Supporting Information for

Atomically Dispersed Dual-Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis

Jun-Xi Wu^{1,#}, Wen-Xing Chen^{3,#}, Chun-Ting He^{1,2,*}, Kai Zheng¹, Lin-Ling Zhuo¹, Zhen-Hua Zhao¹, and Jie-Peng Zhang^{1,*}

¹MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China

²Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China

³Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

[#]Jun-Xi Wu and Wen-Xing Chen contributed equally to this work.

*Corresponding author. E-mail: hct@jxnu.edu.cn (C.-T. He),

zhangjp7@mail.sysu.edu.cn (J.-P. Zhang)

S1 Text XAFS Data Processing

The acquired EXAFS data were extracted and processed according to the standard procedures using the ATHENA module implemented in the IFEFFIT software packages. The k^3 -weighted EXAFS spectra were obtained by subtracting the post-edge background from the overall absorption and then normalized with respect to the edge-jump step. Subsequently, k^3 -weighted $\chi(k)$ data of Co K-edge and Ni K-edge were Fourier transformed to real (R) space using a Hanning window ($dk=1.0 \text{ Å}^{-1}$) to separate the EXAFS contributions from different coordination shells. To obtain the quantitative structural parameters around central atoms, least-squares curve parameter fitting was performed using the ARTEMIS module of IFEFFIT software packages [1]. The following EXAFS equation was used:

$$\chi(k) = \sum_{j} \frac{N_{j} S_{o}^{2} F_{j}(k)}{k R_{j}^{2}} \exp[-2k^{2} \sigma_{j}^{2}] \exp[\frac{-2R_{j}}{\lambda(k)}] \sin[2k R_{j} + \phi_{j}(k)]$$

Where S_0^2 is the amplitude reduction factor, $F_j(k)$ is the effective curved-wave backscattering amplitude, N_j is the number of neighbors in the j^{th} atomic shell, R_j is the distance between the X-ray absorbing central atom and the atoms in the j^{th} atomic shell (backscatterer), λ is the mean free path in Å, $\phi_j(k)$ is the phase shift (including the phase shift for each shell and the total central atom phase shift), σ_j is the Debye-Waller parameter of the j^{th} atomic shell (variation of distances around the average R_j). The functions $F_j(k)$, λ and $\phi_j(k)$ were calculated with the ab initio code FEFF8.2.

S2 Supplementary Figures and Tables

Fig. S1. PXRD patterns of Co/Ni-doped MAF-4.

Fig. S2. SEM images of Co/Ni-doped MAF-4. (a) z = 3.5, c = 0.109, n = 0 (for AD-Co₁Ni₀), (b) z = 3.5, c = 0.078, n = 0.124 (for AD-Co_{0.72}Ni_{0.28}), (c) z = 3.5, c = 0.068, n = 0.168 (for AD-Co_{0.62}Ni_{0.38}), (d) z = 3.5, c = 0.055, n = 0.238 (for AD-Co_{0.48}Ni_{0.52}), (e) z = 3.5, c = 0.044, n = 0.261 (for AD-Co_{0.41}Ni_{0.59}), (f) z = 3.5, c = 0, n = 0.475 (for AD-Co₀Ni₁), (g) z = 3.4, c = 0.081, n = 0.358, (h) z = 3.3, c = 0.110, n = 0.479, (i) z = 3.2, c = 0.175, n = 0.741 (for NC-Co_{0.49}Ni_{0.51}).

Fig. S3. PXRD patterns of the pyrolysis products of Co/Ni-doped MAF-4.

Fig. S4. (a) TEM and (b) SEM images of AD-Co₁Ni₀.

Fig. S5. (a) TEM and (b) SEM images of AD-Co_{0.72}Ni_{0.28}.

Fig. S6. (a) TEM and (b) SEM images of AD-Co_{0.62}Ni_{0.38}.

Fig. S8. (a) TEM and (b) SEM images of AD-Co₀Ni₁.

Fig. S9. (a) TEM and (b) SEM images of NC-Co_{0.49}Ni_{0.51}.

Fig. S10. HAADF-STEM and EDS of AD-Co₁Ni₀.

Fig. S11. HAADF-STEM and EDS of AD-Co₀Ni₁.

Fig. S12. HAADF-STEM and EDS of NC-Co_{0.49}Ni_{0.51}.

Fig. S13. Distribution of distances between adjacent bright dots in Fig. 1f. The distances less than 2.2 Å can be attributed to the overlap of metal atoms at different heights.

Fig. S14. The five different dual metal sites models denoted as N8V4 (3.99 Å), N6V4 (2.35 Å), $2 \times (N3V2)$ (2.43 Å), $2 \times (N4V2)$ (5.00 Å), and N7V4 (3.54 Å).

Fig. S15. HAADF-STEM images of (a) AD-Co₁Ni₀ and (b) AD-Co₀Ni₁.

Fig. S16. 77 K N₂ adsorption isotherms of AD-Co₁Ni₀, AD-Co₀Ni₁, AD-Co_{0.48}Ni_{0.52}, NC-Co_{0.49}Ni_{0.51}.

Fig. S17. Raman spectra of AD-Co_{0.48}Ni_{0.52}, AD-Co₁Ni₀, AD-Co₀Ni₁, and NC-Co_{0.49}Ni_{0.51}.

Fig. S18. High resolution XPS spectrum of AD-Co_{0.48}Ni_{0.52}, AD-Co₁Ni₀, AD-Co₀Ni₁, and NC-Co_{0.49}Ni_{0.51} at the N 1s region.

Fig. S19. High resolution XPS spectra of AD-Co_{0.48}Ni_{0.52}, AD-Co₁Ni₀, AD-Co₀Ni₁, and NC-Co_{0.49}Ni_{0.51} at the (a) Co 2p and (b) Ni 2p region.

(b) CoO, (c) Co₃O₄, (d) AD-Co_{0.48}Ni_{0.52}, and (e) AD-Co₁Ni₀.

(b) NiO, (c) AD-Co_{0.48}Ni_{0.52}, and (d) AD-Co₀Ni₁.

Fig. S22. Theoretical Co K-edge XANES spectra of the proposed models of (a) N6V4-CoNi, (b) 2×(N3V2)-CoNi, (c) 2×(N4V2)-CoNi, and (d) N7V4-CoNi.

Fig. S23. Theoretical Ni K-edge XANES spectra of the proposed models of (a) N6V4-CoNi, (b) $2 \times (N3V2)$ -CoNi, (c) $2 \times (N4V2)$ -CoNi, and (d) N7V4-CoNi.

Fig. S24. Co K-edge EXAFS spectra fitting of (a) AD-Co_{0.48}Ni_{0.52} and (b) AD-Co₁Ni₀.

Fig. S26. OER CV curves of (a) AD-Co_{0.41}Ni_{0.59}, (b) AD-Co_{0.62}Ni_{0.38}, (c) AD-Co_{0.72}Ni_{0.28}, (d) AD-Co₁Ni₀, (e) AD-Co₀Ni₁, and (f) NC-Co_{0.49}Ni_{0.51}.

Fig. S27. OER Tafel slopes for AD-Co_{0.48}Ni_{0.52} (GCE), AD-Co_{0.48}Ni_{0.52} (CPE), NC-Co_{0.49}Ni_{0.51}, RuO₂, and IrO₂.

Fig. S28. Raman spectra of AD-Co_{0.48}Ni_{0.52} after OER.

Fig. S29. (a) PXRD patterns of AD-Co_{0.48}Ni_{0.52} before and after OER. (b) SEM, (c)TEM and (d) HADDF-STEM image of AD-Co_{0.48}Ni_{0.52} after OER.

Fig. S30. OER chronopotentiometry curve of AD-Co_{0.48}Ni_{0.52} at 10 mA \cdot cm⁻² during operando ATR-FTIR (Fig. 4a).

Fig. S31. Structures of the CoN_4 , CoO_4 , NiN_4 , NiO_4 , N8V4-CoCo, N8V4-NiNi, and N4O4V4-CoNi models.

Fig. S32. DFT derived partial DOS of (a) Co-d-orbital in N8V4-CoNi, N8V4-CoCo and CoN4 and (b) Ni-d-orbital in N8V4-CoNi, N8V4-NiNi and NiN4.

Fig. S33. The graphene matrix inlaid with (a and b) N8V4-CoNi-OH, (c and d) N8V4-CoNi, (e and f) CoN₄-OH, (g and h) CoN₄, (i and j) N6V4-CoNi-OH, and (k and l) N6V4-CoNi.

Fig. S34. Scaling relation between the binding energies for OH and OOH.

Fig. S35. Scaling relationship of AD-Co_{0.48}Ni_{0.52} for OER.

Fig. S36. DFT derived partial DOS of (a) Co-d-orbital in N8V4-CoNi, N8V4-CoNi-OH.

Fig. S37. HER CV curves of (a) AD-Co_{0.41}Ni_{0.59}, (b) AD-Co_{0.48}Ni_{0.52}, (c) AD-Co_{0.62}Ni_{0.38}, (d) AD-Co_{0.72}Ni_{0.28}, (e) AD-Co₁Ni₀, (f) AD-Co₀Ni₁, and (g) NC-Co_{0.49}Ni_{0.51}.

Fig. S38. HER Tafel slopes for AD-Co_{0.48}Ni_{0.52} (GCE), AD-Co_{0.48}Ni_{0.52} (CPE), NC-Co_{0.49}Ni_{0.51}, O-AD-Co_{0.48}Ni_{0.52}, and Pt/C-20%.

Fig. S39. Hydrogen intermediate adsorbed on the N6V4-CoNi model.

Fig. 40. Scaling relationship of (a) H₂O adsorption energy, (b) H₂O dissociation energy, and (c) OH* adsorption energy in CoN₄, N8V4-CoCo, N8V4-CoNi, N6V4-CoNi, N8V4-NiNi and NiN₄ for HER.

Fig. S41. TOF values of AD-Co_{0.48}Ni_{0.52} and other atomically dispersed electrocatalysts.

Fig. 42. (a) OER and (b) HER chronopotentiometry curves for AD-Co_{0.48}Ni_{0.52} coated on CPE.

Fig. S43. Chronopotentiometry curve of O-AD-Co_{0.48}Ni_{0.52}(+)||AD-Co_{0.48}Ni_{0.52}(-) for overall water splitting.

Feeding amounts		ounts	Dynalyzia product	
Z	с	n	r ylolysis ploddet	
3.5	0.109	0	AD-Co ₁ Ni ₀	
3.5	0.078	0.124	AD-Co _{0.72} Ni _{0.28}	
3.5	0.068	0.168	AD-Co _{0.62} Ni _{0.38}	
3.5	0.055	0.238	AD-Co _{0.48} Ni _{0.52}	
3.5	0.044	0.261	AD-Co _{0.41} Ni _{0.59}	
3.5	0	0.475	AD-Co ₀ Ni ₁	
3.4	0.081	0.358	Not studied because of the uncertain structure of motal success	
3.3	0.110	0.479	Not studied because of the uncertain structure of metal species	
3.2	0.175	0.741	NC-Co _{0.49} Ni _{0.51}	

Table S1. The feeding parameters for Co/Ni-doped MAF-4.

Table S2. Structural parameters extracted from the Co K-edge and Ni K-edge EXAFS fitting. ($S_0^2 = 0.81$ for Co K-edge and 0.85 for Ni K-edge)

Sample	Edge	Scattering pair	Ν	R (Å)	$\sigma^2 (10^{-3} \text{ Å}^2)$	ΔE_0 (eV)	R factor
	Co	Co-N1	2.2	1.93	5.4	1.0	0.005
		Co-N2	1.9	1.97	5.9		
AD-C00.481N10.52	Ni	Ni-N1	2.1	1.94	5.1	1.5	0.006
		Ni-N2	2.0	1.99	5.7		
AD-Co ₁ Ni ₀	Co	Co-N	4.1	1.95	4.6	1.5	0.007
AD-Co ₀ Ni ₁	Ni	Ni-N	3.9	1.96	4.9	1.5	0.004

 S_0^2 is the amplitude reduction factor; *N* is the coordination number; *R* is interatomic distance (the bond length between Co/Ni central atoms and surrounding coordination atoms); σ^2 is the Debye-Waller factor value (a measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model); *R* factor is used to value the goodness of the fitting.

Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy were estimated as $N \pm 20\%$; $R \pm 1\%$; $\sigma^2 \pm 20\%$; $\Delta E_0 \pm 20\%$.

Table S3. Determination of the F:O atomic ratio of AD-Co_{0.48}Ni_{0.52} before and after OER.

	F	0	F:O
Before OER	41.35	5.66	7.31:1
After OER	36.78	6.96	5.28:1

Fluorine (F) was from Nafion.

Model	before oxidation	E(eV)	after oxidation	E (eV)	ΔE (eV)
N8V4-CoNi		-14149.6		-14604.6	1.08
CoN4		-12647.9		-13102.9	1.63
N6V4-CoNi		-20348.6		-20803.9	1.48

Table S4. The energy change after oxidation to form C-OH.

before oxidation	E (eV)	after oxidation	E (eV)	$\Delta E (eV)$
	-14149.6		-14604.2	1.512
			-14603.8	1.860
			-14604.0	1.658
			-14604.0	1.692
			-14604.6	1.080

Table S5. The calculated energy of the oxidation position on N8V4-CoNi.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Catalysts	Electrolyte	$\eta_{10\text{-OER}}$ / mV	$\eta_{10\text{-HER}}$ / mV	Substrate	Refs.	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AD C. N.		313	183	GCE	the second	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AD-C00.48IN10.52		264	132	CPE	this work	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A-Ni@DG		270	150	CCE	[2]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DG		340	N.A.	GCE	[2]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe-N ₄ SAs/NPC	1.0 M KOH	430	202	GCE	[3]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CoSA/N,S-HCS	1 M KOH	306	165	CPE	[4]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ru/Co-N-C	1 M KOH	276	19	CPE	[5]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	FeCo-DACs/NC	1.0 M	370	N.A.	CPE	[6]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NiFe-CNG	1 M KOH	270	N.A.	GCE	[7]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NiFe-DASC	1 M KOH	310	N.A.	GCE	[8]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	360	N.A.	GCE	[0]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Co-Fe-N-C	I M KOH	321	N.A.	CC	[9]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe ₂ /Co ₁ -GNCL	1.1.1.1.0.11	350	N.A.	CCE	F.4.07	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe ₂ -GNCL	IMKOH	355	N.A.	GCE	[10]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NiFe@g-C ₃ N ₄ /CNT	1 M KOH	326	N.A.	GCE	[11]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	FeNi@PCN	1 M KOH	310	N.A.	GCE	[12]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CoNi-SAs/NC	1 M KOH	340	N.A.	CC	[13]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a-NiCo/NC	1.0 M KOH	252	N.A.	CC	[14]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Co-C ₃ N ₄ /CNT	1 M KOH	380	N.A.	GCE	[15]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Co SA@NCF/CNF	1 M KOH	400	N.A.	CC	[16]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni-O-G SACs	1 M KOH	328	N.A.	CC	[17]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.7-Co@NG-750	1.0 M KOH	386	N.A.	GCE	[18]	
Co-NHGF 1 M KOH 402 N.A. GCE [19] Fe-NHGF 1 M KOH 488 N.A. GCE [19] MHGF 494 N.A. GCE [20] Mn-NG 1.0 M KOH 337 N.A. GCE [20] Mn-G 1.0 M KOH 337 N.A. GCE [20] NC-Co SA 1 M KOH 360 N.A. CC [21] Ni-O-G SACs 1 M KOH 224 N.A. CC [22] Co-NG-5010-10 1 M KOH 470 N.A. GCE [23] Ni-CN-200 1.0 M KOH 310 (onset) N.A. GCE [24] S,N-Fe/N/C-CNT 0.1 M KOH 370 N.A. GCE [25] CoN4/NG 0.1 M KOH 380 N.A. GCE [26] Ni-N4/GHSs/Fe-N4 0.1 M KOH 360 N.A. GCE [27] (Fe,Co)-SA/CS 0.1 M KOH 360 N.A. Ni foam [28]	Ni-NHGF		331	N.A.		[]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Co-NHGF	1 М КОН	402	N.A.	GCE		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe-NHGF		488	N.A.		[19]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NHGF		494	N.A.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn-NG	1.0.1.4.4.0.4.4	337	N.A.		[20]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn-G	1.0 M KOH	459	N.A.	GCE		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NC-Co SA	1 M KOH	360	N.A.	CC	[21]	
Co-NG-5010-10 1 M KOH 470 N.A. GCE [23] Ni-CN-200 1.0 M KOH 310 (onset) N.A. GCE [24] S,N-Fe/N/C-CNT 0.1 M KOH 310 (onset) N.A. GCE [25] CoN ₄ /NG 0.1 M KOH 370 N.A. GCE [26] Ni-N ₄ /GHSs/Fe-N ₄ 0.1 M KOH 380 N.A. GCE [26] Ni-N ₄ /GHSs/Fe-N ₄ 0.1 M KOH 390 N.A. GCE [27] (Fe,Co)-SA/CS 0.1 M KOH 360 N.A. Ni foam [28] Co-NG 1 M KOH N.A. 270 GCE [29] CoN _x /G 1.0 M KOH N.A. 170 GCE [30] Co ₁ /PCN 1.0 M KOH N.A. 89 Ni foam [31]	Ni-O-G SACs	1 М КОН	224	N.A.	CC	[22]	
Ni-CN-200 1.0 M KOH 310 (onset) N.A. GCE [24] S,N-Fe/N/C-CNT 0.1 M KOH 370 N.A. GCE [25] CoN ₄ /NG 0.1 M KOH 380 N.A. GCE [26] Ni-N ₄ /GHSs/Fe-N ₄ 0.1 M KOH 380 N.A. GCE [26] Ni-N ₄ /GHSs/Fe-N ₄ 0.1 M KOH 390 N.A. GCE [27] (Fe,Co)-SA/CS 0.1 M KOH 360 N.A. Ni foam [28] Co-NG 1 M KOH N.A. 270 GCE [29] CoN ₃ /G 1.0 M KOH N.A. 170 GCE [30] Co ₁ /PCN 1.0 M KOH N.A. 89 Ni foam [31]	Co-NG-5010-10	1 M KOH	470	N.A.	GCE	[23]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni-CN-200	1.0 M KOH	310 (onset)	N.A.	GCE	[24]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S.N-Fe/N/C-CNT	0.1 M KOH	370	N.A.	GCE	[25]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CoN4/NG	0.1 M KOH	380	N.A.	GCE	[26]	
(Fe,Co)-SA/CS 0.1 M KOH 360 N.A. Ni foam [28] Co-NG 1 M KOH N.A. 270 GCE [29] CoN _x /G 1.0 M KOH N.A. 170 GCE [30] Co ₁ /PCN 1.0 M KOH N.A. 89 Ni foam [31]	Ni-N4/GHSs/Fe-N4	0.1 M KOH	390	N.A.	GCE	[27]	
Co-NG 1 M KOH N.A. 270 GCE [29] CoN _x /G 1.0 M KOH N.A. 170 GCE [30] Co ₁ /PCN 1.0 M KOH N.A. 89 Ni foam [31]	(Fe.Co)-SA/CS	0.1 M KOH	360	N.A.	Ni foam	[28]	
CoN _x /G 1.0 M KOH N.A. 170 GCE [30] Co1/PCN 1.0 M KOH N.A. 89 Ni foam [31]	Co-NG	1 M KOH	N.A.	270	GCE	[29]	
Co ₁ /PCN 1.0 M KOH N.A. 89 Ni foam [31]	CoN _r /G	1.0 M KOH	N.A.	170	GCE	[30]	
Co ₁ /CN 1.0 M KOH N.A. 138 Ni foam [31]	Co ₁ /PCN	1.0.1	N.A.	89			
	Co ₁ /CN	1.0 M KOH	N.A.	138	N1 foam	[31]	

Table S6. Benchmark electrocatalytic performances of ADCs.

Table S7. Benchmark performances of bifunctional electrocatalysts for overall water splitting in 1 M KOH. (Blue: ADCs, green: quasi-bifunctional electrocatalysts, red: other bifunctional electrocatalysts)

Catalysts	Substrate	Cell voltages- η_{10} / V	Refs.
O-AD-Co _{0.48} Ni _{0.52} (+) AD-Co _{0.48} Ni _{0.52} (-)	CPE	1.60	this work
Fe-N ₄ SAs/NPC	CPE	1.67	[3]
CoSA/N,S-HCS	CPE	1.64	[4]
Ru/Co-N-C	CPE	1.50	[5]
Fe-O ₂ cat(+) Fe-H ₂ cat(-)	Fe foam	1.65	[32]
$R-CoO_x@CN(+) R-CoO_x@CN(-)$	Ni foam	1.6	[33]
Ni_2P/NiO_x (+) $Ni_2P(-)$	Ni foam	1.63	[34]
Ir ₁ @Co/NC	CPE	1.60	[35]
CoP/NCNHP	CPE	1.64	[36]
CoP/rGO	CPE	1.7	[37]
Co-S sheets	CPE	1.743	[38]
Co ₃ O ₄ NCs	CPE	1.91	[39]
Co-P/NC	GCE	1.71	[40]
Co ₁ Mn ₁ CH	Ni foam	1.68	[41]
NiFe LDH	Ni foam	1.7	[42]
NiCo ₂ O ₄	Ni foam	1.65	[43]
Co _{0.85} Se/NiFe-LDH	graphite foil	1.67	[44]
Ni_3S_2	Ni foam	1.76	[45]
$Cu@CoS_x$	Cu foam	1.5	[46]
Cu@NiFe LDH	Cu foam	1.54	[47]

References

- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537-541 (2005). https://doi.org/10.1107/S0909049505012719
- L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, et al., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285-297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005
- Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang, et al., A bimetallic Zn/Fe polyphthalocyanine-derived singleatom Fe-N₄ catalytic site: a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. Int. Ed. 57, 8614-8618 (2018). https://doi.org/10.1002/anie.201804349
- Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen, et al., Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and selfdriven water splitting. Adv. Energy Mater. 10, 2002896 (2020). https://doi.org/10.1002/aenm.202002896
- C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, et al., Electronic structure engineering of single-atom Ru sites via Co-N₄ sites for bifunctional pH-universal water splitting. Adv. Mater. 34, 2110103 (2022). https://doi.org/10.1002/adma.202110103
- M. Liu, N. Li, S. Cao, X. Wang, X. Lu, et al., A "pre-constrained metal twins" strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 34, 2107421 (2022). https://doi.org/10.1002/adma.202107421
- W. Wan, Y. Zhao, S. Wei, C.A. Triana, J. Li, et al., Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 12, 5589 (2021). https://doi.org/10.1038/s41467-021-25811-0
- Z. Zeng, L.Y. Gan, H. Bin Yang, X. Su, J. Gao, et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO₂ reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
- 9. L. Bai, C.S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190-14199 (2019). https://doi.org/10.1021/jacs.9b05268
- Y.-S. Wei, L. Sun, M. Wang, J. Hong, L. Zou, et al., Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59, 16013-16022 (2020). https://doi.org/10.1002/anie.202007221
- D. Liu, S. Ding, C. Wu, W. Gan, C. Wang, et al., Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution. J. Mater. Chem. A 6, 6840-6846 (2018). https://doi.org/10.1039/c8ta00550h
- C. Wu, X. Zhang, Z. Xia, M. Shu, H. Li, et al., Insight into the role of Ni-Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride. J. Mater. Chem. A 7, 14001-14010 (2019). https://doi.org/10.1039/c9ta03163d
- X. Han, X. Ling, D. Yu, D. Xie, L. Li, et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019). https://doi.org/10.1002/adma.201905622
- Z. Pei, X.F. Lu, H. Zhang, Y. Li, D. Luan, et al., Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem. Int. Ed. 61, 202207537 (2022) https://doi.org/10.1002/anie.202207537.
- Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, et al., Molecule-level g-C₃N₄ coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336-3339 (2017). https://doi.org/10.1021/jacs.6b13100
- 16. D. Ji, L. Fan, L. Li, S. Peng, D. Yu, et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. **31**, 1808267 (2019). https://doi.org/10.1002/adma.201808267
- Y. Xu, W. Zhang, Y. Li, P. Lu, Z.-S. Wu, A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. J. Energy Chem. 43, 52-57 (2020). https://doi.org/10.1016/j.jechem.2019.08.006
- Q. Zhang, Z. Duan, M. Li, J. Guan, Atomic cobalt catalysts for the oxygen evolution reaction. Chem. Commun. 56, 794-797 (2020). https://doi.org/10.1039/c9cc09007j
- H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan, et al., General synthesis and definitive structural identification of MN₄C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63-72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- 20. J. Guan, Z. Duan, F. Zhang, S.D. Kelly, R. Si, et al., Water oxidation on a mononuclear manganese

heterogeneous catalyst. Nat. Catal. 1, 870-877 (2018). https://doi.org/10.1038/s41929-018-0158-6

- W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu, et al., Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 8, 8961-8969 (2018). https://doi.org/10.1021/acscatal.8b02556
- 22. Y. Li, Z.S. Wu, P. Lu, X. Wang, W. Liu, et al., High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 7, 1903089 (2020). https://doi.org/10.1002/advs.201903089
- Y. Zhang, W. Li, L. Lu, W. Song, C. Wang, et al., Tuning active sites on cobalt/nitrogen doped graphene for electrocatalytic hydrogen and oxygen evolution. Electrochim. Acta. 265, 497-506 (2018). https://doi.org/10.1016/j.electacta.2018.01.203
- S. Ohn, S.Y. Kim, S.K. Mun, J. Oh, Y.J. Sa, et al., Molecularly dispersed nickel-containing species on the carbon nitride network as electrocatalysts for the oxygen evolution reaction. Carbon 124, 180-187 (2017). https://doi.org/10.1016/j.carbon.2017.08.039
- P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610-614 (2017). https://doi.org/10.1002/anie.201610119
- L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao, Single-atom cobalt electrocatalysts for foldable solid-state Znair battery. Nano Energy 50, 691-698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, et al., Dual single-atomic Ni-N₄ and Fe-N₄ sites constructing Janus hollow graphene for welective oxygen electrocatalysis. Adv. Mater. **32**, 2003134 (2020). https://doi.org/10.1002/adma.202003134
- V. Jose, H. Hu, E. Edison, W. Manalastas, Jr., H. Ren, et al., Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods 5, 2000751 (2021). https://doi.org/10.1002/smtd.202000751
- 29. H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim, et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
- H.W. Liang, S. Bruller, R. Dong, J. Zhang, X. Feng, et al., Molecular metal-N_x centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 6, 7992 (2015). https://doi.org/10.1038/ncomms8992
- L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134-141 (2018). https://doi.org/10.1038/s41929-018-0203-5
- 32. X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, et al., In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 4, 1139-1152 (2018). https://doi.org/10.1016/j.chempr.2018.02.023
- H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, et al., In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688-2694 (2015). https://doi.org/10.1021/ja5127165
- 34. L.-A. Stern, L. Feng, F. Song, X. Hu, Ni₂P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8, 2347-2351 (2015). https://doi.org/10.1039/c5ee01155h
- 35. W.H. Lai, L.F. Zhang, W.B. Hua, S. Indris, Z.C. Yan, et al., General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem. Int. Ed. 58, 11868-11873 (2019). https://doi.org/10.1002/anie.201904614
- Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, et al., Core-shell ZIF-8@ZIF-67-derived CoP nanoparticleembedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610-2618 (2018). https://doi.org/10.1021/jacs.7b12420
- L. Jiao, Y.X. Zhou, H.L. Jiang, Metal-organic framework-based CoP/reduced graphene oxide: highperformance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 7, 1690-1695 (2016). https://doi.org/10.1039/c5sc04425a
- J. Wang, H.X. Zhong, Z.L. Wang, F.L. Meng, X.B. Zhang, Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10, 2342-2348 (2016). https://doi.org/10.1021/acsnano.5b07126
- S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, et al., Co₃O₄ nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 51, 8066-8069 (2015). https://doi.org/10.1039/c5cc01080b

- B. You, N. Jiang, M. Sheng, S. Gul, J. Yano, et al., High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chem. Mater. 27, 7636-7642 (2015). https://doi.org/10.1021/acs.chemmater.5b02877
- T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo, et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139, 8320-8328 (2017). https://doi.org/10.1021/jacs.7b03507
- J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593-1596 (2014). https://doi.org/10.1126/science.1258307
- 43. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, et al., Hierarchical NiCo₂O₄ hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55, 6290-6294 (2016). https://doi.org/10.1002/anie.201600525
- 44. Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, et al., Vertically oriented cobalt selenide/NiFe layereddouble-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci. 9, 478-483 (2016). https://doi.org/10.1039/c5ee03440j
- L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li, et al., High-index faceted Ni₃S₂ nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137, 14023-14026 (2015). https://doi.org/10.1021/jacs.5b08186
- Y. Liu, Q. Li, R. Si, G.D. Li, W. Li, et al., Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv. Mater. 29, 1606200 (2017). https://doi.org/10.1002/adma.201606200
- L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, et al., Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820-1827 (2017). https://doi.org/10.1039/c7ee01571b