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S1 Characterization 

X-ray diffraction (XRD) patterns were collected on a PAN analytical X’Pert Powder 

diffractometer using Cu Kα radiation (λ = 1.5418 Å) with a scan rate of 5 °min-1. 

Transmission electron microscopy (TEM) images were acquired on a JEM-1400 

microscope operating at 100 kV (JEOL Ltd). High resolution TEM (HRTEM) images 

were obtained on a JEM-2100 with an accelerating voltage of 200 kV. The Fourier 

transform infrared (FT-IR) spectra were acquired on a Nicolet iS5 FT-IR spectrometer. 

X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo 

Scientific ESCA Lab 250 Xi with monochromic Al Kα radiation (VG, USA). UV-

visible absorption spectra were recorded on a Perkin Elmer Lambda 35 spectrometer.  

S2 XAFS Measurements and Data Analysis 

The Pt L3-edge XAS data were collected the beamline BL10 in Spring-8. The typical 

energy of the storage ring was 2.5 GeV. The hard X-ray was monochromatized with Si 

(111) double-crystal monochromator. The as-prepared samples were measured by 

pressing them into a 14 mm diameter disc. The acquired EXAFS data were processed 

according to the standard procedures using the ATHENA module implemented in the 

IFEFFIT software packages. The pristine data were pre-treated by subtracting the post-

edge background and normalizing to obtain the k3-weighted EXAFS spectra. 

Subsequently, k3-weighted 𝑥(𝑘) data of Pt L3-edge were Fourier transformed to R space 

using a hanning windows (dk = 1.0 Å-1) to separate the EXAFS contributions from 

different coordination shells. To obtain the quantitative structural parameters around Pt 

atoms, quantitative curve parameter fitting was performed at R space using the 

ARTEMIS module of IFEFFIT software packages. The K ranges for PtSAs-Au2.5/PCN 

and Pt foil are 2.5-12.4 and 3-16.2 Å, respectively, while the R ranges are 1-2.4 Å for 

PtSAs-Au2.5/PCN and 1-3 Å for Pt foil.  
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S3 DFT Calculations 

Density Functional Theory (DFT) calculations were carried out to simulate the 

geometry structures and electronic properties of the sample based on the Vienna Ab 

initio Simulation Package using the PBE exchange-correlation function. The interaction 

between valence electrons and the ionic core was described by the PAW pseudo-

potential. Three models were built to simulate the PtSAs-PCN, Au2.5/PCN and PtSAs-

Au2.5/PCN, named as PtSAs-PCN, Au/PCN and PtSAs-Au/PCN, respectively. The 

geometry structures were optimized with the cut off of 400 eV. All the atoms in the 

model were allowed to adjust until the magnitude of all residual forces was less than 

0.02 eV Å-1. The geometry optimization and the PDOS was were calculated by the 

cutoff energy of 400 eV and the Monkhorst-Pack k-point mesh of 3×3×1.  

S4 Photoelectrochemical Measurements 

Photochemical tests were performed on a CHI660E electrochemical workstation in 0.2 

M Na2SO4 solution. In the standard three-electrode system, an ITO glass covered with 

the as-prepared samples served as the working electrodes, a Pt wires and Ag/AgCl 

(saturated KCl) was used as counter electrode and reference electrode, respectively. For 

the working electrodes, 2 mg of the as-prepared samples was mixed with 500 μL 

ethanol/Nafion solution (9:1), followed by sonicating for 30 min to obtain a slurry. Then 

20 μL of the homogeneous ink was dropped onto ITO glass with an area of about 1 cm2 

and dried in air. Subsequently, the working electrodes were heated at 80 °C for 2 h to 

eliminate ethanol. Electrochemical impedance spectroscopy (EIS) spectra were 

recorded under an AC perturbation signal of 50 mV over the frequency range from 100 

KHz to 1 Hz.  

S5 Supplementary Figures and Tables 

 

Fig. S1 TEM images of Au1/PCN (a) and Au5/PCN (b) 
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Fig. S2 Size distributions of Au NPs in Aux/PCN: (a) Au1/PCN, (b) Au2.5/PCN and (c) 

Au5/PCN 

 

Fig. S3 TEM image of Au2.5-PCN (a) and the corresponding size distributions of Au 

NPs in Au2.5-PCN (b) 

 

Fig. S4 XPS spectra of Au2.5/PCN and reference sample (a) survey spectra and (b) high-

resolution C 1s spectra. 
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Fig. S5 The transient photocurrent response of Au2.5/PCN under irradiation of Xe lamp 

with 550 nm band-pass filters  

 

Fig. S6 The size distributions of Au NPs in PtSAs-Au2.5/PCN 

 

Fig. S7 High-resolution HAADF-STEM images of PtSAs-Au2.5/PCN for other regions 
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Fig. S8 The TEM (a) and high-resolution HAADF-STEM image (b) of PtSAs-PCN 

 

Fig. S9 FTIR spectrums of PtSAs-PCN, Au2.5/PCN and PtSAs-Au2.5/PCN 

 

Fig. S10 XPS spectra of PtSAs-Au2.5/PCN and reference sample (a) survey spectra, (b) 

high-resolution C 1s spectra and (c) high-resolution N 1s spectra 
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Fig. S11 XPS spectra of PtSAs-PCN and reference sample (a) survey spectra, (b) high-

resolution C 1s spectra and (c) high-resolution N 1s spectra 

 

Fig. S12 Pt EXAFS fitting curves of Pt foil at: (a) R space and (b) K space 

 

Fig. S13 Pt EXAFS fitting curves of PtSAs-Au2.5/PCN at K space 

 

Fig. S14 Difference charge density analysis of (a) Au/PCN and (b) PtSAs-Au/PCN, 

yellow and cyan represent electron accumulation and depletion, respectively 
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Fig. S15 TPR density (b) and EIS Nyquist plots (c) of PtSAs-Au2.5/PCN and reference 

samples under visible light 

 

Fig. S16 TEM (a) and size distribution (insertion) as well as High-resolution TEM (b) 

image of PtSAs-Au2.5/PCN after catalytic test. The FFT (c) and Au intensity profile (d) 

of Au NPs in b. (e) XRD pattern of PtSAs-Au2.5/PCN after catalytic test. (f-j) XPS 

spectra of PtSAs-Au2.5/PCN after catalytic test: (f) survey spectra, (g) C 1s, (H) N 1s, 

(i) Pt 4f and (j) Au 4f 
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Table S1 EXAFS fitting results for PtSAs-Au2.5/PCN 

Samples Path 
Coordination 

number 
∆E (eV) R (Å) ∆R (Å) σ2 (10-3 Å2) 

R-

factor 

Pt foil Pt-Pt 12 7.65 2.76 -0.009 0.005 0.0038 

PtSAs-Au2.5/PCN Pt-N 6.09 11.076 1.99 -0.008 0.003 0.004 

The so2 is determined to be 0.837 via the fitting of Pt foil. 

Table S2 Summary of previous Au-based PCN plasmonic materials for photocatalytic 

H2 evolution activity 

Catalysts Light Source H2 evolution rate (mmol g-1 h-1) Refs. 

Au cluster-NP/C3N4 (30 mg) 
300 W Xe lamp 

(λ ≥ 420 nm) 
0.23 S1 

Au NRs/g-C3N4 (100 mg) 
300 W Xe lamp 

(λ ≥ 420 nm) 
0.35 S2 

Au/g-C3N4 (20 mg) 
300 W Xe lamp 

(λ ≥ 420 nm) 
0.54 S3 

Au/SnO2/g-C3N4 (100 mg) 
300 W Xe lamp 

(λ ≥ 400 nm) 
0.77 S4 

PtAu/g-C3N4 (50 mg) 300 W Xe lamp 1.01 S5 

Au/g-C3N4-AAPC (20 mg) 
150 W Xe lamp 

(Solar Light) 
About 1.3 S6 

TiO2-BCN-AuCu (20 mg) 300 W Xe lamp 2.15 S7 

Au/g-C3N4 (4 hours) (100 mg) 

250 W halide lamp 

(λ ≥ 380 nm) 
2.3 S8 

W18O49/Au/g-C3N4 (20 mg) 
300 W Xe lamp 

(1 sun irradiation) 
3.46 S9 

g-C3N4/Fe2O3/Pt/Au (50 mg) 
150 W Xe lamp 

(Solar Light) 
4.73 S10 

Pt@Au NR769/CNNT650 (20 mg) 
300 W Xe lamp 

(λ ≥ 420 nm) 
10.35 S11 

Pt-CN (50 mg) 300 W Xe lamp 6.36 S12 

PtSA-CN620 (20 mg) 
300 W Xe lamp 

(λ ≥ 420 nm) 
3.02 S13 

PtSAs/C3N4 300 W Xe lamp 11.47 S14 

Pt-SA/CN 300 W Xe lamp 1.4 S15 

PtSAs-Au2.5/PCN (10 mg) 
300 W Xe lamp 

(λ ≥ 420 nm) 
13.70 This work 
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