Supporting Information for

Ionic Liquid Assisted Imprint for Efficient and Stable Quasi-2D

Perovskite Solar Cells with Controlled Phase Distribution

Haibin Peng^{1, #}, Dengxue Li^{2, #}, Zongcai Li², Zhi Xing^{2, 3}, Xiaotian Hu^{2, 4}, Ting Hu^{1, 4},

*, Yiwang Chen^{2, 3, 4, *}

¹ Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China

² College of Chemistry and Chemical Engineering | Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China

³ National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, P. R. China

⁴ Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, P. R. China

[#]H. Peng and D. Li contributed equally to this work.

*Corresponding authors. E-mail: <u>huting@ncu.edu.cn</u> (Ting Hu); <u>ywchen@ncu.edu.cn</u> (Yiwang Chen)

Supplementary Figures and Tables

Fig. S1 XPS spectra of Pb 4f for pristine, imprint, and IWM films

Fig. S2 Dynamic light scattering shows the particle size distribution of precursor solutions with and without MAAc

Fig. S3 The attenuated total reflection Fourier-transform infrared spectra of the MAAc and the solution prepared by dissolving PbI_2 in MAAc. The arrows indicate shifts of the asymmetric and symmetric stretching vibrations of CH_3COO^- upon interaction with Pb^{2+}

Fig. S4 XRD patterns of pristine, imprint and IWM perovskite films

Fig. S5 XRD patterns of different imprinting temperatures

Fig. S6 The ultraviolet photoelectron spectroscopy (UPS) of pristine, imprint and IWM perovskite film

Fig. S7 Steady-state power output (SPO) and current density, measured for 400 s under the maximum power point (AM 1.5G, 100 mW cm⁻²) at bias voltage recorded in the J-V curves

Fig. S8 J-V curves of pristine, imprint, and IWM (n=50) perovskite devices under reverse and forward scan directions

Fig. S9 Voc, Jsc and FF distributions of pristine, imprint, and IWM perovskite devices

Fig. S10 The water contact angle of pristine, imprint, and IWM perovskite film

Fig. S11 SEM-EDS mappings of Si, F, Pb, and I elements for IWM perovskite film on ITO substrate

Fig. S12 Pictures of fresh and aged pristine, imprinted and IWM quasi-2D perovskite film by being stored in air with a relative humidity of 55-65% at 25 °C

Fig. S13 UV absorption variation curves of unsealed pristine, imprint and IWM perovskite devices under continuous UV light

Fig. S14 PCE variation curves for unsealed devices with different n values in air at 25° C and 55% RH

Fig. S15 a Continuous MPP tracking for the unencapsulated pristine, imprint and IWM devices under AM 1 sun illumination in N_2 . b Variation of the PCEs at damp-heat test of pristine, imprint and IWM devices

n value	PVK		Device structure		PCE (%)	Method	Refs.
5	(4FPEA) ₂ (FA) ₄ Pb ₅ I ₁₆ PTA		(ITO)/ TAA/2D RP perovskites/PCBM/ BCP/Ag		20.0	Component regulation and additives	[S1]
5	(PEA) ₂ (MA) ₄ Pb ₅ I ₁₆		(ITO)/PEDOT:PSS /perovskites/PCBM/BCP/Ag		14.1	Additive strategy	[S2]
5	5 4-BrPEA ₂ MA ₄ Pb ₅ I ₁₆		(FTO)/TiO ₂ /perovskites/2,2',7,7'- Tetrakis[<i>N</i> , <i>N</i> -di(4- methoxyphenyl)amino]-9,9'-spiro- bifluorene (Spiro- OMeTAD)/MoO ₃ /Ag		15.2	Additive strategy	[S3]
5	$(PEA)_2(MA)_4Pb_5I_{16}$		ITO/PTAA/2D RP perovskites /PC ₆₁ BM/PEI/Ag		18.04	Vacuum Poling	[S4]
60	(PEA) ₂ (Cs) ₅₉ Pb ₆₀ I ₁₈	I ₁₈ 1 (ITO)/SnO ₂ /2D RP perovskites/spiro-MeOTAD/Au		12.4	Component regulation	[85]	
50	(PEA) ₂ (MA) ₄₉ Pb ₅₀ Br ₁₅₁ (FTO)/B.L/TiO ₂ /2D RP perovskites/ spiro-MeOTAD/Au		8.5	Component regulation	[S6]		
50	(PEA) ₂ (MA) ₄₉ Pb ₅₀ I ₁₅₁ (ITO)/SnO ₂ /2D RP perovskites/spiro-MeOTAD/A)/Ag	18.9	Imprint and additives	This work
Table S2 Stability performance of high n-value 2D perovskites in the literature							
general formula		n values	device architecture	PCE (%)	stability (retained PCE, time, condition)		Refs.
(PEA) ₂ (MA) ₃₉ Pb ₄₀ I ₁₂₁		40	Au/Spiro- OMeTAD/pvk/TiO ₂ /FTO	16.47	92.2% of PCE after 1344 h, in the N ₂ environment		[S7]
$(C_6H_5CH_2NH_3)_2(FA)_8Pb_9I_{28}$		9	Au/Spiro- OMeTAD/pvk/m- TiO ₂ /bl- TiO ₂ /FTO	17.4	80.0% of PCE after 500 h, in the 80% relative humidity		[S8]
$(PEA)_2Cs_{39}Pb_{40}I_{121}$		40	Au/Spiro- OMeTAD/pvk/SnO ₂ /ITO	11.3	93% of PCE after 960 h, in the ambient atmosphere		[S5]
$4TFBZA_2MA_{59}Pb_{60}I_{181}$		60	Ag/Spiro- OMeTAD/pvk/SnO ₂ /ITO	17.07	84% of PCE after 1080 h, in the N2 environment		[89]
(PEA)2(MA)49Pb50I151			(ITO)/SnO ₂ /2D RP		~82% of PCE being		This
		50	perovskites/spiro- MeOTAD/Ag	18.9	after 24(N2 ei	00 h. at 25°C in ivironment	work

S7/S8

Supplementary References

- [S1]M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin, F. He, N. Zheng, Y. Yu, and X. Zhang, Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 34, 2107211 (2022). <u>https://doi.org/10.1002/adma.202107211</u>
- [S2]W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett. 3, 2086 (2018). <u>https://doi.org/10.1021/acsenergylett.8b01181</u>
- [S3]D. Liang, C. Dong, L. Cai, Z. Su, J. Zang et al., Unveiling crystal orientation in quasi-2D perovskite films by in situ GIWAXS for high-performance photovoltaics. Small 17, 2100972 (2021). <u>https://doi.org/10.1002/smll.202100972</u>
- [S4]J. Zhang, J. Qin, M. Wang, Y. Bai, H. Zou et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3, 3061 (2019). <u>https://doi.org/10.1016/j.joule.2019.09.020</u>
- [S5]Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang et al., Reduced-dimensional α-CsPbX₃ perovskites for efficient and stable photovoltaics. Joule 2, 1356 (2018). <u>https://doi.org/10.1016/j.joule.2018.05.004</u>
- [S6]X. Li, K. Li, B. Wang, X. Zhang, S. Yue et al., Efficient and stable quasi-2D perovskite solar cells enabled by thermal-aged precursor solution. Adv. Funct. Mater. **31**, 2107675 (2021). <u>https://doi.org/10.1002/adfm.202107675</u>
- [S7]L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard et al., Ligandstabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649 (2016). <u>https://doi.org/10.1021/jacs.5b11740</u>
- [S8]H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8, 1800051 (2018). <u>https://doi.org/10.1002/aenm.201800051</u>
- [S9]D. Li, Z. Xing, L. Huang, X. Meng, X. Hu et al., Spontaneous formation of upper gradient 2D structure for efficient and stable quasi-2D perovskites. Adv. Mater. 33, 202101823 (2021). <u>https://doi.org/10.1002/adma.202101823</u>