  SiO2 (A-SiO2, Fig. 13f). The 
high nucleation densities of C-SiO2 and A-SiO2 led to 
a smaller spherulite size. This may be attributed to the 
electrostatic force between the strong polar groups (on 
the  SiO2 surface) and the PEO segments. This interac-
tion affects the migration of the polymer chains to the 
crystalline surface, which results in a lower crystallin-
ity. Furthermore, the interaction between the M-SiO2 
and PEO segments was relatively weak, thus resulting 
in a higher Xc growth rate (Fig. 13g). Qiu et al. [157] 
compared the influence of  Al2O3 and ZSM-5 on Xc. The 
number of PEO spherulites further increased with the 
incorporation of  Al2O3 and ZSM-5. And the radius of 
spherulites decreased to about 20 μ m on average. The 
melt enthalpy (∆Hm) and Xc were both affected, as 
shown in Fig. 13h. The ionic conductivity increased from 

1.5 ×  10–7 S  cm−1 (PEO10-LiClO4) to 1.4 ×  10–5 S  cm−1 
(PEO10-LiClO4/10%ZSM-5).

The ionic conductivity of CPEs is complicated by the 
presence of both crystalline and noncrystalline phases below 
the Tm. The morphology and number of spherulites are 
related to Xc. In general, the large number of nucleation sites 
formed by inorganic fillers in polymers increases the number 
of spherulites significantly. However, the size of spherulites 
decreases rapidly. In this procedure, the amorphous region 
increases, which accelerates the conduction of lithium ions.

From the above analysis, it is clear that the interactions 
among the inorganic filler, lithium salt and polymer matrix 
have important effects on the electrochemical properties of 
CPEs. At present, it is widely assumed that the addition of 
inorganic fillers can enhance the electrochemical properties 
of CPEs, which is mainly reflected by an increased ionic 
conductivity and  tLi

+. However, this process involves several 
factors, including carrier concentration, ion migration rate, 
Tg and Xc. Despite inorganic fillers enhancing the electro-
chemical and mechanical characteristics of CPEs, aggrega-
tion in the polymer matrix and compatibility with the elec-
trode are still major obstacles to practical applications.

4  Interface Between CPEs and Electrodes

Although the migration of lithium ions in the bulk of CPEs 
has been addressed, lithium-ion conduction should not be 
neglected at the electrode–electrolyte interface. The ion con-
duction at the electrode interface is quite different from that 
in the bulk phase of CPEs. In addition, the stability of the 
interface between electrolyte and electrode remains a bot-
tleneck of SSLBs. The interfacial stability is determined by 
poor electrolyte–electrode contact, lithium dendrite growth 
and high-pressure decomposition [27]. To solve these prob-
lems, CPEs with the advantages of two components (organic 
and inorganic) become popular in recent years [158, 159].

In this section, we will discuss the improvement in the 
interfacial stability between CPEs and electrodes in terms 
of CPEs stabilizing the cathode and CPEs stabilizing the 
anode. The relationship between CPEs and anode and cath-
ode is depicted in Fig. 14.
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4.1  Modifications of the CPE/Cathode Interface

Under an electric field, electrolytes generate many polariza-
tion domains due to intermolecular forces, resulting in the 
deterioration of electrochemical properties (Fig. 15a) [160]. 
Thermodynamically, high-voltage compatibility of the elec-
trolyte indicates the ability to resist oxidative decomposition. 

The highest occupied molecular orbital (HOMO) of all com-
ponents in the electrolyte (polymers, lithium salts, additives, 
etc.) must be lower than that of the cathode. Inorganic fill-
ers improve the electrochemical stability of CPEs through 
Lewis acid–base interactions (hydrogen bonding, vacancy 
and dipole–dipole interactions) with polymers and lithium 
salts (Fig. 15b) [36].

Fig. 13  a Illustration of the transport of lithium ions in PEO spherites. Adapted with permission from Ref. [153]. b The results for PEO/LiTFSI 
electrolytes of different content salt. Adapted with permission from Ref. [154]. c–f POM pictures of PEO with neat  SiO2, M–SiO2, C-SiO2 and 
A-SiO2; g Log plot of the spherites growth rate of SiO2-PEO composites versus the crystallization temperature of as a function of  SiO2 content. 
Adapted with permission from Ref. [156]. h DSC plots of PEO10-LiClO4/10%ZSM-5. Adapted with permission from Ref. [157]
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Wang et al. [161] prepared CPEs with a wide electro-
chemical stability window and high ionic conductivity by 
admixing  SiO2 nanoparticles into polyvinyl ethylene car-
bonate (PVEC) (Fig. 15c). Theoretical calculations and 
experimental results confirmed that the enhancement of 
the antioxidant capacity of  SiO2-PVEC CPEs was mainly 
attributed to hydrogen bonds. As shown in Fig. 15d, the H 
atoms on the surface of  SiO2 and the O atoms (C=O and 
O=S=O) in PVEC and  TFSI− formed hydrogen bonds. 
The local intermolecular interaction increased the anti-
oxidant capacity of the  SiO2-PVEC CPEs. As a result, the 
electrochemical window was up to 5.0 V, as in Fig. 15e. 
LCO|SiO2-PVEC CPEs|Li cells provide favorable cycle sta-
bility with about 94% capacity retention at a cutoff voltage 
of 4.5 V (Fig. 15f). In the work of Li et al. [162], LiF as 
a synergistic additive was added to LLZTO-PEO CPEs to 
improve the electrochemical stability at a high cutoff voltage 
(Fig. 15g). Due to the dipole–dipole interactions between 
LiF and PEO, the electron-hopping energy level of PEO 
changed to increase the oxidative decomposition potential 
of PEO. As depicted in Fig. 15h, the oxidative decomposi-
tion potential of the LLZTO-PEO/PVDF CPEs increased 
to 4.8 V. Xu et al. [163] prepared high-voltage compatible 
CPEs consisting of HNTs and PCL by an in situ technique 
(Fig. 15i). The external surface of the HNTs was negatively 
charged, while the internal surface was positively charged. 

The Lewis acid–base interactions between the HNTs and 
polymers induced changes in the electron-hopping energy 
levels of the polymer, thereby enhancing the high voltage 
resistance of the HNTs-PCL CPEs. These HNTs-PCL CPEs 
exhibited a potential window of 5.1 V.

In addition, a number of inorganic fillers with oxygen 
vacancies were effective in enhancing the high-voltage 
stability of CPEs. Kang et al. [164] introduced Gd–CeO2 
nanowire into PEO to prepare Gd–CeO2-PEO CPEs. Ben-
efiting from the abundant oxygen vacancies on the surface 
of Gd–CeO2, the electrochemical window of Gd–CeO2-
PEO CPEs was increased to 5.0 V (vs. PEO-LITFSI at 4 V), 
and the ionic conductivity was increased 5 ×  10–4 S  cm−1. 
NCATP (Ce-NASICO) was synthesized by Huang et al. 
[165]. NCATP enabled the electrolyte to exhibit an excel-
lent antioxidant capacity (5 V) by influencing the electron-
hopping energy level of PVDF-HFP.  MoO3-PEO CPEs were 
prepared by Wang et al. [166]. The abundant lattice oxygen 
on the surface of  MoO3 showed a certain adsorption effect 
on the PEO segments, which stabilized the PEO chain struc-
ture and inhibited the decomposition of PEO chains under 
high voltage.

Inorganic fillers can improve the antioxidant capacity of 
CPEs. This is mainly reflected in the effect on the electron-
hopping energy levels of the polymer. On the one hand, inor-
ganic fillers are enriched with polar groups (–OH, –COOH, 

Fig. 14  Relationship between composite polymer electrolytes and anode and cathode
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etc.) by grafting which can stabilize the polymer matrix. 
On the other hand, the elemental doping of inorganic fill-
ers increases surface defects. These defects can stabilize the 
lithium salt from which the electrochemical stability of the 
electrolyte is enhanced.

4.2  Modifications of the CPE/Anode Interface

As the “holy grail” of high-performance solid-state cells, 
lithium metal is one of the most promising anodes. However, 
interface problems between lithium metal and CPEs still 

remain. The problems of lithium metal are mainly related 
to two aspects:

(1) During the periodic cycling of the battery, the expan-
sion and shrinkage of the lithium metal lead to a poor 
contact.

(2) Unstable ion transport behavior leads to uneven lithium 
deposition and thus to the formation of lithium den-
drites [167, 168].

The growth of lithium dendrites may puncture the elec-
trolyte, resulting in contact between cathodes and anodes. 
Recent work has demonstrated that the compatibility of the 

Fig. 15  a Schematic for the electrochemical attenuation with the electric field. Adapted with permission from Ref. [160]. b Lewis acid–base 
interactions between inorganic additives and polymers. Adapted with permission from Ref. [36]. c Schematic diagram of preparing the PVEC-
SiO2 CPEs; d Intermolecular interaction in PVEC-SiO2 CPEs by DFT; e electrochemical stability window of PVEC-SiO2 CPEs; f cycling stabil-
ity of PVEC-SiO2 CPEs. Adapted with permission from Ref. [161]. g Diagram of lithium-ion conductive pathways without and with LiF addi-
tive; h Comparison of LSV results of LLZTO-PEO/PVDF CSEs with different additives. Adapted with permission from Ref. [162]. i Schematic 
illustration of the preparation of the HNTs-PCL CPEs. Adapted with permission from Ref. [163]
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solid-state electrolyte with the anode can also be improved 
effectively by the incorporation of inorganic fillers. The roles 
played by inorganic fillers in alleviating the interface prob-
lems are as follows: first, the inorganic filler can homogenize 
the lithium flux by regulating the ion transport behavior in 
the electrolyte bulk phase. Thus, the lithium dendrite genera-
tion can be controlled at the origin. Second, the inorganic 
filler can significantly reinforce the mechanical strength of 
CPEs to suppress the growth of lithium dendrites.

4.2.1  Regulation of Lithium‑Ion Deposition

Thermodynamically, lithium dendrites originate from the 
nucleation of lithium dendrites due to uneven local current 
densities. Therefore, the structural design of CPEs is benefi-
cial for reducing the effective current density. In particular, 
some 3D inorganic fillers can accelerate ion transport and 
reduce the space charge density to slow down the formation 
of lithium dendrites [11].

An anion-immobilized LLZTO-PEO CPE was proposed 
by Zhang et al. [169]. Compared with conventional liq-
uid electrolytes, LLZTO-PEO CPEs can bundle anions to 
induce a uniform distribution of lithium ions. Sun et al. 
[170] proposed a self-healing electrostatic shielding strat-
egy to achieve uniform lithium-ion deposition in PEO-based 
electrolytes. As shown in Fig. 16a, homogeneous lithium-
ion deposition was accomplished by introducing  CsClO4 
(0.05  M). Interestingly,  Cs+ showed a lower reduction 
potential than lithium ions (1.7 mol  L−1). Different from 
the conventional CPEs,  Cs+ initially formed a positively 
charged electrostatic shield coating around the lithium tip 
during lithium deposition. This forced the lithium ions to 
be deposited preferentially in the neighboring region of 
 Cs+. Finally, a smooth deposition layer and a dendrite-free 
lithium anode surface were obtained. After 100 h of cycling, 
a large amount of mossy lithium was observed on the anode 
when coupled with PEO SPEs (Fig. 16b1, b2). In addi-
tion, some large lithium dendrites in 10–20 μm were also 
observed on the surface of PEO SPEs in (Fig. 16b3, b4). 
However, for  CsClO4-PEO CPEs, no lithium dendrites or 
mossy lithium were observed on the anode (Fig. 16b5, b6). 
Moreover, the original morphology of  CsClO4-PEO CPEs 
was maintained. Thus, the  CsClO4-PEO CPEs benefitted 
from the low potential to achieve uniform lithium deposi-
tion. The Li|CsClO4-PEO CPEs|Li battery realized stable 

plating/exfoliation performance for 500 h at 0.2 mA  cm−2 
(Fig. 16c). Cai et al. [171] exploited a network of intercon-
nected 3D-UIO-66-PAN/PEO CPEs to homogenize lithium-
ion fluxes. As shown in Fig. 16d, the uniform distribution 
of UIO-66 on nanofibers favored the creation of a continu-
ous ion transport pathway, which facilitated lithium-ion 
transport. Moreover, UIO-66 with a moderate pore size and 
strong cationic sites allowed a uniform lithium flux distri-
bution by limiting anion transport. In Fig. 16e, the COM-
SOL result reveals that 3D-UIO-66-PAN/PEO CPEs with a 
small concentration gradient for lithium ions and  TFSI− ions 
during lithium deposition, which suggests a homogeneous 
lithium-ion flux. Moreover, the potential field was smaller 
than that of the UIO-66-PAN/PEO CPEs. Notably, due to the 
uniform lithium-ion flux and the fast lithium-ion transport 
of 3D-UIO-66-PAN/PPEO, the Li|3D-UIO-66/PAN/PEO 
CPEs|Li cells did not suffer from short-circuiting even after 
700 h of cycling (Fig. 16f). Fan et al. [172] designed NCN-
CPEs composed of corrugated 3D nanowire bulk-ceramic-
nanowires (NCN) (Fig. 16g). This special NCN backbone 
alleviated the polarization concentration at the electrode/
electrolyte interface and provided a uniform interfacial lith-
ium-ion flux to the anode. In Fig. 16h, finite element simula-
tion results show that the electrolyte composed of LLZTO 
ceramic sheets (NET-PEO CPEs) and LLZTO nanowires 
(PCP-PEO CPEs) suffered from a high diffusion potential 
barrier for lithium-ion transport due to the higher local space 
charge. This resulted in a nonuniform lithium-ion flux at the 
electrode. However, the special sandwich structure of the 
NCN-PEO CPEs provided a definite advantage. Notably, the 
NCN-PEO CPEs exhibited an excellent  tLi

+ of 0.9 (Fig. 16i). 
The Li|NCN-PEO CPEs|Li cell showed a flat voltage profile 
with no short-circuiting (0.1 mA  cm−2) for 600 h (Fig. 16j). 
LLZO-PEO CPEs with vertical/horizontal anisotropy were 
prepared by Guo et al. [173]. As shown in Fig. 16k, the 
LLZO ultrafine fibers rapidly transferred lithium ions and 
reduced the uneven distribution of the electric field, thus 
achieving excellent electrochemical performance. Wu et al. 
[174] adjusted the interfacial potential distribution between 
the electrolyte and the anode in situ generating  Li3P on the 
surface of SPEs, allowing the homogenous plating and strip-
ping of lithium ions.

The incorporation of electronegative (vs.  Li+) ele-
ments in the electrolyte to prevent the formation of lith-
ium cores and the addition of porous inorganic fillers to 
realize a uniform lithium-ion flux are effective strategies 
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for promoting homogeneous lithium-ion deposition and 
inhibiting the formation of lithium dendrites. In addition, 
strategies for modifying lithium metal can also achieve 
the same purposes.

4.2.2  Inhibition of Lithium Dendrites

ISEs have a superior shear modulus, which can strongly 
restrain the growth of lithium dendrites. However, ISEs suf-
fer from high interfacial resistance. Therefore, it is difficult 

Fig. 16  a Illustration of the Li deposition process for PEO-Cs+ and conventional PEO electrolyte; b SEM images of (b1–b4) PEO SPEs after 
100 h; SEM images of (b5–b8)  CsClO4-PEO CPEs after 100 h; c cycling stability of the Li||Li symmetrical cells assembled with  CsClO4-PEO 
CPEs and PEO SPEs. Adapted with permission from Ref. [170]. d Schematic diagram of the growth of Li dendrites in PEO and 3D-MOF/PAN/
PEO; e the COMSOL simulation for  Li+,  TFSI− and potential distribution of UIO-66/PEO and 3D-UIO-66/PAN/PEO; f long-term cycle reli-
ability of symmetric Li|3D-UIO-66/PAN/PEO CPEs|Li cells. Adapted with permission from Ref. [171]. g Schematic diagram of lithium-ion 
transport NCN-PEO CPEs and the side view and top view of NCN-PEO CPEs; h FEM simulations of electric potential distribution in NET-PEO 
CPEs, PCP-PEO CPEs and NCN-PEO CPE; i lithium-ion transference number of NCN-PEO CPEs; j Li plating/stripping test with a constant 
current density of 0.1 mA cm.−2. Adapted with permission from Ref. [172]. k Schematic illustration of LLZO-PEO CPEs works in solid-state Li 
metal batteries. Adapted with permission from Ref. [173]
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to balance interfacial compatibility and ionic conductivity. 
SPEs have excellent interface contact. But lithium dendrites 
can still penetrate the electrolyte and cause short-circuit-
ing inside the cells. Therefore, enhancing the mechanical 
strength of SPEs is another important strategy to restrain 
lithium dendrites.

To balance the mechanical and electrochemical proper-
ties of CPEs, LLZTO-PEO CPEs with a sandwich structure 
were designed by Huo et al. [175]. Figure 17a shows these 
sandwich-structured LLZTO-PEO CPEs. The external layer 
consisted of 20%-LLZTO (200 nm) and PEO, which resulted 

Fig. 17  a Description of the PIC-5 µm, CIP-200 nm, and hierarchical CPEs; b cross-sectional SEM pictures of LLZTO-PEO CPEs with hier-
archical structure. Adapted with permission from Ref. [175]. c Schematic of the BNNF-PAN-LiClO4-BNNF; d cross-sectional SEM image of 
the BNNF-PAN-LiClO4-BNNF; e stress–strain curves of the PAN-LiClO4 and BNNF-PAN-LiClO4-BNNF CPEs; f BNNF-PAN-LiClO4-BNNF 
CPEs and lithium metal anodes after cycles. Adapted with permission from Ref. [176]. g Schematic Illustration for the preparation of the LATP-
PAN-PEO CPEs; h stress–strain curves of LATP-PAN-PEO CPEs and PEO8–LiTFSI; i cycling stability of Li|LATP-PAN-PEO CPEs|LiFePO4 
batteries at 0.2C. Adapted with permission from Ref. [177]. j Schematic illustration for the preparation of the LLZO-PEO CPEs. k Cycles of 
Li|LLZO-PEO CPEs|Li 0.1 and 0.2 mA  cm−.2; l Cycling performance of  LiFePO4|LLZO-PEO CPEs|Li at 0.2C. Adapted with permission from 
Ref. [178]



 Nano-Micro Lett.           (2023) 15:74    74  Page 28 of 37

https://doi.org/10.1007/s40820-023-01051-3© The authors

in good interfacial contact. The intermediate layer consisted 
of 80%-LLZTO (5 µm) and PEO, which effectively inhibited 
lithium dendrites. Figure 17b shows the SEM images of the 
LLZTO-PEO CPEs with a hierarchical structure. With this 
rigid-flexible design, the Li|LLZTO-PEO CPEs|Li cell was 
stably maintained for 400 h at 0.2 mA  cm−2. Jiang et al. 
[176] reported BNNF-PAN-BNNF CPEs, as presented in 
Fig. 17c. The BNNF-PAN-BNNF CPEs with a bilayer struc-
ture are shown in Fig. 17d. For these CPEs, the BNNFs 
endowed it with an excellent tensile strength (16.0 MPa) and 
Young’s modulus (563.7 MPa), as shown in Fig. 17e. Due to 
the above advantages, the Li|BNNF-PAN- BNNF CPEs|Li 
cell had a small overpotential, while the lithium metal hardly 
changed after 400 h of cycling (Fig. 17f). Fan et al. [177] 
adopted a new strategy for inhibiting lithium dendrites, as 
illustrated in Fig. 17g. The excellent mechanical strength 
of the flexible network of LATP-PAN (tensile strength of 
10.72 MPa in Fig. 17h) enhanced stress tolerance. Thus, 
LATP-PAN/PEO CPEs suppressed the development of lith-
ium dendrites through the fiber network. Moreover, the Cou-
lombic efficiency of the Li|LATP-PAN/PEO CPEs|LiFePO4 
battery was maintained at 99% after 100 cycles, which indi-
cated the excellent interfacial stability between the elec-
trolyte and anode during the cycles (Fig. 17i). Hu et al. 
[178] prepared LLZO-PEO CPEs by filling a 3D conduc-
tive lithium framework (LLZO) with PEO in Fig. 17j. The 
LLZO-PEO CPEs not only provided a high ionic conduc-
tivity (8 ×  10–4 S  cm−1), but the rigid backbone structure 
hindered the growth of dendrites. As indicated in Fig. 17k, 
the Li|LLZO-PEO CPEs|Li cell did not short circuit even 

after 500 h cycles at 0.2 and 0.5 mA  cm−2. Moreover, the 
 LiFePO4|LLZO-PEO CPEs|Li cell maintained nearly 100% 
capacity in 50 cycles, as shown in Fig. 17l.

5  Conclusion

The solid-state electrolyte plays a significant role in SSLBs. 
Currently, CPEs are regarded as a prospective solid-state 
electrolyte because they inherit the advantages of ISEs and 
SPEs. However, CPEs still need to overcome some draw-
backs, for example, a low ionic conductivity and undesirable 
interfaces. Therefore, this review explores the contribution 
of inorganic fillers in improving the electrochemical per-
formance as well as the interfacial compatibility of CPEs.

According to the transport method of lithium ions in 
CPEs, it is known that the important role of inorganic fillers 
is to increase the amorphous region of the polymer matrix 
and, in this way, to increase the number of movable polymer 
chain segments. At the macroscopic level, the changes in the 
polymer aggregated state structure are an important reason 
for the changes in the amorphous regions. Spherites are the 
main crystalline structure of polymers. spherites, including 
size and quantities. Once the aggregated structure of CPEs 
is changed, Xc as well as Tg will also be changed.

And at the microscopic level, the inorganic filler will 
induce a change in the ion transport behavior. This is due 
to the fact that a new interfacial phase, the polymer–filler 
interface, is created in CPEs. New ion transport channels 
will be formed at this interface. This interfacial effect can be 
attributed to the Lewis acid–base interaction among lithium 
salt–filler–polymer. The intensity of Lewis acid–base inter-
actions is related to the species, morphology, concentration 
and surface properties of the inorganic filler. Besides, the 
special structures of inorganic fillers, such as nanowires, 
3D network structures, and vertically aligned structures, can 
increase the u. Next, functionalized inorganic fillers, such as 
Lewis acid or base sites on the surface, can accelerate the 
dissociation of lithium salts and promote the coordination 
of the polymer with lithium ions. Also, Lewis acid–base 
interactions can increase the n in the CPEs systems. They 
both contribute to the ionic conductivity of the CPEs. In 
addition, the special characteristics of the fillers, such as the 
surface with positive charges, -HSO3, -NH2, -COOH, gen-
erally interact with the lithium salt in two ways: increasing 

Fig. 18  Temperature dependence of ionic conductivity



Nano-Micro Lett.           (2023) 15:74  Page 29 of 37    74 

1 3

the mobility of the lithium ion or limiting the motility of the 
anion. Those interactions all contribute to  tLi

+.
Therefore, based on the above analysis, we speculate that:
When T < Tm, the ionic conductivity of the electrolyte 

is significantly different for fillers doped or not. As shown 
in Fig. 18, the ionic conductivity of CPEs is significantly 
higher than that of SPEs. Even the curve changes relatively 
slowly. For this, we speculate that the ionic conductivity of 
CPEs is mainly controlled by the crystallization of the poly-
mer in the low-temperature region. When the filler is doped, 
the crystalline structure of the polymer is disrupted allowing 
an additional region for ion conductivity.

Notably, Lewis acid–base interactions at the filler–poly-
mer interface are also present. At this point, the lithium-ion 
transport behavior is quite complex and governed by sev-
eral factors. Therefore, ∆σ1 is a combination of the inhibi-
tion of polymer crystallization by the filler and the Lewis 
acid–base interactions. When T > Tm, we roughly assume 
that the polymer is completely in the amorphous state. At 
this moment, the thermal motility of the polymer chains is 
consistent under the same temperature conditions. When 
the filler is incorporated, we find that the ionic conductiv-
ity of the CPEs is elevated compared to that of the SPEs. It 
can be approximated that ∆σ2 is the contribution of Lewis 
acid–base interactions at the filler–polymer interface.

However, we found that current research regarding Lewis 
acid–base interactions is generalized. We need to clarify the 
types of Lewis acid–base interactions, such as electrostatic 
interactions, van der Waals forces, hydrogen bonds, π-π 
interactions, etc. Even in CPEs, it should be fully understood 
which components are the Lewis acids or Lewis bases. In 
addition, the effects of the same type of inert filler  (Al2O3, 
 SiO2,  TiO2,  Ba2TiO3, etc.) or active filler (LLZTO, LLZO, 
LATP) on the ionic conductivity,  tLi

+, etc., of CPEs still need 
to be further investigated. This kind of research is impor-
tant for finding the best-performance inorganic fillers for the 
application of CPEs.

Furthermore, the impact of the interface compatibility 
needs to be considered. In recent years, many bulk phase 
problems, such as the ionic conductivity and  tLi

+, have 
been greatly improved with the increasing research works 
on CPEs. However, in general, the diffusion of ions at the 
electrode–electrolyte interface depends on the interfacial 
contact. Thus, the electrode–electrolyte interface needs to 
be focused on. On the anode side, the cell is prone to une-
ven lithium deposition and dendrite growth during lithium 

embedding and delithiation at high current densities. The 
ability to resist high voltage on the cathode is the key for 
the electrolyte to be applied in high energy density batteries. 
Thus, the chemical, electrochemical, mechanical and ther-
mal stability of the electrode–electrolyte interface becomes 
another bottleneck in the development of SSLBs. For the 
electrode–electrolyte interface, CPEs need to possess the 
following properties:

(1) Adhesion. To minimize the interfacial resistance 
caused by physical contact, the solid-state electrolyte 
must have good adhesion to the electrode. This may be 
accomplished by adding some additives, such as plas-
ticizers or liquid electrolytes. However, the amount of 
plasticizer must be strictly controlled. Otherwise, the 
mechanical strength of the solid-state electrolyte will 
be reduced, which can be fatal to the long cycle life of 
the battery.

(2) Efficient and uniform ion transport channels. The une-
ven deposition of lithium ions on the anode can lead 
to lithium dendrites, which can threaten the safety of 
the battery. On the one hand, the space for dendrite 
growth is reduced by decreasing the physical spaces 
between the lithium metal and the electrolyte. On the 
other hand, the uniform deposition of lithium ions is 
induced by regulating the electrolyte bulk phase. There 
are two approaches: one is to establish fast and uniform 
ion transport pathways in the electrolyte to accelerate 
ion transport and reduce the inhomogeneous charge 
distribution at the anode. Some ceramic components 
with different morphologies, such as 3D frameworks, 
nanowires and nanosheets, can accelerate ions trans-
port. Among them, 3D frameworks and nanowires are 
of interest because of their long-range continuous ion 
conduction channels. Second, doping the electrolyte 
with some low-potential elements is another effective 
method for inducing uniform lithium deposition.

(3) High-pressure compatibility. Most solid-state electro-
lytes easily decompose when in contact with electrode 
materials. The interfacial stability of the cathode can 
be enhanced by changing the HOMO of the polymer 
through Lewis acid–base interactions. Some inorganic 
fillers  (Al2O3, etc.) with small molecule plasticizers 
(SN, etc.) are suitable candidates.
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