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Fig. S1 A scheme to synthesize sulfornated PVdF (S-PVdF) from PVdF through simple chemical

reaction.
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Fig. S2 FT-IR spectra of S-PVdF and PVdF binders.
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Fig. S3 'H NMR spectra of S-PVdF and PVdF binders.
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Fig. S4 Nyquist plots of S-PVdF and PVdF binders and their ionic conductivities.
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Fig. S5 FTIR spectra of binder before and after electrolyte soaking. a PVAF binders before and
after electrolyte soaking. b S-PVdF binders before and after electrolyte soaking.

We have confirmed that the sulfonate groups in S-PVdF binders can provide abundant

coordination sites with Zn** by Fourier transformation infrared spectrum (FTIR). After soaking

in electrolyte for 24 h, the 1277 cm™! symmetric O=S=0 peak shifts to a wave number (1271

cm ') in S-PVdF binders, which suggests that the Zn" ions interact with sulfonate groups [1].
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Fig. S6 XPS spectrum of Zn 2p in PVdF binders a before and b after electrolyte soaking. XPS
spectrum of Zn 2p in S-PVdF binders ¢ before and d after electrolyte soaking.

We also measured the binding energy of PVDF and S-PVDF to zinc ions via X-ray
photoelectron spectroscopy (XPS). As can be seen in Fig. S6, XPS analysis exhibits the
characteristic binding energies of Zn 2p3,2 and Zn 2pi12 0of 1022.3 and 1045.4 eV in S-PVdF [2].
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Fig. S7 a SEM image and b XRD pattern of NH4V4O10 (NHVO).



Fig. S8 Cross-sectional SEM image of a cathode with a S-PVdF binders and b its magnification.
Cross-sectional SEM image of a cathode with ¢ S-PVdF binders and d its magnification after

the calendering process.



Fig. S9 a SEM images of cathodes with S-PVdF binders and b its magnification. SEM images
of cathodes with ¢ PVdF binders and d its magnification.
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Fig. S10 CV profiles of full cells with S-PVdF and PVdF binders at 0.2 mV s .
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Fig. S11 Rate capability of cathodes with different binders.
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Fig. S12 Cycling performances of full cells with different binders at a low current density of

0.5Ag" (~0.1C).
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Fig. S13 a SEM image and b XRD pattern of 6-MnO:x.

To prove the universality of the binder, 5-MnO: was prepared. First, 1.2g of KMnO4 and 0.215
g of MnSO4 were dissolved in 130 ml DIW. Then, the solution was put into a Teflon-contained
autoclave and heated at 160 °C for 12 h. After cooling and centrifugation, the product was
rinsed with DIW several times. Finally, -MnO:2 was obtained after drying in a convection oven
at 80 °C for 12 h. Next, the 6-MnO: was cast on stainless (SUS) foil and composed of three
components: active material, conductive materials, and binders in the weight ratio of 7:2:1.
Denka black was selected as the conductive material. Slurries containing the three components
in N-methyl-2-pyrrolidone (NMP) were cast onto SUS foil (20 pm thick) via the doctor blading
method, followed by a drying step at 80 °C for 12 h under vacuum. The active mass loadings
for the cathode materials were ~ 3 mg cm™. The full cell with S-PVdF binders showed a higher
reversible capacity (282 mAh g ') than those with PVdF binders (237 mAh g!) at the same
mass loading of 3 mg cm™) at a current density of 0.2 A g~'. Moreover, the full cell with S-
PVdF showed higher reversible capacities in the cycle test. More importantly, it retained a
highly improved capacity of ~ 185 mAh g ! with a durable capacity retention of 66% after 200
cycles at 0.2 A g'!. On the other hand, only a 20% capacity (49 mAh g ') was obtained in the
full cell with PVdF binders after the cycle test.
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Fig. S14 EIS spectra of a before and b after long-term cycling (3000 cycles at 10 A g!). ¢
Corresponding equivalent circuit. Ri and Rs are the ohmic resistance of solution and electrodes.

Ret is the charge-transfer resistance. Ci1 and Cz are the constant phase element of the double-

layer capacitance, respectively. Zw is the Warburg impedance.
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Fig. S15 '"H NMR spectra of binders with different sulfonation degrees.
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Fig. S16 a Galvanostatic cycling performances of cathodes with different binders at a current

density of 1 A g''. b Contact angle of the cathode with S-PVdF binder (low sulfonation degree
of 5%).
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Fig. S17 High-resolution XPS spectra of S-PVdF films before and after being immersed into
cathode-dissolved electrolytes. a S2p and b O1s spectra peaks of immersed S-PVdF film before
being immersed into cathode-dissolved electrolytes. ¢ S2p and d Ols spectra peaks S-PVdF

film after being into cathode-dissolved electrolytes.

To clarify the suppression of vanadium dissolution of vanadium-based active materials, we
prepared cathode-dissolved electrolyte. First, 0.1 g of the vanadium-based active materials
(NH4V4010) were immersed into 10 ml of 2 M ZnSO4 aqueous electrolytes. Then, the solution
was kept in an oven for 24 h at 70 °C and purified via filtration by 0.45 um syringe filter. S-
PVdF films for measuring ionic conductivities were also used here. The films were immersed

into the yellowish cathode-dissolved electrolyte for 24 h at room temperature. Then, the films



were rinsed with DIW and ethanol several times. Finally, the films were dried in a convection

oven at 80 °C for 12 h.
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