Supporting Information for

Nanocellulose-Assisted Construction of Multifunctional MXene-

Based Aerogels with Engineering Biomimetic Texture for Pressure

Sensor and Compressible Electrode

Ting Xu^{1, †}, Qun Song^{2, †}, Kun Liu^{1, †}, Huayu Liu^{1, †}, Junjie Pan², Wei Liu^{1, 2}, Lin Dai¹, Meng Zhang¹, Yaxuan Wang¹, Chuanling Si^{1, 4} *, Haishun Du^{3, *}, and Kai Zhang^{2, *}

¹State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China

²Sustainable Materials and Chemistry, Department of Wood Technology and Woodbased Composites, University of Göttingen, Göttingen D-37077, Germany

³Department of Chemical Engineering, Auburn University, Auburn AL-36849, USA

⁴State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, P. R. China

[†]Ting Xu, Qun Song, Kun Liu, and Huayu Liu contributed equally to this work.

*Corresponding authors. E-mail: kai.zhang@uni-goettingen.de (K. Zhang); sichli@tust.edu.cn (C. Si); hzd0024@auburn.edu (H. Du)

Supplementary Figures

Fig. S1 The TEM images of (a) CNF and (b) MXene, and (c) AFM image of MXene S1/S16

Fig. S2 XRD patterns of raw material (Ti₃AlC₂), etched Ti₃C₂T_x, and Ti₃C₂T_x

Fig. S3 XRD pattern of CNT/MXene (1:7) aerogel

Fig. S4 XPS spectrum of (**a**) CNF/CNT/MXene (3:1:6), CNF/CNT/MXene (2:1:7), and CNF/CNT/MXene (1:1:8) aerogels. (**b**) XPS high-resolution C 1s spectra of CNF/CNT/MXene (2:1:7) aerogel

Fig. S5 (a) The top-view and (b) side-view SEM images of CNF/CNT/MXene (1:1:8) aerogel. (c) The top-view and (d) side-view SEM images of CNF/CNT/MXene (3:1:6) aerogel

Fig. S6 The optical image of compression and recovery process of the CNF/CNT/MXene (2:1:7) aerogel

Fig. S7 Stress-strain curves of CNT/MXene (1:7) aerogel at different compression strains

Fig. S8 Stress-strain curves of (**a**) CNF/CNT/MXene (1:1:8) aerogel and (**b**) CNF/CNT/MXene (3:1:6) aerogel at different compression strains

Fig. S9 Stress-strain curves of CNF/CNT/MXene (2:1:7) aerogel in Y-direction and Z-direction

Fig. S10 The changes of bulb brightness under different strains in a closed circuit

Fig. S11 Digital photo of the assembled sensor

Fig. S12 Current response at different pressures with a voltage ranging from -2 to 2 V

Fig. S13 Response and recovery times of the sensor

Fig. S14 Current signals from speaking different words

Fig. S15 (**a**, **b**) CV curves at different scan rates and (**c**) GCD profiles at different current densities of CNF/CNT/MXene (2:1:7) aerogel electrode. (**d**) Specific capacitance of CNF/CNT/MXene (2:1:7) aerogel electrode based on the GCD profiles

Fig. S16 (a, b) CV curves at different scan rates and (c) GCD profiles at different current densities of CNF/CNT/MXene (1:1:8) aerogel electrode. (d) Specific capacitance of CNF/CNT/MXene (1:1:8) aerogel electrode based on the GCD profile

Fig. S17 (**a**, **b**) CV curves at different scan rates and (**c**) GCD profiles at different current densities of CNF/CNT/MXene (3:1:6) aerogel electrode. (**d**) Specific capacitance of CNF/CNT/MXene (3:1:6) aerogel electrode based on the GCD profiles

Fig. S18 Cycling stability of compressible supercapacitors over 10000 cycles at 10 mA cm^{-2}

Fig. S19 CV curves of compressible supercapacitor under various strains from 0% to 80%

Fig. S20 The capacitance retention under various strains from 0% to 80%

S1/S16

CNF/CNT/MXene aerogels	CNF	CNT	MXene
CNF/CNT/MXene (3:1:6)	3	1	6
CNF/CNT/MXene (2:1:7)	2	1	7
CNF/CNT/MXene (1:1:8)	1	1	8
CNT/MXene (1:7)	0	1	7

Table S1 The prepared CNF/CNT/MXene aerogels with different mass ratio

Table S2 The density and conductivity of different CNF/CNT/MXene aerogels

Sample of aerogels	Density (g cm ⁻³)	Conductivity (S m ⁻¹)
CNF/CNT/MXene (1:1:8)	8.0	1650
CNF/CNT/MXene (2:1:7)	7.5	2400
CNF/CNT/MXene (3:1:6)	7.8	820

 Table S3 Comparison of sensor performance of CNF/CNT/MXene aerogel with those

 compressible MXene-based aerogels and carbon aerogels

Materials	Sensitivity (kPa ⁻¹)	Pressure range (kPa)	Response/ recovery time (ms)	Long-term stability	Refs.
MXene/silver nanowires aerogel	645.69	0-1	60/144	2000	S 1
CNFs/Lignin carbon aerogels	5.16	0-16.89	65/52	1000	S2
Aramid Nanofibers/ MXene Aerogel	128	0-5	320/98	-	S3
MXene/CNF foam	419.7	0-8.04	123/139	10000	S4
MXene/Polyaniline/ Bacterial cellulose aerogel	327.22	0-3	-	-	S5
CNF/CNT/RGO carbon aerogels	5.61	0-0.21	-	2000	S6
CNF/CNT/MXene aerogel	817.3/234.9	0-0.2/0.2-1.5	74/50	2000	Our work

Supplementary References

- [S1] L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, Compressible AgNWs/Ti₃C₂T_X MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A 8, 20030-20036 (2020). <u>https://doi.org/10.1039/D0TA07044K</u>
- [S2] Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30, 1910292 (2020). <u>https://doi.org/10.1002/adfm.201910292</u>

- [S3] L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti₃AlC₂ MXene composite aerogel for sensitive pressure sensor. ACS Nano 14, 10633-10647 (2020). <u>https://doi.org/10.1021/acsnano.0c04888</u>
- [S4] T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021). <u>https://doi.org/10.1016/j.nanoen.2021.106151</u>
- [S5] H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti₃C₂T_x MXene/PANI/Bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987-45994 (2021). <u>https://doi.org/10.1021/acsami.1c12991</u>
- [S6] H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2113082 (2022). <u>https://doi.org/10.1002/adfm.202113082</u>