
Vol.:(0123456789)

1 3

  e-ISSN 2150-5551
      CN 31-2103/TB

ARTICLE

Cite as
Nano-Micro Lett. 
         (2023) 15:106 

Received: 21 December 2022 
Accepted: 28 February 2023 
© The Author(s) 2023

https://doi.org/10.1007/s40820-023-01061-1

Regulating the Electrical and Mechanical Properties 
of  TaS2 Films via van der Waals and Electrostatic 
Interaction for High Performance Electromagnetic 
Interference Shielding

Fukang Deng1, Jianhong Wei1,2, Yadong Xu1, Zhiqiang Lin1, Xi Lu1, Yan-Jun Wan1, 
Rong Sun1 *, Ching-Ping Wong3, Yougen Hu1 *

HIGHLIGHTS

• A flexible freestanding  TaS2 film (thickness = 3.1 μm) exhibits an ultralow void ratio of 6.01%, an ultra-high electrical conductivity 
of 2,666 S  cm−1, an electromagnetic interference shielding effectiveness (EMI SE) of 41.8 dB, an absolute EMI SE (SSE/t) of 27,859 
dB  cm2  g−1, and excellent flexibility withstand 1,000 bends without rupture.

• The  TaS2 composite films exhibit excellent EMI shielding properties and higher tensile strength with better mechanical flexibility, 
making them suitable for EMI shielding practical applications.

ABSTRACT Low-dimensional transition metal dichalcogenides 
(TMDs) have unique electronic structure, vibration modes, and phys-
icochemical properties, making them suitable for fundamental studies 
and cutting-edge applications such as silicon electronics, optoelec-
tronics, and bioelectronics. However, the brittleness, low toughness, 
and poor mechanical and electrical stabilities of TMD-based films 
limit their application. Herein, a  TaS2 freestanding film with ultralow 
void ratio of 6.01% is restacked under the effect of bond-free van der 
Waals (vdW) interactions within the staggered 2H-TaS2 nanosheets. 
The restacked films demonstrated an exceptionally high electrical 
conductivity of 2,666 S  cm−1, electromagnetic interference shielding 
effectiveness (EMI SE) of 41.8 dB, and absolute EMI SE (SSE/t) of 
27,859 dB  cm2  g−1, which is the highest value reported for TMD-
based materials. The bond-free vdW interactions between the adja-
cent 2H-TaS2 nanosheets provide a natural interfacial strain relaxation, 
achieving excellent flexibility without rupture after 1,000 bends. In addition, the  TaS2 nanosheets are further combined with the polymer 
fibers of bacterial cellulose and aramid nanofibers via electrostatic interactions to significantly enhance the tensile strength and flexibility 
of the films while maintaining their high electrical conductivity and EMI SE.This work provides promising alternatives for conventional 
materials used in EMI shielding and nanodevices.
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stacking direction with an out-of-plane and in-plane elec-
trical conductivities of approximately 0.125 and 33,300 
S  cm−1, respectively [44]. Therefore, the development of 
highly electrically conductive, flexible, and strong restacked 
 TaS2 films remains a huge challenge. Despite considerable 
pioneering efforts devoted to improving both mechanical 
properties and electrical conductivity of  TaS2-based films, 
the tensile strength is often about 10 MPa [37, 45], and the 
electrical conductivity is only 1173.8 S  cm−1 [37].

Herein, the metallic 2H-TaS2 films with superior mechani-
cal properties, conductivity, and EMI shielding properties 
were introduced. The 2H-TaS2 nanosheets with micrometre-
scale lateral dimensions were prepared using a highly fea-
sible intercalation strategy in a highly concentrated LiOH 
aqueous solution under mild conditions. A flexible free-
standing  TaS2 film with ultrathin thickness of 3.1 μm was 
successfully restacked through van der Waals interactions, 
and the film demonstrated an ultra-high electrical conductiv-
ity of 2666 S  cm−1, an EMI SE of 41.8 dB, an absolute EMI 
SE (SSE/t) of 27,859 dB  cm2  g−1, a high tensile strength 
of 23.3 ± 4.8 MPa, and excellent flexibility withstand 1000 
bends without rupture. In addition,  TaS2/fiber composite 
films were also fabricated to further improve the flexibility 
and strength of the nanosheets while maintaining a high EMI 
SE. The composite film can be readily folded into a com-
plex shape and unfolded without structural disintegration 
while effectively shielding against the practical application 
of 2.4 GHz Bluetooth.

2  Experimental Section

2.1  Materials

Bulk tantalum disulfide (2H-TaS2, 99.99%) powder was 
received from Nanjing NXNANO Tech. Co., Ltd. Dime-
thyl sulfoxide (DMSO, 99.7%), anhydrous lithium hydrox-
ide (99.99% metals basis) was received from Shanghai 
Aladdin Biochemical Tech. Co., Ltd. Hydrochloric acid 
(HCl, 36% ~ 38%) was purchased from DONGJIANG Rea-
gent. Poly-p-phenylene terephthamide (PPTA) fibers were 
obtained from Dupont. Bacterial cellulose dispersion (1 
wt%) was obtained from FEYNMAN NANO. Deionized 
water (DI water, resistivity > 18.2 MΩ ⋅ cm ) was collected 
from a Milli-Q Direct-Q 8UV system. All chemicals were 
used as received without any further purification.

1 Introduction

High performance electromagnetic interference (EMI) 
shielding materials with lightweight, ultrathin thickness, 
and mechanical flexibility have been an important research 
field because the development of high-speed communica-
tion technology and new wearable electronic devices causes 
considerable EMI harmful effects on the equipment and 
human health [1–6]. Two-dimensional (2D) materials are 
ideal alternatives to traditional metal-based EMI shielding 
materials, offering both low density and high electrical con-
ductivity [7–14].

Transition metal dichalcogenides (TMDs) are a class of 
layered 2D materials composed of transition metals and 
chalcogen elements that interact through van der Waals 
(vdW) forces [15–17]. Different TMDs exhibit different 
electrical properties such as semiconducting (2H-MoS2, 
1T-TaS2), semi-metallic  (WTe2, 1T-TiSe2) and metallic 
(1T′-MoTe2, 2H-NbS2, 1T-MoS2, 2H-TaS2) properties [18]. 
TMDs exhibit different crystal structures, layer numbers, 
stacking sequences, defect control, and unique 2D mor-
phologies, providing them with excellent physical, chemical, 
electronic, and optical properties, which enable their use in 
the fields of electrochemistry [19–21], sensors [22], super-
capacitors [23], superconductivity [24–27], thermoelectric 
[28, 29], electromagnetic wave absorber [30–33] and sieving 
[34, 35].

Tantalum disulfide  (TaS2) is one of the popular TMDs 
materials, in which 2H-TaS2 exhibits metallic behavior 
involving a charge density wave phase transition and super-
conductivity [24, 36, 37]. Because of its unique electrical 
properties, it is an ideal material for exploring the effect of 
electrical conductivity on the EMI shielding performance. 
High-quality 2D materials must be exfoliated to achieve 
their full potential. 2H-TaS2 can be exfoliated using elec-
trochemical [38, 39], n-butyllithium intercalations [24, 
40], mechanical grindings [41], high-boiling-point sol-
vent-assisted ultrasonic methods [37, 42]. However, these 
methods have several disadvantages such as low efficiency, 
poor repeatability, and extreme sensitivity to the environ-
ment, which makes it difficult to obtain batches of high-
quality  TaS2 nanosheets for freestanding film preparation. 
Bulk  TaS2 crystals are rigid and brittle [37, 43], hindering 
the preparation of flexible  TaS2 based films. Addition-
ally, 2H-TaS2 flakes have poor electron transport along the 
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2.2  Exfoliation of 2H‑TaS2 Nanosheets

2H-TaS2 nanosheets were exfoliated by alkaline ion interca-
lation method. Tantalum disulfide (2H-TaS2) powder (0.1 g) 
was mixed with lithium hydroxide solution (1 mL, 2 M) in 
centrifugal tube for 9 h at room temperature. The final mix-
ture was then washed 3 times using DI water by centrifuga-
tion at 12,000 rpm for 15 min until the pH of supernatant is 
about 7. Subsequently, the resulting swelled sediment was 
diluted with 80 mL DI water and sonicated for 1 h in an 
ice bath. Finally, the  TaS2 nanosheets aqueous dispersion 
(~ 1.25 mg  mL−1) was obtained without centrifugation.

2.3  Van der Waals  TaS2 Freestanding Films

To prepare pristine  TaS2 freestanding films, the fresh 
2H-TaS2 nanosheets aqueous dispersions (~ 1.25 mg  mL−1) 
was subjected to vacuum filtration using polycarbonate 
micro-porous membrane (Whatman) as substrates, followed 
by drying at 50 °C for 10 h. The freestanding  TaS2 ultrathin 
films with thickness of about 3.1 μm were finally obtained 
by peeling off from the substrates.

2.4  Synthesis of  TaS2 Composite Films

The bacterial cellulose (BC) dispersion (1 wt%) was added 
to HCl solution (0.01 M) protonation for 30 min, and ultra-
sonication for 1 min before use. Then the freshly synthesized 
 TaS2 nanosheets dispersion was mixed with BC/HCl disper-
sion. The resulting suspension was then vacuum filtered after 
hand shaking 1 min using polyethersulfone membranes as 
substrates. Subsequently, the pre-preparation  TaS2/BC com-
posite film was washed with 10 mL of DI water by continu-
ing vacuum filtration and dried at 50 °C for 10 h to form a 
final  TaS2/BC composite film. Based on the addition of BC, 
the following five types of  TaS2/BC composite films with 
various mass ratios were prepared:  TaS2/BC (10:1),  TaS2/
BC (10:2),  TaS2/BC (10:3),  TaS2/BC (10:4), and  TaS2/BC 
(10:5).

The ANFs fibers were fabricated by proton donor-assisted 
deprotonation [46]. Five types of  TaS2/ANFs composite 
films with the same weight ratios as  TaS2/BC composite 
films above were prepared:  TaS2/ANFs (10:1),  TaS2/ANFs 
(10:2),  TaS2/ANFs (10:3),  TaS2/ANFs (10:4), and  TaS2/
ANFs (10:5).

2.5  Materials Characterizations

The structures of bulk 2H-TaS2 and the films were charac-
terized by X-ray diffraction (XRD, Bruker, D8 Advance X 
using Cu K � radiation) and RAMAN spectrometer (LabRAM 
HR Evolution, HORIBA). The morphology and thickness of 
as-synthesized films were characterized by scanning electron 
microscopy (SEM, Thermo Scientific, Apero 2 S HiVac). 
The elemental morphology and compositions of  TaS2 and 
 TaS2 composite films were detected by X-ray photoelectron 
spectroscopy (XPS, ESCALAB 250XI+). The elemental 
composition was characterized by ICP–OES (Agilent 7700) 
and NMR (Bruker Avance III 500 MHz WB). High-angle 
annular dark field scanning transmission electron micros-
copy (HAADF–STEM, FEI Talos F200X G2) was used to 
characterize the  TaS2 nanosheets. The thickness of the exfo-
liated nanosheets was measured using atomic force micros-
copy (AFM, Bruker, Dimension ICON). The zeta potential of 
dispersions was measured on Malvern Zetasizer Nano ZS90. 
Hydrophilicity of the films was analyzed at 298 K using a 
contact angle analyzer (OCA20, DataPhysics). The mechani-
cal properties of films were investigated by using dynamic 
mechanical analysis (DMA850, TA).

To detect the 3D reconstruction microstructure of the  TaS2 
freestanding films and  TaS2 composite films, a layer of tung-
sten was deposited on the upper surface of the films, then cut 
by a focused ion beam (FIB) to provide cross-sections using 
a FEI Helios NanoLab 600i (using an acceleration voltage 
of 30 kV and a current of 2.4 nA). Due to the difference in 
height between the voids and cross-section, and the differ-
ence in atomic number between the polymer and  TaS2, the 
contrast is different. The serial backscattering electron section 
images of  TaS2 freestanding films and  TaS2 composite films 
were obtained by FIB/SEM tomography (FIB/SEMT) with a 
constant separation of 30 nm (using an acceleration voltage of 
5 kV and a current of 0.8 nA). Finally, the software (Thermo 
Scientific Auto Slice&View 4 and Avizo) was used to recon-
struct the corresponding three-dimensional (3D) microstruc-
ture and automatically calculate all data.

2.6  Electrical Conductivity Measurement

The electrical conductivity corresponding to the pressure of 
 TaS2 powder was measured using a powder resistivity sys-
tem (PRCD2000, IEST Co., Ltd). Electrical conductivity of 
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all  TaS2 films were measured using a non-contact resistivity 
tester (EC−80P, NAPSON CORPORATION). The electrical 
conductivity of all  TaS2 films were calculated by the Eq. (1):

where � is the electrical conductivity [S  cm−1], R
s
 is the 

sheet resistance [Ω  sq−1] and t  is the thickness of samples 
[cm]. Thickness measurements were performed by using a 
highly accurate length gauge ( ±0.01 μm, VL-50-B, Mitu-
toyo, Japan) and counter checked by the SEM technique. 
The density of pure  TaS2 and composite films was calculated 
from experimental measurements of the volume and mass 
of the samples.

2.7  Electromagnetic Interference Shielding 
Characterization

EMI measurements of pristine as well as composite films were 
carried out in a rectangular waveguide (HD-100WCAS, HD 
Microwave) using PNA network analyzer (PNA-N5227B, 
Keysight, USA) in X-band frequency range (8.2–12.4 GHz).

The reflection (R), absorption (A), and transmission (T) 
coefficients were calculated by scattering parameters (S11, 
S22, S12, and S21 obtained from the PNA network analyzer) as:

Furthermore, the total EMI SE  (SET), microwave reflec-
tion  (SER), and microwave absorption  (SEA) can be calcu-
lated from R and T coefficients as:

The absolute effectiveness (SSE/t) were calculated by the 
Eq. (8) [7, 47, 48]:

(1)� = 1∕(R
s
t)

(2)R = |
|S11

|
|

2

(3)T = |
|S21

|
|

2

(4)A = 1 − T − R

(5)SE
T
= −10logT

(6)SE
R
= −10log(1 − R)

(7)SE
A
= −10log

(
T

1 − R

)

= SE
T
− SE

R
− SE

M

(8)SSE∕t = EMI SE∕density∕t = dB cm2g−1

3  Results and Discussion

3.1  Characterization of 2H‑TaS2 Nanosheets

The 2H-TaS2 nanosheets were produced by Li-ion intercala-
tion, which involves immersing 2H-TaS2 crystals in a highly 
concentrated lithium hydroxide solution at room tempera-
ture followed by a mild sonication and exfoliation processes 
(Fig. 1 for more details, refer to the Experimental Section). 
Unlike conventional organic-solvent and n-butyllithium 
intercalations, this method is scalable and safe, and it does 
not involve time-consuming or complex processes. Using Li 
ions in the intercalation process involves electron transfer 
from the s orbitals of the Li ions to the d orbitals of the tran-
sition metal atoms [38]. Therefore, the high concentration of 
the intercalated Li leads to the injection of a massive number 
of electrons into the  TaS2 crystal, resulting in the retention 
of the intrinsic metallic 2H crystalline phase in  TaS2 [17, 
40, 49–54] The concentrated solution of the exfoliated  TaS2 
nanosheets appears black, whereas the diluted  TaS2 aqueous 
dispersion (~ 0.1 mg  mL−1), in which the Tyndall effect is 
observed, appears yellow (Fig. 2a), indicating the formation 
of relatively thin nanosheets. The formation of stable disper-
sions is attributed to the electrostatic repulsion between the 
nanosheets, which have a high negative charge (Fig. S1).

The metallic 2H phase of the lyophilized  TaS2 nanosheets 
was confirmed by XRD measurements (Fig. 2b) according to 
the PDF #80–0685 indexes [24, 55]. The (002) sharp peak 
(full width at half-maximum (FWHM) = 0.21°) indicated an 
excellent crystallinity of the bulk 2H-TaS2. The broadening 
of the XRD peaks may be related to the extent of the crystal 
domain (a broader peak reflects a smaller crystal domain) 
[56]. The (002) peak of the lyophilized  TaS2 nanosheets 
(FWHM = 1.50°) was broader than that of the 2H-TaS2 
crystals, which indicated the successful exfoliation of the 
sample and the presence of vdW restacking effects between 
the  TaS2 nanosheets. Raman spectroscopy (Fig. 2c) con-
firmed the crystallinity retention of the exfoliated 2H-TaS2 
[24, 40, 56]. Two peaks of  TaS2 nanosheets were observed 
at approximately 392.0 and 275.8  cm–1, which correspond 
to the out-of-plane vibration  (A1g) and the in-plane vibration 
 (E2g) modes, respectively, of 2H-TaS2 at room temperature, 
and a broad second-order peak, which is attributed to a two-
phonon scattering process, was observed at approximately 
196.2  cm−1. The  E2g peak of the lyophilized  TaS2 nanosheets 
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was slightly blue shifted to 3.8  cm−1 compared to that of the 
bulk 2H-TaS2, indicating the effective exfoliation of  TaS2 
nanosheets [55]. In addition, the integral  E2g/A1g ratio of 

the  TaS2 nanosheets is 0.107, which is very close to that of 
the monolayer [37].

Fig. 1  Schematic illustrating the preparation processes of  TaS2 freestanding films,  TaS2/bacterial cellulose (BC) or aramid nanofibers (ANFs) 
nanocomposite films

Fig. 2  a Exfoilated 2H-TaS2 nanosheets aqueous dispersions. b XRD spectra of 2H-TaS2 crystals and lyophilized 2H-TaS2 nanosheets. c Raman 
spectroscopy analysis of the exfoliated nanosheets and the bulk crystal for comparison. XPS high-resolution spectra of d Ta 4f and e S 2p of 
2H-TaS2 crystals and lyophilized 2H-TaS2 nanosheets. f 7Li SP MAS NMR spectra of 2H-TaS2 nanosheets



 Nano-Micro Lett.          (2023) 15:106   106  Page 6 of 15

https://doi.org/10.1007/s40820-023-01061-1© The authors

The XPS further confirmed the presence of the 2H phase 
in the bulk  TaS2 powder. As shown in Fig. 2d, the doublets 
at 22.8 and 24.7 eV are assigned to  Ta4+ 4f7/2 and  Ta4+ 4f5/2, 
respectively, of 2H-TaS2 [19, 57]. The peaks at 160.9 eV 
(2p3/2) and 162.0 eV (2p1/2) (Fig. 2e), which are the signature 
peaks of  S2+ in 2H-TaS2, were observed [57]. As shown in 
Fig. 2d–e, the Ta 4f and S 2p peaks shift toward a lower 
bonding energy, indicating that the 2H-TaS2 nanosheets 
obtained electrons form the s orbitals of the Li ions during 
the intercalation process [39, 55]. This suggests the excellent 
intercalation and exfoliation of the nanosheets.

The chemical composition of the 2H-TaS2 nanosheets 
(Table S1) was further characterized using an inductively 

coupled plasma optical emission spectrometer (ICP–OES), 
and the chemical compositions of the 2H-TaS2 nanosheets is 
found to be  Li0.18TaS2. The presence of Li ions was also con-
firmed by nuclear magnetic resonance (Fig. 2f). The single 
sharp 7Li signal at approximately 3.49 ppm indicates that Li 
ions were all in the same chemical environment.

The morphology of 2H-TaS2 was characterized using 
SEM (Figs. 3a and S2a–d). The bulk 2H-TaS2 is well crys-
tallized with a large layered lateral structure, and the edge of 
each individual crystal is clearly visible. The composition of 
the material was investigated using energy-dispersive X-ray 
spectroscopy (EDS) analysis (Fig. S2e–f), which verified the 
homogeneous distribution of Ta and S elements throughout 

Fig. 3  SEM image of the a 2H-TaS2 crystals and b 2H-TaS2 nanosheets. c A typical AFM image of 2H-TaS2 nanosheets, showing thick-
ness of ~ 1.75 nm. d TEM image, e selected-area electron diffraction (SAED) image, f high-resolution TEM image of 2H-TaS2 nanosheets. g 
HAADF-STEM and EDS images of 2H-TaS2 nanosheets
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the material. The morphology of the 2H-TaS2 flakes was 
characterized using SEM, transmission electron microscopy 
(TEM), and AFM. Figure 3b shows the SEM image of the 
exfoliated 2H-TaS2 nanosheets, which indicates that they 
are flexible with large lateral dimensions. SEM statistical 
analysis (Fig. S3) shows the values of the lateral dimensions 
of the nanosheets (0.5–11 μm), mainly distributed at val-
ues < 5 μm (log-normal distribution peaks at approximately 
1.5 μm). Figure 3c shows an AFM image of an individual 
 TaS2 nanosheet (thicknesses ≈ 1.75 nm). The figure indi-
cates that few porous defects are observed on the surface of 
the 2H-TaS2 nanosheets. The AFM statistical analysis of the 
thickness of the 2H-TaS2 nanosheets (Fig. S4) shows that 
the 2H-TaS2 nanosheets mainly consist of few layers (the 
thickness of each  TaS2 monolayer is generally between 0.4 
and 0.9 nm [56]), and  TaS2 monolayers are also observed in 
the exfoliated samples.

The low contrast in the TEM image also indicates the thin 
flake-like nature of the 2H-TaS2 nanosheets (Fig. 3d). The 
hexagonal diffraction spots (Fig. 3e) and the lattice-resolved 
TEM image (Fig. 3f) indicate the high crystallinity of the 
2H-TaS2 nanosheets. According to Fig. 3f, few sub-nanop-
ores were also distributed over the substrate of the 2H-TaS2 
nanosheets, indicating that a high Li-ion intercalation can 
cause defects. High-angle annular dark field–scanning trans-
mission electron microscope (HAADF–STEM) and EDS 
images of the 2H-TaS2 nanosheets confirm the presence of 
the Ta and S elements (Fig. 3g).

3.2  Structure Characterization and Mechanical 
Properties of  TaS2 Films

The  TaS2 freestanding and composite films were fabricated 
from their dispersions by vacuum filtration (Fig. 1, for more 
details, refer to the Experimental Section). In case of the 
 TaS2 freestanding films, a perfect  TaS2 ultrathin film (thick-
ness = 3.1 μm) was prepared (Fig. 4a). Figure S5 shows the 
morphology and element distribution of a section of the 
film. The cross-sectional images observed by focused ion 
beam–SEM (FIB–SEM) revealed that the  TaS2 film has 
well-ordered and compact lamellar structure. The mechani-
cal and electrical properties of the restacked nanosheet films 
are affected by their internal structure [43, 58]. Therefore, 
the 3D void microstructure of the  TaS2 films was recon-
structed using FIB/SEMT (Fig. S6, Movie S1). Figure S7 

shows the volume distribution of the 3D reconstructed voids. 
The FIB/SEMT results indicate that the ultralow porosity of 
the  TaS2 films (6.01%) is significantly lower than that of the 
MXene films (15.4 ± 0.6%) [58].

Bacterial cellulose (BC) and aramid nanofibers (ANFs) 
are considered promising matrix materials because of 
their high stability, good film-forming properties, and high 
mechanical properties [3, 59–61]. Therefore, we investigated 
the enhancement effects of BC and ANFs on the mechani-
cal properties of bond-free  TaS2. Figures 4b, c and S8 show 
the morphology of the  TaS2/bacterial cellulose (BC) and 
 TaS2/aramid nanofibers (ANFs) composite films. The  TaS2 
freestanding film exhibits a smoother surface than that of 
the  TaS2/BC (10:5) composite film and a rougher surface 
than that of the  TaS2/ANFs (10:5) composite film. This is 
attributed to the larger roughness of the pure BC film and 
the very smaller roughness of the pure ANFs film (Fig. S9). 
Therefore, the surface roughness of composite film will be 
between pure fiber film and  TaS2 film. The real content of 
BC and ANFs in the  TaS2 composite films was examined 
by thermogravimetric analysis (Fig. S10), and the results 
are presented in Table S2. An acid pretreatment of BC and 
ANFs allows for the protonation of the fiber, which pro-
motes the aggregation of the  TaS2 nanosheets around the 
fiber surface by electrostatic interaction (Fig. S11). This 
effectively prevents the delamination of the composite films 
(Fig. S12) due to the huge density difference between the 
 TaS2 nanosheets and fibers. In addition, the preparation 
efficiency of the composite films is greatly accelerated by 
acid treatment (Movie S2). The cross-sectional SEM and 
FIB/SEMT images (Figs. 4b, c, S6, and S13) and movies 
(Movies S3 and S4) of the  TaS2/BC and  TaS2/ANFs com-
posite films reveal that both films have alternating multilayer 
stack structures between  TaS2 and the fibers. This special 
structure of the composite films can effectively improve the 
tensile strength and ensure its high electrical conductivity. 
As shown in Fig. 4d, the XPS spectra reveal that, based 
on the increased content of the C and O elements and the 
occurrence of the N element in the composite films, the BC 
fibers or ANFs had been successfully introduced into the 
2H-TaS2 nanosheet layers. The intensity distribution of each 
component on the surface of  TaS2/BC (10:5) and  TaS2/ANFs 
(10:5) composite films were analyzed by Raman microscope 
(the size of observation area is 50 μm × 50 μm). As shown in 
Fig. S14, the shifts at 350–450, 1092, and 1648  cm−1 corre-
spond to  TaS2 [24], C–O of BC [62], and C−N and N−H of 
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ANFs [46], respectively, and the above characteristic peaks 
are used as signal sources for Raman imaging (Fig. 4e, f). It 
is observed that  TaS2 has the local high content area in  TaS2/
BC (10:5) or  TaS2/ANFs (10:5) composite films (Fig. 4e(i) 
and f(i)), indicating that  TaS2 presents non-continuous dis-
tribution in the composite. BC and ANFs are also unevenly 
distributed in the corresponding composite film (Fig. 4e(ii) 
and f(ii)). This uneven distribution is the reason for the alter-
nating multilayer stack structures between  TaS2 and the fib-
ers of the composite film (Fig. 4b, c).

Figures 5a and S15 show the tensile stress–strain curves 
of  TaS2 freestanding film and the  TaS2/fiber composite 
films. The tensile strength, Young’s modulus, and tough-
ness of the  TaS2 freestanding film are 23.3 ± 4.8 MPa, 
14.9 ± 6.2 GPa, and 0.033 ± 0.018 MJ  m−3, respectively 
(Fig. S16 and Table S3). The tensile strength of the  TaS2 
freestanding film is much higher than that of the previ-
ously reported  TaS2HA0.371NMF0.135 foil (9.16 MPa) [37], 
and the PEO/TaS2 (0.5 wt%) film (11.27 MPa) [45], which 
implies that the densified structure and reinforced inter-
layer interaction between the  TaS2 nanosheets improved 

Fig. 4  Structure characterizations of  TaS2 films. Photos, cross-sectional SEM images and 3D reconstruction microstructure based on FIB/SEMT 
of a  TaS2 freestanding film, b  TaS2 /BC (10:1) composite film, and c  TaS2 /ANFs (10:1) composite film (Gray indicates  TaS2, Blue indicates 
voids, BC or ANFs). d XPS survey spectra of  TaS2 freestanding film,  TaS2 /BC (10:5) composite film, and  TaS2 /ANFs (10:5) composite film. 
Raman mappings of e  TaS2/BC (10:5) composite film and f  TaS2/ANFs (10:5) composite film
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the mechanical properties of the  TaS2 freestanding film. 
The  TaS2/BC (10:5) and  TaS2/ANFs (10:5) composite 
films exhibit superior mechanical properties, i.e., their 
tensile strength is 87.9 ± 8.1 and 134.13 ± 1.4  MPa, 
respectively, and their toughness is 3.25 ± 0.45 and 
4.52 ± 0.07 MJ  m−3, respectively, which are the highest 
values reported for  TaS2 composite films (Fig. 5b and 
Table S4). Figure 5c demonstrates that the  TaS2/BC (10:5) 
composite film can easily withstand a tensile force of 1 kg. 
The large sized  TaS2/BC (10:5) composite film (diameter 

≈ 90 mm) can be rapidly prepared by our facile method 
(Fig. 5c, insert picture). The film is smooth, flexible, and 
can be readily folded into a complex shape and unfolded 
without structural disintegration. Moreover, the  TaS2 
composite films exhibit a higher tolerance to ultrasound 
than the  TaS2 films (Fig. S17), which can be attributed 
to the better anti-wettability of the composite films and 
stronger interaction between the  TaS2 nanosheets and fib-
ers compared to those in case of the pure  TaS2 films (Fig. 
S18). Figure 5d indicates that the relative change in the 

Fig. 5  Mechanical properties of  TaS2 films. a Representative tensile stress–strain curves of  TaS2 freestanding film,  TaS2/BC (10:5), and  TaS2/
ANFs (10:5) composite films. b Comparison of the strain, tensile strength, and toughness of  TaS2 freestanding film,  TaS2 /BC, and  TaS2/ANFs 
composite films, respectively. c Digital images of  TaS2/BC (10:5) composite films showing their strength and flexibility. d Mechanical and elec-
trical stability of  TaS2 freestanding film,  TaS2/BC (10:5), and  TaS2/ANFs (10:5) composite films as a function of the bending cycle. e Normal-
ized XRD patterns of BC, ANFs,  TaS2 freestanding film,  TaS2/BC (10:5), and  TaS2/ANFs (10:5) composite films. f SEM images of the fracture 
surfaces of  TaS2 freestanding film,  TaS2/BC (10:5), and  TaS2/ANFs (10:5) films. g Schematic diagram of  TaS2 freestanding film before and after 
bending. h Schematic diagram of  TaS2 composite films before and after stretching
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resistance of the  TaS2 freestanding film,  TaS2/BC (10:5) 
composite films, and  TaS2/ANFs (10:5) composite films 
only decreased by 7.4%, 8.6%, and 3.0%, respectively, 
after 1,000 bending cycles at a speed of 500 mm  min−1 
and a bending radius of approximately 2.5 mm, indicating 
the good mechanical flexibility and electrical stabilities of 
the  TaS2 freestanding and composite films.

The XRD patterns further show that the  TaS2 freestand-
ing film exhibits a well-ordered lamellar structure (Figs. 5e 
and S19), and the corresponding interlayer distance (d) val-
ues listed in Table S5. The  TaS2 freestanding film shows a 
strong XRD 2θ peak at 9.47° and a weak peak at 18.77°, 
corresponding to d of 0.933 and 0.472 nm, respectively. The 
d of the restacked  TaS2 freestanding film increased com-
pared with that in the  TaS2 crystal, resulting in a significant 
reduction in the interlayer coupling. The fracture morphol-
ogy of the  TaS2 freestanding film shows a smooth curvature 
of 2H-TaS2 nanosheets (Fig. 5f), verifying high flexibility in 
the  TaS2 freestanding films. Additionally, the bond-free vdW 
interfaces with large lateral dimensions allow adjacent  TaS2 
nanosheets to slide or rotate against each other to accommo-
date local structural perturbations (tension or compression) 
and reduce the strain-induced cracks and fractures without 
breaking the broad-area vdW interfaces and conduction 
pathways. (Fig. 5g) Therefore, the  TaS2 freestanding film 
shows high flexibility as well as mechanical and electrical 
stability even under large deformations.

Compared with the  TaS2 freestanding film, the introduc-
tion of protons during the preparation of the  TaS2 composite 
films can significantly strengthen the interlayer interactions 
and induce the densification of the composite films. Thus, 
the  TaS2/BC (10:5) and  TaS2/ANFs (10:5) composite films 
show strong XRD peaks at 2θ of 14.78° and 14.66°, which 
correspond to d of 0.599 and 0.604 nm, respectively. These 
d values are smaller than that of the pure  TaS2 freestanding 
film. The introduction of BC and ANFs nanofibers act as 
stiffeners because they are tightly embedded between the 
 TaS2 nanosheets interlayer (Figs. 5f and S20), which effec-
tively improves the flexibility, tensile strength, and tough-
ness of the composite films. Figure 5h reveals the synergetic 
toughening mechanism of  TaS2 composite films, which are 
attributed to the interfacial interaction (hydrogen bonding) 
between the fibers, van der Waals interaction between the 
 TaS2 nanosheets, electrostatic interaction between fibers and 
bond-free  TaS2 nanosheets, and mechanical entanglement. 
When the stretching procedure starts, the  TaS2 nanosheets 

first slide past each other because of the weak vdW inter-
actions. Meanwhile, the nanofibers crosslinking with  TaS2 
nanosheets via electrostatic interactions are stretched and 
further arrest crack propagation for accommodating large 
deformation before complete fracture of the sheets.

3.3  Electrical Conductivity and EMI Shielding 
Performances of  TaS2 Films

The electrical conductivity of the 3.1-μm-thick  TaS2 free-
standing film is 2666 S  cm−1 (Fig. 6a and Table S6), which is 
significantly higher than that of the  TaS2 powder (Fig. S21) 
and the reported  TaS2 based films (Table S7). This result 
indicates that the broad-area dangling-bond-free plane-to-
plane contacts in the  TaS2 nanosheets along with their mini-
mum interfacial trapping states and low voids can facilitate 
the in-plane and intersheet electron transport properties of 
the thin film [43, 63–65]. In addition, the presence of surface 
defects in the  TaS2 nanosheets provides vertical paths for 
electron transmission and a passage for the adsorbed Li-ions, 
resulting in a high conductivity of the film [66–68]. The con-
ductivity of the  TaS2 composite films (Fig. 6a and Table S6) 
decreases with the increase in the BC or ANFs content due 
to the insertion of insulating fibers into the  TaS2 nanosheet 
interlayer. The effect of ANFs on the conductivity is more 
prominent than that of BC because ANFs have smaller diam-
eter (Fig. S9) and larger volume distribution (Fig. S6). How-
ever, the conductivity of the  TaS2 composite films are supe-
rior to those of most reported  TaS2-based films (Table S7). 
The alternating (between  TaS2 and the fibers) multilayer 
stack structures of the  TaS2 composite films ensured their 
optimal conductivity and mechanical properties.

In Fig. 6b, the ultra-high electrical conductivity of the 
3.1-μm-thick  TaS2 freestanding film resulted in an excellent 
EMI SE of 41.8 dB at the X-band (8.2–12.4 GHz), which 
is much higher than the commercialization benchmark 
(20 dB) in electronic equipment of civil telecom. Moreo-
ver, the EMI SE of the individual  TaS2 films with a thick-
ness of 7.5, 17.5, and 40 μm is 49.1, 54.8, and 72.5 dB, 
respectively, and hence, EMI SE increases with the increase 
in the thickness. In addition, the multi-level superimposed 
 TaS2 films show superior EMI SE (Fig. S22). Thus, EMI 
SE increases with the increase in the number of layers and 
the film thickness. The multi-level superimposed  TaS2 films 
(5P, ~ 52 μm) provides a superior EMI SE of 105.2 dB. 
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Clearly, the superimposed film has better EMI SE perfor-
mance than the independent film, which may be due to the 
synergistic effect of multiple internal reflections between the 
adjacent  TaS2 films and multiple-wave interference between 
the  TaS2 nanosheets [69–72]. The EMI SE of the  TaS2/BC 
and  TaS2/ANFs composite films were measured at different 
component ratios at the X-band. With the increase in the BC 
content, the EMI SE does not significantly decrease (Fig. 6c 
and Table S6). At a high BC content in the  TaS2/BC (10:5) 
composite film, the average EMI SE still reaches 46.8 dB, 
which can effectively shield against a 2.4 GHz Bluetooth sig-
nal (Fig. 6g). This is highly satisfactory EMI SE for certain 

industrial applications. Among the  TaS2/ANFs composite 
films (Fig. 6d and Table S6),  TaS2/ANFs (10:1) achieved an 
excellent EMI SE of 46.8 dB. With the increase in the ANFs 
content, the EMI SE of the  TaS2/ANFs (10:5) decreases to 
39.2 dB, which can be mainly attributed to the significant 
decrease in its conductivity due to the ANFs. The main elec-
tromagnetic shielding mechanism of these films is reflec-
tion (Figs. 6e and S23), which is due to the high electri-
cal conductivity of the lamellar restacked structure of  TaS2 
and the multilayer stack structures of the  TaS2 composite 
films [7, 8, 58, 70]. Moreover, the absolute effectiveness 
(SSE/t) was used to evaluate the shielding performance of 

Fig. 6  Electrical conductivity and EMI SE of  TaS2 films. a Electrical conductivity of  TaS2 freestanding film,  TaS2/BC, and  TaS2/ANFs compos-
ite films. b EMI SE of  TaS2 freestanding films at different thicknesses. EMI SE of c  TaS2/BC and d  TaS2/ANFs composite films. e Average EMI 
 SET,  SEA, and  SER in 7.5-μm-thick  TaS2 freestanding film,  TaS2/BC (10:5), and  TaS2/ANFs (10:5) composite films. (Note:  TaS2 content is the 
same for each tested sample). f Comparison of EMI SSE/t of  TaS2 films with the reported TMDs-based EMI shielding materials. g Demonstra-
tion of EMI shielding performance of  TaS2/BC (10:5) composite film. h Schematic illustration of the proposed EMI shielding mechanism of the 
 TaS2 films for ultra-high EMI SE
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the  TaS2 films considering the effects of density and thick-
ness [73]. The SSE/t of the 3.1-μm-thick  TaS2 freestanding 
film is 27,859 dB  cm2  g−1 (Fig. 6f and Table S6), which is 
the highest value for TMD-based materials. The developed 
 TaS2 freestanding film is also comparative to other materi-
als such as graphene and MXene materials (Table S8). The 
excellent EMI SE performance of the  TaS2 freestanding and 
composite films are ascribed to the stacked structure and 
defects of the  TaS2 nanosheets and the multi-interfaces cre-
ated by BC or ANFs, which synergistically contributed to a 
strong interfacial polarization as well as multiple reflections 
and increased the dielectric loss of the incident electromag-
netic waves (Fig. 6h).

4  Conclusions

2H-TaS2 nanosheets were successfully batch-produced using 
an environmentally friendly Li-ion solution-intercalated 
strategy, leading to a fast electron transmission and excel-
lent mechanical properties of the restacked  TaS2 films. The 
3.1 μm-thick  TaS2 freestanding film exhibits an ultra-high 
electrical conductivity of 2666 S  cm−1, an excellent EMI 
SE of 41.8 dB, a recorded SSE/t of 27,859 dB  cm2  g−1, and 
a high tensile strength of 23.3 ± 4.8 MPa. This combination 
of electrical and mechanical properties originates from the 
vdW interactions among the staggered 2H-TaS2 nanosheets, 
allowing natural interfacial strain relaxation and accommo-
dating local structural perturbation in the freestanding film. 
Furthermore, the  TaS2 composite films exhibit excellent 
EMI shielding properties and higher tensile strength with 
better mechanical flexibility. This study can be used as a 
basis for similar research on the large family of TMDs with 
widely tunable electrical and mechanical properties, which 
is promising for applications in the fields of EMI shielding 
and nanodevices that mainly rely on 2D materials.
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