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HIGHLIGHTS

• Self-healing graphene- and MXene-based composites can be deployed in wearable sensors, supercapacitors, anticorrosive coatings, 
electromagnetic interference shielding, electronic-skin, and soft robotics.

• Self-healing graphene- and MXene-based composites have shown improved electrical conductivity, mechanical properties, healing 
efficacy, and energy conversion efficacy.

• Self-healing structures can open up considerable new horizons in the future of healthcare, sensors, electronics, robotics, supercapaci-
tors/batteries, coatings, and biomedicine.

ABSTRACT Today, self-healing graphene- and MXene-based com-
posites have attracted researchers due to the increase in durability as 
well as the cost reduction in long-time applications. Different studies 
have focused on designing novel self-healing graphene- and MXene-
based composites with enhanced sensitivity, stretchability, and flex-
ibility as well as improved electrical conductivity, healing efficacy, 
mechanical properties, and energy conversion efficacy. These compos-
ites with self-healing properties can be employed in the field of wear-
able sensors, supercapacitors, anticorrosive coatings, electromagnetic 
interference shielding, electronic-skin, soft robotics, etc. However, it 
appears that more explorations are still needed to achieve composites 
with excellent arbitrary shape adaptability, suitable adhesiveness, ideal 
durability, high stretchability, immediate self-healing responsibility, 
and outstanding electromagnetic features. Besides, optimizing reaction/synthesis conditions and finding suitable strategies for function-
alization/modification are crucial aspects that should be comprehensively investigated. MXenes and graphene exhibited superior elec-
trochemical properties with abundant surface terminations and great surface area, which are important to evolve biomedical and sensing 
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applications. However, flexibility and stretchability are important criteria that need to be improved for their future applications. Herein, 
the most recent advancements pertaining to the applications and properties of self-healing graphene- and MXene-based composites are 
deliberated, focusing on crucial challenges and future perspectives.

KEYWORDS MXenes; Graphene; Self-healing materials; Electromagnetic interference shielding; Wearable sensors

1 Introduction

When damage occurred for a part of our body, a series of 
teamwork protective activities will start with the biological 
systems of the body to heal the injured part and regener-
ate its function. These events had been inspired a group of 
scientists the fabrication of self-healing materials that was 
introduced in 1970 by Malinskii et al. for the first time [1, 
2]. During the healing process, the creation of a crack leads 
to the migration of healing agents toward the crack site due 
to the capillary effect followed by the catalytic crosslink-
ing reactions that repair the crack [3]. The healing process 
is done via two different types of materials: (i) autonomic 
materials that have autoreactive properties for healing the 
crack and use the forces between different molecules or the 
cleavage and reconstruction of different chemical bonds for 
the healing process [1, 4], and (ii) non-autonomic materials 
that could act only in the presence of an external assistance 
like pH, light, or heat or an internal stimulation [5]. In this 
category, the reversible chemical bonds are usually created 
via two main types of dynamic bonds: supramolecular inter-
actions (e.g., hydrogen bond, metal–ligand complexation, 
π–π stacking, and ionic, hydrophobic, or host–guest interac-
tions) and reversible covalent bonds [6].

So far different types of materials have been introduced 
for self-healing applications from different types of hydro-
gels to polymers, ceramics, metals, carbon nanocomposite, 
etc. Each of these materials has their specific features and 
limitations that could restrict their applications and make it 
important to apply some modifications on them. For exam-
ple, autonomous healing in metal components is restricted 
and could be happened in high temperatures [7]. Polymers 
are the most extensively researched group of materials used 
for the fabrication of self-healing compounds with ideal 
processability, light weight, and chemical stability make 
them as a good choice to be applied in different fields from 
spacecraft, ships, and cars, to electronic and medicine [3, 8].

Application of nanomaterials in the field of self-healing 
opens a new era in this field [9, 10]. Indeed, nanomaterials 
could act as healing agents due to their migration ability to 

the crack area via an autonomous or stimulation reaction or 
could be applied with a healing component to improve other 
properties of the composite. They could facilitate the healing 
process via improving mechanical, biological, electrical, and 
functional properties, enhancing the half-life of materials, 
decreasing the cost, and finally elevating the comfort and 
efficiency [11, 12]. One of the interesting groups of these 
nanocomposites is two-dimensional (2D) nanostructures [13, 
14], like graphene and MXene families [15–19].

Graphene is fabricated from a single layer of carbon 
atoms in  sp2 form with features such as large specific sur-
face area, unique mechanical/electrical features, energy-
absorbing capability, and thermal conductivity [20]. Based 
on the fabrication method and materials used, some other 
atoms are added to the carbon body of graphene that leads 
to the fabrication of other derivatives of graphene including 
graphene oxide (GO), reduced GO (rGO), carbon nanotube 
(CNT), etc. Due to their interesting features, the combination 
use of this family with self-healing structures could fabricate 
composites with interesting electrical and mechanical fea-
tures. For instance, a porous conductive composite of rGO 
and a hydrogel-type shielding material was fabricated by Lai 
et al. [21] for the superb electromagnetic interference (EMI) 
shielding application. The fabricated composite had interest-
ing features like excellent arbitrary shape adaptability, good 
adhesiveness, ideal durability, high stretchability, immedi-
ate self-healing responsibility, and superb electromagnetic 
feature (90.63 dB) with low reflection (6.41 dB) (Fig. 1).

MXenes are a new class of 2D materials that are com-
posed of nitrides, carbides, and carbonitrides of transi-
tion metals with  Mn+1Xn (n = 1–3) formula, in which M 
is referred to the early transition metal (like Nb, Ta, Hf, 
Mo, V, Zr, Cr, Sc, Ti) and X refers to the carbon or nitro-
gen [22–24]. They were introduced in 2011 for the first 
time and have the capability of utilizing in different fields 
from energy evolution and environmental science to phys-
ics and biomedicine (especially nanomedicine) [25–30]. 
These are hydrophilic structures with several surface 
functional groups (such as oxygen, hydroxyl, and fluo-
rine) and fascinating properties like high biocompatibility, 
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good degradability, excellent aqueous dispersibility, and 
flexibly functionalized materials [31–35]. Utilizing the 
composites of MXenes with hydrogel could improve the 
sensitivity, stretchability, and flexibility of hydrogels from 
one side and prove the photothermal, electrical, and self-
healing ability from the other side (Fig. 1) [36, 37]. The 
self-healing property of the MXenes has resulted from 
the recombination of the hydrogen bonds formed between 
different hydrophilic groups of MXene sheets and the 
interlayers’ water molecules, the same as what is hap-
pening for GO [38]. A variety of functionalized MXenes 
and MXene hybrids have been introduced with improved 
environmental stability, multifunctionality, stimuli-respon-
siveness behavior, biocompatibility/lower toxicity, contrast 
enhancement, and flexibility/stretchability for electronics, 
catalysis, energy storage, sensing/imaging, drug deliv-
ery, and cancer theranostics. Besides, MXenes and their 
derivatives can be further intercalated or hybridized with 
metals, graphene/its derivative, carbon dots, metal–organic 
frameworks (MOFs), and CNTs to improve their properties 

and functionalities [39–46]. Application of MXenes in the 
structure of a smart compression sensor led to an enhance-
ment in the current, especially under heating conditions, 
and due to the contact created between different MXene 
nanosheets [47]. This self-healing feature along with the 
anticorrosion activity of MXene makes them suitable for 
using (in a composite form) as an anticorrosion coating 
[48].

Due to the fascinating properties and unique capabili-
ties of self-healing graphene- and MXene-based com-
posites, herein, the most recent advancements pertaining 
to the applications of these composites are deliberated, 
focusing on current challenges and future perspectives. In 
detail, we have described the current research performed 
on the application of self-healed graphene- and MXene-
based composites in different fields from wearable sen-
sors and supercapacitors to anticorrosive performance and 
EMI shielding materials, as well as the challenges related 
to the use of these materials, and their future probable 
applications.

Fig. 1  Schematic illustration of synthesis and advantages of MXenes and graphene family. Reproduced with permission from Refs. [49–51]. 
Copyright 2021 De Gruyter, 2020, American Chemical Society 2021, and American Association for the Advancement of Science
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2  Self‑healing MXene‑Based Composites

2.1  Wearable Sensors

MXenes and their composites have been employed to design 
various novel hydrogel-based sensors with versatile applica-
bility in personal healthcare monitoring, soft robotics, and 
electronic-skin (E-skin). In this context, one of the challeng-
ing issues is their self-healing capability as well as adhesive-
ness for full-scale monitoring of human motions [52]. In one 
study, MXenes have been used to activate the rapid gelation 

of various polymeric hydrogels initiating from monomers, 
namely N-isopropylacrylamide, poly(ethylene glycol) dia-
crylate, acrylamide, aniline, hydroxyethyl methacrylate, 
and N,N-dimethylacrylamide, acrylic acid [36]. They have 
been deployed for enhancing the stretchability of hydro-
gels, providing great opportunities to design novel MXene-
based hydrogels with self-healing capacities for wearable 
and stretchable electronic applications. In an impressive 
study,  Ti3C2Tx MXene with advantages of unique adhe-
sion, mechanical features, and self-healing potential was 
employed as a 2D conductive crosslinker for initiating the 

Fig. 2  A The preparative process of PAA-MXene hydrogels, with related gelation mechanism. APS: ammonium persulfate; AA: acrylic acid. 
Reproduced from Ref. [36] with permission. Copyright, 2021 American Chemical Society. B The preparative process of MXene/polyampholytes 
(PMN) nanocomposite hydrogel using a one-step radical polymerization of 3-(methacryloylamino) propyl-trimethylammonium chloride (MPTC, 
cationic monomer) and sodium p-styrenesulfonate (NaSS, anionic monomer). Reproduced with permission from Ref. [52]. Copyright 2022 Else-
vier
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polymerization and rapid gelation of polymeric hydrogels 
within several minutes (Fig. 2A) [36]. To fabricate poly-
acrylic acid (PAA)-MXene hydrogels, nanosheets of  Ti3C2Tx 
were mixed with acrylic acid (the monomer) after addition 
of glycerol and ammonium persulfate. When MXenes with 
excellent photothermal features were incorporated in poly-
meric hydrogels encompassing unique phase-transforming 
properties, MXene hydrogel-based binary-layered actuator 
could be prepared [36]. However, more explorations are 
still needed for designing flexible sensors with self-healing, 
excellent sensitivity, and large stretchability. Despite the 
applicability of hydrogel-based wearable sensors in E-skin, 
healthcare monitoring, and human–machine interfaces, sev-
eral crucial challenges still exist regarding their stability in 
a wide temperature range, adhesion, and sensitivity. Wang 
et al. [53] fabricated sensors utilizing oxidized sodium algi-
nate, polyacrylamide, polydopamine-MXene  (Ti3C2Tx), and 
glycerol/water. These organohydrogels with unique mechan-
ical features such as the tensile strength of 0.17 MPa and 
elongation at break of 1037%, exhibited self-healing per-
formance (the self-healing efficiency was ~ 91%) along with 
significant sensing potentials (high sensitivity with gauge 
factor of 2.2) in a broad range of temperatures (− 20–60 °C). 
Polydopamine and viscous glycerin were introduced in these 
hydrogels to provide high adhesion properties. The high sen-
sitivity could be obtained because of the combination of 
ionic and electron conduction, offering great opportunities 
for the detection of human movements at different tempera-
tures and extreme conditions [53].

MXenes are disposed to oxidation owing to their abun-
dant hydroxyls, resulting in instability in their conductiv-
ity particularly when they are employed in hydrogels. Qin 
et al. [54] introduced PAA/polyacrylamide/MXene/tannic 
acid hydrogels as strain sensors with improved conductiv-
ity, wherein tannic acid prevented MXenes from oxidation 
due to the excellent deal of pyrogallol groups. These bio-
compatible hydrogels displayed suitable tensile strength 
(0.251 ± 0.05  MPa), toughness (0.895 ± 0.16  MJ   m−3), 
and elongation at break (560.82 ± 19.56%), showing good 
stretchability. The introduction of MXenes and tannic acid 
could provide good restorability and self-healing properties 
into hydrogel because of the presence of hydrogen bonds 
[54]. In addition, ultra-stretchable MXene/polyampholytes 
nanocomposite hydrogels were constructed with self-heal-
ing properties and multifunctionality (Fig. 2B) [52]. These 
hydrogels could be prepared through the one-step radical 

polymerization of cationic and anionic monomers. Remark-
ably, the simultaneous robust and weak ionic bonds-based 
crosslinking inside these hydrogels gifted them fascinating 
properties of stretchability, toughness, self-healing, and 
adhesiveness; MXenes were introduced in these compos-
ites to gain proper mechanical and conductivity features. 
The MXene/polyampholytes composites were employed to 
design wearable epidermal sensor with high accuracy and 
sensitivity for specific recognition of human motions. This 
sensor could be employed in designing detectors for real-
time activity monitoring in patients, helping them for better 
management and treatment of their diseases. Developments 
in personalized healthcare monitoring, artificial intelligence, 
and human–machine interfaces can significantly help to 
design smart MXene-based sensors and next-generation 
devices with clinical and biomedical applications [52]. Simi-
larly, epidermal sensor assembled from conductive MXene 
nanostructures were developed with good flexibility and 
conductivity along with self-healing, long-lasting moisture 
retention, and self-adhesiveness capabilities [55]. This sen-
sor with durable stability could be applied for human motion 
biomonitoring. The nanocomposites were obtained from the 
conformal coating of the MXene nanosheet network using 
polymer networks of phenylboronic acid- and dopamine-
grafted sodium alginate as well as polyacrylamide with a 
glycerol/water binary solvent as the dispersion medium [55].

MXene-based composites have been designed with flex-
ibility, multifunctionality, and conductivity as wearable 
and stretchable strain sensors, showing excellent capabili-
ties in E-skin, human detection sensors, and soft robotics 
[37]. But, important challenges still exist pertaining to the 
design of these composites to concurrently show enough 
stretchability, self-healing, sensing, and flexibility proper-
ties. Silicone polymer conductive composites were fabri-
cated with good electrical conductivity utilizing MXenes 
 (Ti3C2) and amino poly(dimethylsiloxane) [37]. Accord-
ingly, the conductive composites with suitable tensile and 
self-healing potentials could be employed to design wearable 
strain sensors for specific detection of swallowing, press-
ing, speaking, etc. Notably, after repair, their tensile fea-
tures and electrical conductivity were still remained ~ 98.4% 
and ~ 97.6%, respectively [37]. Wang et al. [56] developed 
a sensitive strain sensor using stretchable and self-healing 
conductive composites of L-citrulline-modified MXenes/
polydimethylsiloxane, showing high sensitivity toward 
human activities/movements such as finger joint flexion, 
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swallowing, and flexion. The addition of L-citrulline-mod-
ified MXenes could also enhance the electrical conductiv-
ity. The mechanical stress and strain of these composites 
could reach to ~ 4.78 MPa and 413%, respectively. In addi-
tion, after 24 h of repair without external stimulation, they 
exhibited suitable self-healing efficiency (~ 91%) owing to 
the dynamic disulfide and multiple hydrogen bonds [56]. 
Similarly, modified MXene-doped organosilicon conduc-
tive elastomer was constructed by crosslinking the hydro-
gen bonds and metal–ligand bonds; the reversible hydrogen 
bonds were generated between carboxyl groups in this com-
posite [57]. After spontaneous repair, the polydimethylsi-
loxane@MXene recovered its original mechanical features 
(~ 91.7%). This composite with excellent stretchability and 
tensile strength can be deployed in soft robotics, motions 
monitoring, wearable strain sensors, etc. [57]. Zhang et al. 
[58] introduced a novel sensor with multiscale conductive 
layer structure through the spray of conductive materials to 
the elastomer with dynamic Diels–Alder bonds. This multi-
scale structure containing one-dimensional semi-embedded 
silver nanowires and 2D MXene nanosheets (the thickness of 
the MXene nanosheet was ∼1.8 nm) exhibited self-healing 
properties [58]. This sensor with a wide range of sensitivity 
(0.5–96%), suitable relaxation (~ 138 ± 5.8 ms), fast response 
(~ 71 ± 4.9 ms), and high durability could be deployed for 
the specific recognition of pressure (183–2260 kPa). In 
response to the pressure, this system was capable of real-
time measuring signals, and the value of the examined stress 
could be encoded by the tensile instrument. This pressure 
sensor displayed high uniformity and stability at diverse 
range of stress with the same speed. Remarkably, the strain 
sensor displayed excellent sensing capabilities and stretch-
ing range (∼120%) compared to the single semi-embedded 
silver nanowire electrode. It can be deployed for detection of 
hand touching or human walking unique due to the unique 
mechanical and electrical features, opening a new window 
toward next-generation wearable electronics [58].

2.2  Supercapacitors

MXenes with hydrophilicity, conductivity, tunable composi-
tion, and large specific surface area are attractive candidates 
in designing supercapacitors. Li et al. [59] developed self-
healing micro-supercapacitors using size-dependent MXenes 
 (Ti3C2Tx) by spraying lateral size MXene nanosheets onto the 

cellulose paper. These MXene-based micro-supercapacitors 
with high flexibility could be assembled by sulfuric acid-
polyvinyl alcohol (PVA) electrolyte. One of the important 
factors that could significantly affect the electrochemical 
function of these supercapacitors was the MXene nanosheet 
size. The capacitance of supercapacitors prepared by smaller 
lateral nanosheet could reach up to ~ 73.6 mF  cm−2, which was 
higher than in the case of larger lateral nanosheets or combined 
smaller/larger nanosheets. Besides, MXene-based micro-
supercapacitors with self-healing properties and excellent 
energy storage capacities were designed by applying polyure-
thane consisting of the large number of hydrogen bonds as the 
wrapped material; over 2000 charge/discharge cycles after 5th 
cutting/healing, the capacitance retention was still ~ 90% [59].

Recently, a wide variety of polymers have been employed 
as interlayers to enhance the flexibility of MXene films. In 
one study, Yu et al. [60] prepared PAA/chitosan (CS)/Ti3C2Tx 
hydrogel as flexible electrode materials. Self-healing and elec-
trochemical properties of hydrogel can be tailored by regulat-
ing the content of  Ti3C2Tx MXene. At the content of 0.3 wt% 
 Ti3C2Tx, the hydrogel electrode exhibited good capacitance 
(> 291.8 mF  g−1), high stability, self-healing properties, and 
flexibility.  Ti3C2Tx layered structure improved the transport of 
electrolyte ions. In addition,  Ti3C2Tx increased the self-heal-
ing activity of the hydrogel, which could be redounded to the 
hydrogen bonds between  Ti3C2Tx and the polymer. The results 
provide an appropriate way for the formation of electrically 
conductive hydrogels, which can be employed to design flex-
ible supercapacitor electrodes and flexible electronic devices 
[60].

Researchers developed an assembly of flexible supercapac-
itors with mechanical deformation and a hydrogel of PVA/
LiCl electrolyte. The presence of adequate LiCl could provide 
hydrogel with great mechanical softness and high conductivity; 
the use of LiCl can obstruct the formation of hydrogen bonds 
among PVA chains due to the binding of –OH and  Li+. Indeed, 
these properties cause the hydrogel to have low density and 
great stretchability. Besides, carboxymethyl (CMC) with high 
flexibility can be employed as interlayer spacers to efficiently 
inhibit the stacks of MXenes. The prepared films exhibited 
excellent mechanical flexibility and good conductivity to be 
applied as electrode materials of supercapacitors. The super-
capacitor was formed from the cellulose film of the MXene/
CMC electrode (Fig. 3). The supercapacitors combined highly 
conductive and flexible electrodes with hydrogel electrolytes 
that showed self-adhesion. The PVA/LiCl hydrogel displayed 
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good self-healing capability; if the ends of the broken hydrogel 
were connected, the PVA/LiCl hydrogel could be healed. The 
supercapacitor had a great specific capacitance of 113.13 mF 
 cm−2 during mechanical deformations [61].

2.3  Anticorrosive Performance

MXenes have been explored in construction of anticorro-
sive coatings; however, self-healing properties are one of 
the main challenges, which can guarantee the restoration 

of protective functions and the durability of these coatings 
in probable damages (especially in harsh corrosive cir-
cumstances). Sun et al. [62] constructed self-healing anti-
corrosive coatings with excellent anticorrosive property 
using MXenes and mesoporous silica  (SiO2) nanomaterials 
loading tannic acid (an anticorrosion agent), protecting 
low-carbon steel from corrosion damages (Fig. 4) [62]. As 
a result, the impedance modulus was 2.826 ×  106 Ω  cm2 at 
0.01 Hz, and after 132 h of continuous immersion, it could 
reach the maximum peak value of 8.585 ×  106 Ω  cm2. The 

Fig. 3  A The preparative process of MXene/CMC film.   B The image of the appearance of MXene/CMC-5 film. C, D Scanning electron 
microscopy (SEM) image of MXene/CMC-5 film. E X-ray diffraction (XRD) image of MXene/CMC films with different content of CMC. F 
Capacitance retaining of the supercapacitor under different temperatures. G Electrochemical impedance spectroscopy (EIS) spectra of the super-
capacitor under different temperatures. H Cycle performance of the supercapacitor at 25 °C. Reproduced with permission from Ref. [61]. Copy-
right 2022 Elsevier
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electrochemical self-healing efficiency was 114.27 kΩ  cm2 
 h−1, showing anticorrosive coatings with significant self-
healing efficiency. After the damage scratch on the pre-
pared coatings, the release of tannic acid encapsulated in 
mesoporous  SiO2 nanomaterials was stimulated; this tan-
nic acid could simply adsorb the steel in the crevice and 
react with  Fe2+ to generate ferric tannates as a self-healing 
film [62].

2.4  EMI Shielding Materials

MXenes have been recently studied to design novel high-
performance EMI shielding materials due to their unique 
electrical conductivity and layered structure; these mate-
rials can be considered as attractive candidates for flex-
ible and wearable electronic devices [63–67]. However, 
the main challenge is designing multifunctional MXene-
based composites with rapid healing properties, which can 
keep their mechanical and shielding functions [68]. For 
instance, powders of MXenes  (Ti3C2Tx) were introduced 
into paraffin matrix to obtain composites with EMI shielding 

effectiveness (SE) of ~ 39.1 dB at 60 wt% MXenes loading 
[69]. Additionally, MXene  (Ti3C2Tx)/epoxy composites were 
constructed using a solution casting technique, wherein the 
conductivity was up to 105 S  m−1 and the EMI SE was up 
to 41 dB under 15 wt% MXenes loading [70]. In this con-
text, several investigations have focused on EMI shielding 
MXene-based composites with good mechanical features 
and excellent electrical conductivity, along with appropri-
ate EMI SE and self-healing properties. Lightweight, flex-
ible, and self-healing EMI shielding structures were fabri-
cated using MXene  (Ti3C2Tx) capsules in the porous sponge 
by applying a simple dip-coating technique (Fig. 5) [71]. 
Accordingly, the deployment of MXene membranes could 
form and cover the pores of the melamine sponges through 
the specific adjustment of the coating factors, which could 
further connect the porous skeletons into plenty of shield-
ing capsules. In composite sponges, the enhancement of 
the internal area could improve the possibility of interac-
tions between electromagnetic waves and the shield; thus, 
the generation of the incessant shielding walls thought the 
cover of the large voids among skeletons can be considered 
as promising tactic with high efficiency. The introduced 

Fig. 4  The anticorrosion and self-healing mechanism of tannic acid (TA)@MXene-SiO2-contained epoxy coating: the corrosion process with-
out (A) and with B designed coating. C The process of crack propagation in the pure epoxy coating. D The epoxy/TA@MXene-SiO2 coating and 
its self-healing property; MXenes could successfully form a layer-by-layer matrix structure in this coating, providing excellent corrosion protec-
tion. Reproduced with permission from Ref. [62]. Copyright 2022 Elsevier
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sponges exhibited excellent EMI SE of 90.49 dB in the 
range of X-band (8.2–12.4 GHz). After the incorporation of 
polyurethane sandwich in these materials, the self-healing 
properties could be obtained; the healed sponges could still 
had significant EMI SE of 72.89 dB (the shielding efficiency 
was ~ 99.99%), which could support 1475 times the weight 
of the sample themselves. These MXene-based composite 
sponges with fascinating EMI shielding and self-healing fea-
tures should be further explored for designing smart wear-
able devices [71].

Several hybrid MXene-based composites were intro-
duced for EMI shielding applications [72]. For instance, 
3D conductive MXene  (Ti3C2Tx)/reduced GO composites 
were obtained through hydrothermal assembly and freeze-
drying technique, wherein the epoxy resin was filled into 
the porous structure of MXenes by applying a vacuum-
assisted impregnation tactic [73]. Besides, compressible 
polydimethylsiloxane-coated MXene foams were prepared 
for EMI shielding applications, with good flexibility (the 
EMI SE was ~ 53.9 dB) [74]. Despite the good flexibility of 

Fig. 5  Three-dimensional (3D) porous composite sponges with skeletons wrapped by functional filler (A), and pores covered by functional filler 
(B), with related propagation route of electromagnetic waves. C The preparative process of (1) self-healing MXene-wrapped melamine sponge 
(MS) and (2) MXene/polyurethane (PU)@MS. Reproduced with permission from Ref. [71]. Copyright 2021 Elsevier
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these composites, the capability of self-healing and long-
term use is still a crucial challenge. On the other hand, when 
EMI shielding materials are damaged, their performance can 
be highly abridged, causing the possible electromagnetic 
threats/exposures [72, 75]. To overcome this problem, EMI 
shielding MXene  (Ti3C2Tx)/reduced GO hybrid aerogels 
with flexibility and self-healing properties were designed 
[72]. These aerogels with high electrical conductivity and 
3D porous structures were fabricated via freeze-drying 
and chemical reduction pathways. After that, the dynamic 
crosslinked polyurethane containing Diels–Alder bonds was 
introduced into aerogels through a vacuum-assisted impreg-
nation technique to obtain composites with significant EMI 
SE (~ 39.1 dB) at an ultra-low 0.46 vol% of MXenes and 
0.65 vol% of rGO loading (Fig. 6). Diels–Alder bonds had 
crucial roles in self-healing properties of these compos-
ites. As a result, after 3 times of severing/healing cycles, 
the EMI SE could be recovered from 19.5 to 34.1 dB, with 
the healing efficiency of ~ 91.4%. These hybrid MXene/rGO 
composites can be employed in designing flexible and self-
healing EMI shielding materials with long-term protection 
and electronic appliances [72].

3  Self‑healing Graphene‑based Composites

Graphene is complemented through two forms, such as gra-
phene attained from the chemical vapor deposition (CVD) 
method, as well as graphene derivatives comprising of GO 
[76, 77]. Graphene connections in the matrix can be through 
the mixture of graphene with matrix by molecular force, 
the connection of graphene and matrix through hydrogen 
bonds and polymer/graphene connection using reversible 
chemical bonds [78]. Different strategies have been intro-
duced for synthesizing self-healing graphene-based com-
posites, including simple mixing, in situ polymerization, 
Diels–Alder reactions, layer-by-layer self-assembly methods, 
and hydrothermal techniques [79]. Graphene-based materi-
als have been developed with self-healing properties. They 
showed the healing of crashes produced in graphene using 
tensile load by molecular dynamics simulations. Typically, 
graphene-based composites can repair themselves when an 
external energy or stimuli is provided. In this context, some 
of the common healing conditions include heating, light 
radiation, microwave, and solvent-assistant self-healing. 
Additionally, simple contacting without any external stimuli 

and microcapsules is employed to heal the damaged com-
posites [79]. The self-healing of cracks can occur in critical 
crack dislocation without any external force. According to 
the exclusive property of self-healing of single-layer gra-
phene, they have predicted a future promise to sensor design, 
which causes it a great promise factor to future electronic 
devices [80]. However, bilayer graphene revealed high self-
healing of cracks than a single layer. Self-healing can occur 
through a combination of the dangling bonds when inside 
the limit of the important crack initial dislodgment [81].

Overall, damage to polymer materials causes their break-
age, thus reducing their stability. The self-healing of these 
materials is typically long and requires the help of various 
external stimuli [80, 82]. Graphene displays great strength 
and thermal conductivity, which can be applied to support 
polymers to make functional composites in different appli-
cations, such as electricity [83, 84]. Nevertheless, thermal 
conductive composites show more difficult healing due to 
the chemical alterations among the polymer and graphene 
fillers than the original polymers. However, rigid graphene 
fillers display a self-healing capability according to lim-
ited chain movement in the matrix based on polymer [85]. 
Besides, to increase the activity of the thermal conductive 
nanocomposites, excellent filler compound is combined, 
resulting in an accumulation of the fillers inside the matrix 
as well as reducing its limitations to rebuild the fillers for 
generating a network in the matrix after hurt. Thus, reducing 
the filler content and adjusting the formation of fillers are 
significant subjects in making self-healing thermal conduc-
tive composites.

Heat can improve polymer segment movement, a moder-
ately mild path to self-repairing materials [86]. Research-
ers enabled GO-polyacrylic acid nanocomposite through 
crosslinking effects by ionic interactions, which were pre-
served at 45 °C to attain self-healing activity [87]. Although 
graphene filler was more stable than the polymer matrix, 
the deficiencies related to breaking inhibited self-healing 
(Fig. 7A). The effect of external stimuli was easy to pro-
duce swells on the damaged interface [86]. Low-strength 
electromagnetic waves pulsed at the earth’s natural frequen-
cies have been revealed to enhance tissue healing and regen-
eration [88]. An electromagnetic wave is a type of energy 
that is established as healing; microwaves can be altered 
into heat. Coupling graphene with microwaves can make it 
suitable as an excellent energy absorber [84]. In one study, 
Huang and co-workers developed a graphene-thermoplastic 
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polyurethane platform mended via microwave by heat, 
prompting the movement of a molecular segment. The com-
bination of the microwave with graphene could increase the 
heat production; thus, Diels–Alder bond can be altered and 

tangled to attain a self-healing [89]. These electromagnetic 
waves are infrared light, sunlight, etc. GO could enhance 
the mechanical strength and increase tumor therapy. This 

Fig. 6  A Preparative process of MXene/rGO oxide/polyurethane (MRGP) composites. B Mechanism of heat-stimulated healing procedures in 
MRGP composites. C EMI shielding mechanisms of original (i) severed, (ii) healed, and (iii) MRGP composite skeleton. PUDA: polyurethane 
containing Diels–Alder bonds; MRG: MXene/rGO hybrid aerogel. Reproduced with permission from Ref. [72]. Copyright 2022 Elsevier
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Fig. 7  (A) Structure of PBAx-PDMS (i). Preparative process of PBAx-PDMS/FGf (ii), and the morphology of the introduced nanocomposite 
(iii). Thermogravimetric analysis plots of PBAx-PDMS and PBAx-PDMS/FGf (iv). Differential scanning calorimetry curves of PBA-PDMS and 
PBA-PDMS/FGf (v). Reproduced with permission from Ref. [86]. Copyright 2022 Springer Nature. (B) Synthesis of rGO composite hydrogel 
(i). EMI shielding efficiency (SE) variation with molecule polarity (ii). Difference of the EMI SE of H2O2 with the volume content in melamine 
foam (MF) (iii). Assessment of the EMI SE of water without MF, with MF, and the hydrogel (iv). The three different water types in the hydrogel 
(v), electromagnetic waves (EMW) transfer crossways water and ice (vi). The activity of the pure hydrogel along with the frozen and wet RGO-
hydrogels (vii). PBA: 2-[[(butylamino)carbonyl]oxy]ethyl ester; PDMS: polydimethylsiloxane; FGf: folded graphene film; ACC: amorphous cal-
cium carbonate; PAA: poly(acrylic acid); CS: chitosan. Reproduced with permission from Ref. [21]. Copyright 2021 Elsevier
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material exhibited near-infrared (NIR) absorption, which 
changes light into heat.

Nanocomposites of polyurethane (HPU)-titanium dioxide 
 (TiO2)/rGO were fabricated with dose-dependent mechanical 
features and high shape recovery ratio (91%-95%), along with 
the proper rate of shape recovery (1–3 min) under exposure to 
sunlight [90]. A great amount of rGO in the composite could 
aid in rapid and highly effective healing, while a great amount 
of  TiO2 NPs (5–10 wt%) helped to attain virtuous self-cleaning 
properties. The nanocomposites exhibited intrinsic self-healing 
(~ 7.5–10 min) and suitable self-cleaning potential by eliminat-
ing methylene blue (~ 2–3 h). Sunlight is immeasurable energy 
and costs, and this nanocomposite with excellent potential can 
be deployed for versatile applications. This study is significant 
since sunlight is unlimited energy. However, infrared laser can be 
easier produced heat than the sunlight. A composite comprised 
of polyurethane based on Diels–Alder chemistry was connected 
with modified graphene nanosheets, displaying robust mechani-
cal properties. This composite displayed ~ 96% healing efficacy 
in a short time [91].

3.1  EMI Shielding Materials

Several studies have focused on semiconductors like rGO 
due to their exclusive electronic properties that are mod-
erately helpful for EMI shielding. A combination of mag-
netic inclusions is essential to attaining effective absorption 
for EMI shielding [92, 93]. A “trigger-free” self-healable 
EMI shielding material containing rGO,  MoS2, and  Fe3O4/
multi-walled carbon nanotubes (MWNTs) was constructed 
with ~ 99% reduction of electromagnetic waves by absorp-
tion [94]. These materials formed by MXene exhibited effec-
tive mechanical properties; however, the flexibility is still 
weak. The combination of 3D MXene-based structures with 
GO can improve the flexibility, wherein GO can be deployed 
as an efficient EMI material after reduction [95].

Hydrogel-type shielding composites were introduced 
using an rGO-constructed porous conductive network by 
applying a biomineralization-inspired technique. These 
hydrogel-type protective materials with porous conduc-
tive networks made of rGO exhibited excellent elasticity/
permanency, outstanding desired adaptability/adhesion, and 
instant self-healing ability. Additionally, an excellent SE of 
90 dB with a SE reflection of 6 dB could be instantaneously 
obtained utilizing rGO (4.7 wt%). The designed nanocom-
posites also displayed highly efficient healing activity that 

are carbon and MXene materials. The great effect of the con-
ductive rGO network and the porous structure was crucial to 
such excellent shielding action. Polymer chains could alter 
the state of water, stimulate water molecules, and weaken 
electromagnetic waves. This self-healing platform offered 
a novel assay for forming good EMI shielding materials 
(Fig. 7B). The self-healing capability permitted rapid recov-
ery from damage, and this type of graphene-based hydrogel 
displayed significant uses and flexibility to next-generation 
flexible electronics. Some of the 2D porous materials, such 
as MXene, have virtuous mechanical properties, although 
their flexibility of them is poor. The combination of MXene 
with the help of GO can overcome this problem. GO has a 
virtuous EMI shielding property after the reduction [21]. 
Sim et al. [96] fabricated graphene oxide/silver nanowire 
films and textiles with self-healing and flexibility properties 
for EMI shielding applications. Accordingly, significant EMI 
SE (~ 92 dB) could be obtained for the film with thickness of 
18 μm; the precise EMI SE was 31 dB  cm3  g−1 or 48,275 dB 
 cm2  g−1 when normalized to film thickness. After damage, 
the mechanical strength and electrical conductivity of these 
films were reduced, and also their EMI SE was abridged 
from 72 to 56 dB at 8.2 GHz. However, their mechanical 
features were restored and EMI SE could be recovered to 
71 dB after healing process. Besides, the textiles displayed 
EMI SE of ~ 30 dB, with significant flexibility and mechani-
cal stability (no alteration in their performance was reported 
after 1,000 bending cycles) [96].

3.2  Wearable Sensors

Graphene is a 2D material with exceptional electrical, ther-
mal, and mechanical characteristics, along with good energy 
absorption properties [97, 98]. Thus, explorations have 
focused on evaluating self-healing graphene-based materi-
als. Self-healing graphene-based materials with improved 
thermal/electrical conductivity, responsiveness to exter-
nal forces, and the efficiency of healing exhibited suitable 
energy conversion efficacy [99]. The healing capability of 
the composites can be considered as one of the most proper-
ties of evolving wearable systems. For instance, self-healing 
and stretchable elastomer-graphene composites with remark-
able mechanical and room-temperature healing properties 
were introduced due to the synergy of the microphase-
separated structures with reversible hydrogen bonds [100]. 
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These composites exhibited significant mechanical strength 
(~ 9.3 MPa), large extensibility (300%), healable efficiency 
(> 80%), and superb conductivity (~ 120 S  cm−1), provid-
ing suitable platforms for manufacturing strain sensors with 
monitoring capabilities of tensile deformation and human 
motions. The prepared strain sensors maintained appropriate 
stability under ~ 20 cycles of stretching/releasing with 300% 
strain, which could be considered as promising candidates 
for next-generation wearable electronic devices [100].

Despite the advantages of graphene-based materials, their 
low stretchability may restrict their applications for wear-
able devices. Researchers developed a self-healing graphene 
hydrogel modified with polyurethane diol oligomer for wear-
able sensing systems. The polymer can act as a non-toxic 
plasticizer, which provided plentiful hydrogen bonds to 
create a solid state with high stretchability and quick heal-
ing capability. These sensors as resistive-type sensors using 
the modified hydrogels displayed great responsiveness to 
low-temperature changes (∆T ~ 0.2 °C) as well as the pres-
ence of ammonia (0.7–20 ppm) and nitrogen dioxide gases 
(0.8–3.5 ppm). In addition, these sensors could be stretched 
to 30%, and the healing capability of the hydrogels could 
recover the sensing ability of sensors (~ 90% in 30 s), offer-
ing the modified graphene-based hydrogels as promising 
materials for developing wearable sensors and E-skin [101].

One of the challenges is the existence of van der Waals 
interaction, which causes the aggregation of graphene nano-
materials in the aqueous environment and weakens the per-
formance of composite hydrogels [102]. To overcome this 
challenge, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-
oxidized cellulose nanofibers (TOCNFs)-graphene compos-
ites were employed in the hydrogel to prevent graphene from 
aggregation and increase the mechanical properties of the 
hydrogels. The electrostatic repulsion among TOCNFs and 
the hydrophobic interaction between graphene and TOCNFs 
caused the electron delocalization of graphene, leading to 
the attraction among the graphene and TOCNFs. This gra-
phene-based hydrogel formed by the physical and chemical 
double crosslinking interaction can be deployed as a green 
wearable for monitoring human motion. The TOCNFs acted 
as a dispersant for graphene nanoparticles. The hydrogels 
exhibited suitable stretchability (~ 850%), electrical con-
ductivity, and healing efficiency of 96% during 12 h. This 
hydrogel-based sensor demonstrated significant sensitivity, 
presenting excellent potential in the field of self-healing 
wearable electronic devices [102].

A wearable sensor was designed from PVA, GO, and 
polydopamine (PDA) nanocomposite for checking the large- 
and small-scale movements along with the physiological sig-
nals. GO exhibited stable distribution in different organic 
solvents due to the oxygen-containing groups, offering a 
good property for the synthesis of high-strength multifunc-
tional nanocomposite hydrogels than graphene. This nano-
composite exhibited good electrical properties with a tensile 
stress of 146 Kpa and a conductivity of 5 mS  cm−1. Besides, 
efficient self-healing could be obtained, with the electrical 
self-healing efficacy of ~ 98% and excellent self-adhesion 
onto surfaces of materials. The introduced hydrogel could 
be deployed to construct wearable sensors for specific detec-
tion of the signals, including large-scale motions in humans 
(e.g., stretching fingers joints) and small-scale motions (e.g., 
breathing). In addition, the hydrogel was applied as self-
healable electrodes to identify electrophysiological (ECG) 
signals. Thus, the GO-based sensor is anticipated to be 
applied for specific monitoring of human body motion [103]. 
In addition, a stretchy pressure sensor was designed with 
high stability and mechanical strength, which can be applied 
in wearable electronics [104]. Inspired by bean pod struc-
ture, this sensor was introduced with a micro-spacer core 
layer of polystyrene (PS) microspheres, sandwiched between 
two laser-stimulated graphene/polyurethane films (Fig. 8A, 
B). This self-healable sensor exhibited high stability and 
enhanced wide sensing range up to 100 kPa. After 3 cycles at 
room-temperature (RT) conditions, damaged systems were 
self-healed and capable to provide excellent sensitivity; the 
sensor can be deployed for checking human arterial pulse. 
Additional explorations ought to be focused on up-scalable 
production of these sensors with physiological diagnostic 
potentials [104].

Compared to the polymer materials, such as hydrogel 
and polyurethane, epoxy natural rubber (ENR) shows sig-
nificant mechanical properties and good elastic deformation 
owing to the strain-induced crystallization (SIC), which can 
recompense for the restricted mechanical improvement of 
conductive (nano)composites. In one study, a self-healing 
graphene/rubber-based supramolecular elastomer (GRSE) 
was developed based on the effect of hydrogen bonds. Gra-
phene nanosheets enhanced the conductivity and sensitivity 
of sensors. Accordingly, 1-pyrenamine (PA) was absorbed 
on the surface of the graphene nanosheet through the π−π 
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Fig. 8  A Schematic illustration of the bean pod-inspired healable pressure sensor and its mechanism. B Wearable sensing applications of the 
pressure sensor in the detection of (i) rice as a light object, (ii) blood pulse on the wrist, (iii) hand clenching, and (iv) elbow bending. Repro-
duced with permission from Ref. [104]. Copyright, 2020 American Chemical Society. C Electrical properties of the GRSE-based sensors con-
structed from 1-pyrenamine-modified graphene layers. D Sensing activity of the sensor in human motion detection for recognition of smile and 
frown. Reproduced with permission from Ref. [105]. Copyright 2022 Elsevier
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conjugation to improve the amino groups and adhesion 
among the graphene sheet and elastomers. This wearable 
sensor provided high electrical conductivity (0.0029 S  m−1), 
rapid (250 ms), and a low detection range (1%) property. 
Besides, the fabricated sensor could start its healing proce-
dure at RT condition, with great mechanical strength and 
healing efficacy. The stress-sensing properties of this sen-
sor can be employed for human motion detection (Fig. 8C) 
[105].

3.3  Supercapacitors

A graphene-based supercapacitor was designed for stor-
ing energy, which could be recharged in short times. Gra-
phene supercapacitor technology is safer than present bat-
tery technology since it can work without discharge or high 
temperature [106]. Graphene can be used as an effective 
candidate for designing wearable sensors and supercapaci-
tors with multifunctionality [107]. Since the first graphene 
supercapacitor was introduced in 2008, major progress has 
been prepared in the development of novel graphene-based 
electrodes [108]. The significant electrical conductivity, 
unique mechanical features, and high thermal conductivity 
the graphene introduce this materials as an excellent gelator 
for manufacturing self-assembled graphene-based hydrogels 
with electromechanical performance [109]. The supercapaci-
tor’s activity of graphene was increased by doping them with 
oxygen, nitrogen, etc. It was observed that nitrogen doping 
into carbon increased the electrical conductivity [110].

Unfortunately, common graphene-based electrodes were 
thin; thus, it is impractical to re-connect the broken fibers 
joined precisely by visual assessment [111]. As a result, it is 
necessary to restore the electrochemical performance after 
the damage to the graphene-based fiber supercapacitor. rGO 
fiber-based springs can be employed as electrodes for self-
healable supercapacitors. These fiber springs with a size 
of 295 µm are thick to rejoin the electrodes through visual 
assessment. Indeed, rGO-based wires containing polypyrrole 
(PPy)-decorated rGO/MWCNTs were warped to springs that 
can be stretched. This self-healable property comes from 
the hydrogen bonding of carboxylated PU (Fig. 9A, B). A 
self-healable supercapacitor could be developed by packag-
ing fiber springs with a self-healing polymer outer shell, 
showing ~ 82% capacitance preservation after a great stretch 

of 100% after the 3rd healing. This study provided a novel 
approach for fabricating stretchable and self-healable [111].

Kim et al. [112] reported a new supercapacitor consist-
ing of rGO and tin(IV) oxide  (SnO2), in which rGO had 
efficient electrical conductivity and  SnO2-informed energy 
storage abilities. On the other hand, supersonic spraying of 
rGO could decrease the peak ratio due to the self-healing 
effect. Supersonic spraying helped the good adhesion among 
the  SnO2-decorated rGO flakes. The concentration effect of 
 SnO2 on the electrochemical activity of the supercapacitors 
was also investigated; the best coating situations were recog-
nized. Accordingly, the combination of rGO and  SnO2 could 
increase the charge transport inside the electrode, finally 
enhancing the electrochemical performance. The porous 
construction of the fabric permitted the adequate electro-
lyte diffusion into the  SnO2 or rGO to stimulate the func-
tion among the electrolyte with the electrode. The optimal 
sample displayed the greatest capacitance of 1008 mF  cm−2, 
with the capacitance retention of ~ 93%. Stretching tests up 
to N¼ 1100 revealed the mechanical durability of the pre-
pared supercapacitor, which was appropriate for generating 
energy storage systems on wearable fabrics (Fig. 9E) [112].

Self-restacking and accumulation of MXenes are com-
monly predictable throughout drying and electrode forma-
tion procedures due to the robust van der Waals interaction 
among neighboring nanosheets, which restricts the ion pas-
sage and decreases the active site in supercapacitors. Thus, 
the use of graphene between MXene layers can perform as 
a perfect spacer to inhibit the stacking among the MXene 
nanosheets, which aids to increase the electrochemical prop-
erties of the MXene [113–115]. A 3D composite containing 
MXene  (Ti3C2Tx)-rGO composite electrode was introduced, 
joining high specific surface area of rGO and excellent con-
ductivity of the MXene to inhibit the self-restacking of the 
structure and resist the low oxidization of MXene. Besides, 
this composite exhibited good mechanical properties than 
pure rGO aerogels; the MXene/rGO/PU aerogel provided 
a great area-specific capacitance of 34.6 mF  cm−2 at a scan 
rate of 1 mV  s−1. The 3D composite also displayed an out-
standing self-healing capability with specific capacitance 
retention of 81.7% after the fifth healing according to the 
PU properties. The formation of this self-healable can offer 
an assay for manufacturing long-life electronic devices needs 
[115].
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Fig. 9  A Schematic illustration of the self-healable mechanism, along with the fabrication procedure of PPy/rGO/MWCNTs electrodes and 
self-healing supercapacitor. (i) rGO-based fiber wires can be twisted to springs. (ii) rGO/MWCNTs-based solution was added into pipes; then, 
rGO/MWCNTs composite fibers were formed. B SEM images of rGO fiber with the size of 100 μm and stacked morphology. C Schematic of 
the supercapacitor driving a detector of perovskite nanowires. D Photocurrent dependence on the time of the detector under illumination arises 
by the Reproduced with permission from Ref. [111]. Copyright 2017 American Chemical Society. (E) The preparative process of rGO/SnO2-
containing droplets onto a fabric. Reproduced with permission from Ref. [112]. Copyright, 2021 Elsevierself-healing supercapacitor after a heal-
ing cycle.
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3.4  Cancer Therapeutics

Non-chemotherapeutic cancer and tumor therapy has 
gained significant consideration due to its lower side 
effects and unique targeting properties. GO nanoparti-
cles may lose their stability (in vivo), because of possible 
aggregations when exposed in physiological environment 
after dispersion in solutions. Thus, surface modification 
techniques can be applied for improving the stability of 
these materials. Self-healing hydrogels were designed 
via Schiff-base linkage using chondroitin sulfate multi-
aldehyde (CSMA), branched polyethylenimine (BPEI), 
and BPEI-conjugated GO (BPEI-GO) for targeted breast 
cancer therapy. Surface modification was deployed for 
enhancing the stability of these hydrogels using BPEI. 
These hydrogels could be doped in the network and pro-
vided targeted drug delivery and NIR-triggered photo-
thermal therapy (Fig. 10). They displayed suitable self-
healing (∼100%) and mechanical (7000 Pa) properties, 
providing improved cell killing efficiency (in vitro) with 
synergistic chemo-photothermal therapy. The combination 
of targeted chemotherapy (doxorubicin) with photother-
mal therapy using these hydrogels could reduce the recur-
rence of tumors to ~ 33.3%, compared to the examined 
doxorubicin-loaded hydrogels without near-infrared irra-
diation (~ 66.7%), local administration of free doxorubicin 
(~ 66.7%), and hydrogels with near-infrared irradiation 
(~ 100%) [116]. The results proposed the high efficiency 
of hydrogels in the recurrence inhibition of breast cancer, 
showing more efficient cancer therapy than in the metal-
based nanomaterials [117].

A PEG-CMC/needle-like nano-hydroxyapatite (HAP)/
GO nanocomposite hydrogel exhibited a construction with 
efficient injectability and good self-healing properties for 
tumor proliferation prevention and photothermal therapy. 
In vitro assessments revealed that GO was toxic to tumor 
cells, and HAP could prevent the proliferation of tumor 
cells; this composite was not transferred to the normal 
cells and did not led to cell damage. The breast cancer 
tumor-bearing mice were treated with a PEG-CMC/HAP/
GO composite hydrogel (in vivo). This self-healing hydro-
gel successfully obstructed the tumor cell proliferation, 
showing suitable photothermal effects for targeted cancer 
therapy [118].

4  Challenges and Future Perspectives

As mentioned above, both graphene and MXenes have 
interesting features that make them appropriate to be 
applied in the structure of self-healing composites; how-
ever, they also have some limitations that could restrict 
their clinical applications and necessitate conducting more 
research for overcoming these limitations. For instance, 
although evidence showed the short biocompatibility of 
MXenes (in cell culture tests), the long-term biosafety of 
these compounds is not completely assessed yet and more 
experiments are needed for confirming their safety for fur-
ther biomedical uses. Indeed, due to the young age of this 
technology, our information about the immunogenicity, 
biocompatibility, biodistribution, and pharmacokinetics 
of different forms of MXenes is not comprehensive and 
several analyses on both small and large animal models 
are needed in this case [119, 120].

One of the important points for controlling different fea-
tures of nanomaterials is their synthesis method. So far, a 
few attempts have been made for the fabrication of MXenes 
via bottom-up methods and they are commonly prepared via 
top-down methods leading to the preparation of multi-layer 
MXenes with less controllable structural and morphological 
features. Accordingly, still, the properties of naked MXenes 
with pure surface terminal groups have not been tested due 
to the absence of bottom-up methods for the fabrication of 
pure MXenes [120]. In the case of graphene, more informa-
tion is available due to the existence of more research on 
this class of materials. Indeed, different improved bottom-up 
controllable methods have been introduced for the fabrica-
tion of different members of this family. The existence of 
abundant oxygen groups on GO nanosheets increases the 
mechanical strength of the sheets. Abundant hydrogen bonds 
were introduced at the interface between GO nanosheets 
with dynamic multiple hydrogen bonds and the polyurethane 
matrix to provide robust interfacial interactions. The adipic 
dihydrazide-modified GO sheets were combined into the pol-
yurethane matrix, and the hydrogen bonds were presented at 
the interface among the polyurethane matrix. This nanocom-
posite exhibited excellent mechanical strength (~ 78 MPa), 
with rapid self-healing potential (~ 88% for 24 h), and the 
polyurethane/GO network could be employed to design flex-
ible smart robots as well as flexible devices with multifunc-
tionality [121]. This nanocomposite with rapid self-healing 
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Fig. 10  A, B Preparative process of CSMA/BPEI/BPEI hydrogels and their applications in targeted anticancer drug delivery and photother-
mal therapy of breast cancer. C Surgical procedure of tumor elimination and treatment: (1) the tumor volume was 200  mm3; (2) the tumor was 
removed; (3) hydrogel was entrenched; (4) incision was sewed; (5) mice were illuminated with near-infrared laser after 1 day. D Near-infrared 
imaging of mouse entrenched with hydrogels. E Kaplan–Meier survival curve plotting tumor recurrence. F Body weight difference throughout 
treatment. Reproduced with permission from Ref. [116]. Copyright 2019 American Chemical Society
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potential could recover up to ~ 50% of its elasticity in 1 min 
without any curing agents [122]. However, there are still 
some limitations in this issue as well; for example, evidence 
about the biocompatibility of graphene-based materials is 
diverse, in some cases they are biocompatible and, in oth-
ers, they are toxic. Besides, their application in self-healing 
materials confronts some limitations; the most important of 
them is non-repeatable self-healing features. Indeed, more 
research is needed to design and fabricate effective compos-
ite materials with ideal self-healing features. Moreover, the 
mechanism of action and the molecular structure of these 
materials should be completely studied for better optimiza-
tion of different properties, and for enhancing the applicabil-
ity and practicability of the fabricated materials. Besides, 
this research could be beneficial for the introduction and fab-
rication of multifunctional compounds especially those that 
will be used in biomedical fields. The other important chal-
lenge of composite of these two materials with other materi-
als is providing the maintenance between their mechanical 
properties and self-healing ability [2]. Remarkably, most of 
the present works are in the theoretical stages that have far 
distance to the real situations. Indeed, long way is imagined 
to pass for mimicking even a simple biological healing pro-
cess and we are still in the first steps of self-healing materi-
als production [1]. Alternatively, the ideal way of healing is 
one without the interference of external factors and stimuli 
and is completely independent. As a result, there is a need 
for special design and synthesis of nanostructures. Systems 
that depend on external sources, including heat, light, etc., 
have several challenges. In a study developed by researchers, 
a modified graphene/polyurethane composite was developed 
with self-healing property through infrared laser. However, it 
required a high temperature (150 °C) from a laser source to 
enable Diels–Alder chemistry [122]. In addition, research-
ers demonstrated that polyacrylamide hydrogels based on 
GO could be self-healed at RT condition. Still, their heal-
ing efficacy decreased considerably without the presence of 
moisture conditions, from 92 to 45% [123].

One of the main challenges in designing hydrogels used 
in electroactive tissues is the deficiency in electrical con-
ductivity and adhesiveness [123–126]. Jing et  al. [124] 
introduced composite hydrogels constructed from chitosan 
(as a biocompatible and biodegradable polymer) and gra-
phene oxide with self-adhesive and healing features along 
with suitable electrical conductivity (reached to 1.22 mS 
 cm−1); these composites were designed by incorporation of 

mussel-inspired protein polydopamine. The significant sta-
bility and mechanical properties as well as adhesiveness (the 
adhesive strength was increased by 300%), self-healing, and 
fast recovery capabilities could be achieved due to presence 
of hydrogen bonding, covalent bonds, π−π stacking, and 
supramolecular interactions in these composites. Because 
of the enhancement in human embryonic stem cell-derived 
fibroblasts and cardiomyocytes cell viability and prolifera-
tion, after the utilization of these composite hydrogels, they 
can be considered as promising tissue engineering materials 
with both self-healing and electrical conductivity properties 
[124].

Graphene-based nanocomposite materials were devel-
oped with self-healing potentials without external forces, 
which had quick electrical recovery from damages. They 
had steady electrical resolution even when the cyclic test 
was done up to 150 cycles. These materials can be employed 
to design bio-electronic sensor devices with excellent per-
manency [127]. In one study, graphene-based composites 
were fabricated to design electromyogram sensor showing 
autonomous self-healing properties throughout the mechani-
cal deformation of ~ 50% through the recovery of electrical 
paths in polymer networks; the procedure did not require any 
force. Besides, these composites exhibited stable electrical 
activity in extending tests after healing in the absence of 
bilayer structure [127]. However, the combination of healing 
and functional abilities in robust and light-weight materi-
als was an important limitation. Combining a polymer in a 
graphene ultralight network can form highly electrically con-
ductive material with self-healing properties. The applica-
tion of these composites could sense pressure after damage 
without an external source. After damage, the crack could 
be healed in 1 day without source. Furthermore, the net-
work’s self-healing was assumed by creating dynamic bonds 
among the oxygen and boron on a silicon substrate. The 
graphene network also performed as an electrical route offer-
ing electrical conductivity. This crosslinking does not need 
any external source, and these materials can be employed 
as promising candidates for biomedical and robotic applica-
tions [128].

Despite these limitations, the self-healing composites of 
graphene and MXenes are promising materials with bright 
future, especially for the fabrication of innovative and smart 
products in biomedical applications. They could be applied 
for the fabrication of E-skin, anticorrosion coating, and intel-
ligent sensors. For instance, a type of self-healing composite 
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of bio-based polyschiff vitrimers and GO was synthesized by 
Jia et al. [129] to be applied as a temperature and fire warn-
ing sensors that could be used for the critical fire risk and 
related perilous circumstances. In another case, self-heal-
ing composite of GO and polyurethane was fabricated to 
be applied as stimuli-responsive shape memory materials 
that could be applied in different parts of the body [130]. 
Remarkably, a variety of fascinating properties can be intro-
duced in MXenes and their composites by suitable function-
alization/modification strategies. For instance, Haddadi et al. 
[131] reported the construction of amino-functionalized 
MXene  (Ti3C2) nanosheets through an etching technique 
and modification process utilizing 3-aminopropyltriethox-
ysilane. As the corrosion inhibitors, cerium  (Ce3+) cations 
were introduced and encapsulated within MXene nanosheets 
to obtain self-healing epoxy composite coatings, showing 
good corrosion protection performance [131]. In addition, 
self-healing vinyl-functionalized GO-based nanocomposite 
hydrogels were introduced with improved mechanical prop-
erties; GO was functionalized with vinyl groups utilizing 
(3-mercaptopropyl) trimethoxysilane through a silanization 
technique. This self-healing potential of these hydrogels 
could be due to the chemical crosslinks and physical inter-
actions in the polymer network [132].

In recent years, E-skin with interesting features like 
self-healing, versatile sensory capability, and stretch-
ability is one of the interesting fields of science that will 
have prospective applications in soft robotics, artificial 
intelligence devices, and personalized medicine. E-skin 
has similar functionalities as human skin such as self-
healing properties, stretchability, and flexible sensory 
ability, which can be deployed in soft robotic systems, 
artificial intelligence devices, etc. [133, 134]. These 
are fabricated based on utilizing strain sensors work-
ing based on converting the mechanical stimulations to 
detectable signals. A composite of MXene  (Ti3C2Tx)/
PVA hydrogel electrode with specific features like self-
healing capability and stretchability was fabricated for 
E-skin applications. The presence of MXene in the struc-
ture of this E-skin leads to an enhancement in its self-
healing ability and conductivity. This electrode shows 
excellent stretchability and self-healing properties (heal-
ing time ≈ 0.15 s). The sensor could recover its activity 
after a self-healing test, showing excellent potential for 
human motion monitoring [135]. A composite of ionic 
liquids (ILs) and MXene-binary polymer network was 

also fabricated in another study that has interesting capa-
bilities like excellent adhesion, strong tolerance against 
harsh environments, ideal mechanical properties, high 
sensitivity to both pressure and strain, and light-respon-
sive self-healing ability that appropriate it for multifunc-
tional flexible sensors [136]. These along with several 
other samples show that application of both graphene-
based materials and MXenes in the structure of compos-
ites is a promising strategy for inducing both healing and 
mechanical features and making them ideal for versatile 
applications in the near future. However, we need to con-
duct a deep comprehensive study to clearly find out the 
different features of these two classes of materials, their 
long effects on the environment and also the effects of 
other components on them, and their effects on our body 
and genome for their biomedical applications.

Although MXenes have distinct features and have shown 
promising potential for various applications, there are still some 
obstacles in the way of their commercialization and clinical 
implementation [137]. One of the most crucial challenges in 
using MXenes for versatile applications is their limited stability 
due to their high reactivity causing possible degradation, restrict-
ing their applicability. However, the stability of MXenes can be 
improved by suitable functionalization or hybridization with 
other materials such as polymers, carbon-based materials, and 
metal/metal oxide [138, 139]. In addition, the large-scale fabrica-
tion of MXenes can be challenging; more elaborative studies are 
still warranted to find sustainable and environmentally friendly 
methods for the synthesis and processing of MXenes [140]. Nota-
bly, long-term toxicity and systematic clinical assessments should 
be prioritized for research, especially for commercialization and 
future clinical applicability [141].

5  Conclusions

Graphene and MXene-based composites have been devel-
oped with fascinating self-healing properties. Different lit-
erature has been accompanied on the limitations of graphene 
and MXenes on strength, mechanical potential, and response 
to external forces in the self-healing field. In addition to 
rheological recovery tests, the gelation, injectable, stretch-
able, and cut-heal properties ought to be comprehensively 
evaluated; the pH-responsive behavior and swelling behav-
ior/swelling kinetics of the self-healing hydrogels should 
be analytically studied. Graphene-based materials have 
exceptional electrical, mechanical, and thermal properties 
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and good energy absorption. Although more information is 
needed in graphene applications, especially regarding the 
applicability of self-healing graphene-based composites and 
understanding of their related mechanisms, the design of 
high-performance structures using polymers in combina-
tion with graphene and its derivatives still needs additional 
explorations.

It is necessary to fully understand the related mechanisms 
of self-healing materials based on graphene and MXenes to 
design novel composites with multifunctionality. On the other 
hand, MXenes are exceptional, because they have great inter-
layer spacing, good electrical conductivity, unique architec-
tures, and virtuous thermal stability. According to the great 
conductivity of MXenes, their composites displayed good 
conductivity, which could be applied in the self-healing pro-
cess. MXenes exhibited greater electrochemical properties 
than other 2D nanomaterials such as graphene. Some of their 
properties such as abundant surface terminations and great 
surface area are important to evolve biomedical and sensing 
applications. However, flexibility and stretchability are cru-
cial aspects that should be improved for their future practical 
applications. Several conductive graphene- and MXene-based 
composites with suitable elasticity and stretchability can be 
developed only after specific optimization processes as well 
as suitable surface modifications; these composites can be 
employed in different fields of sensitive strain sensors, health 
monitoring, E-skin, soft robotics, etc. Tough, the fabrication 
of these conductive materials with outstanding mechanical 
features, self-healing features, and sensitivity/selectivity is 
still an important challenging issue. Additionally, when the 
concentration of MXenes in a polymer matrix increases, the 
conductive network of MXene fragments is not break in the 
anticipated strain range. However, some of their limitations 
can be overwhelmed through the surface functionalization/
modification as well as hybridization of MXenes; surface 
modification is essential to increase the attraction among the 
MXenes with the polymeric matrix. Due to their high reac-
tivity, it is possible to perform several surface modification 
reactions by hydroxyl groups on the surface of MXenes.
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