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S1 Supplemental Notes 

S1.1 Materials 

Cellulose nanofiber (CNF) gel (1.20 wt%) was purchased from Tianjin Woodelfbio 

Cellulose Co., Ltd. Carbonylated multiwalled carbon nanotube (MWCNTs-COOH, 20 

wt%) was provided by XFNANO, China. Li1.5Al0.5Ge1.5(PO3)4 (LAGP) pellets were 

obtained from GanFeng Lithium Co., Ltd. Lithium chloride (LiCl, 99.9 wt%) was 

purchased from Sigma-Aldrich. Potassium ferrocyanide (K4Fe(CN)6, 99 wt%), 

potassium ferricyanide (K3Fe(CN)6, 99 wt%), and ammonium sulfate ((NH4)2SO4, 99 

wt%) were purchased from Aladdin. Deionized (DI) water (18.25 MΩ·cm) was used 

in all the experiments. All of the chemicals were of analytical grade. 

S1.2 Electrical Measurements 

The ionic transport and energy conversion properties were studied by measuring the 

zero-volt ionic current and corresponding circuit voltage through the heterogeneous 

membrane or LAGP membrane with and without light illumination. The membrane 

was mounted between two chambers of the homemade cells with silicone O-rings, 

which are filled with electrolytes with a certain concentration and type. One of the 

electrolyte cells with a light window, through which the photothermal layer could be 

illuminated. 

Regarding ion transport driven by concentration gradient, the internal resistance 

was equal to the load resistance when the power density is maximum. In addition, the 

load resistance (1,000 kΩ) was more than two orders of magnitude higher than the 

internal resistance of various concentration gradient conditions, indicating the partial 

voltage of internal resistance could be neglected. Thus, the driving force derived from 

concentration gradient was simplified to the follows: 
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      (S1) 

I is the current of the transport system, RL is the load resistance, and U is the partial 

voltage of the RL in the circuit, which can be considered as the driving force derived 

from the concentration gradient as the load resistance is much larger than internal 

resistance. 

S1.3 Lithium Recovery from Spent LIBs 

The multi-external field coupled transport system setup for lithium recovery from 

spent LIBs was classified into three compartments and designated as electrode 

compartments (cathode and anode), feed compartment, and recovery compartment. 

Considering the poor light stability and the excessive consumption of Ag/AgCl 

electrodes during long-term operation, titanium electrodes with RuO2-IrO2 coatings 

(Suzhou Borui Industrial Material Science & Technology Co., Ltd. China) were 

selected for their superior thermal stability and corrosion resistance and placed in the 

electrode compartments as anode and cathode electrodes. A heterogeneous nanofluidic 

membrane with an effective testing area of 153 mm2 was placed between the feed and 

recovery compartments, with the photothermal layer facing the recovery compartment 

and the LAGP layer facing the feed compartment. Anion exchange membranes (AEM, 

SelemionTM AAV) are placed between the electrode solution and feed solution or 

recovery solution, allowing selective anion transport across the membrane to maintain 

electroneutrality. The electrochemical measurements were carried out on a Keithley 

6430 semiconductor picoammeter (Keithley Instruments, Cleveland, OH) by applying 

a voltage of 5 V. The light intensity applied to the system is ~250 mW cm-2. The 

electrode solution is a mixture of 0.1 mol L-1 K4Fe(CN)6, 0.1 mol L-1 K3Fe(CN)6, and 

0.5 mol L-1 (NH4)2SO4. A solution of 0.05 mol L-1 (NH4)2SO4 was used as a receiving 

solution. The feed compartment was a lithium-containing leaching solution (Table S1), 

which was obtained from a battery recycling factory and generated during the 

dismantling and recycling of spent LIBs (mainly ternary LIBs). The feed and 

receiving compartments are equal to 35 mL. Peristaltic pumps with a flow rate of 20 

mL min-1 were employed to avoid concentration polarization. The metal ions 

concentrations in the recovery compartment were tested by ICP-MS (PerkinElmer 

1000G) to calculate the ions flux and ion selectivity using the following expression: 

         (S2) 

J is the metal ion flux (mmol m-2 h-1), Cf and Ci are the metal ion concentration in 

the recovery compartment at the final time and initial moment, V is the volume of 

recovery solution, Am is the effective area of the heterogeneous membrane, and t is the 

time corresponding to ion transmembrane transport: 

             (S3) 

η is ion selectivity, JLi is the ion flux of Li ions, and JM is the ion flux of other 

coexisting metal ions. 

S2 Supplementary Figures 
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Fig. S1 SEM image of the heterogeneous membrane, demonstrating the thickness is 

about 260 μm. The local magnification indicates that the thickness of the 

photothermal layer is 1.2 μm. In addition, the LAGP demonstrates a typical 

continuous dense structure, which ensures the ion selectivity. 

 

Fig. S2 I-V curves of LAGP membrane measured in LiCl electrolyte with different 

concentration ranging from 0.01 to 0.5 M 

 

Fig. S3 Comparison of contact angle of MWCNTs/CNF (photothermal layer) and 

LAGP layer. Insert: corresponding water contact angles images. With the introduction 

of the photothermal layer, the contact angle is reduced from 103° to 59°. The increase 

in hydrophilicity facilitates ion transport of the proposed system. 
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Fig. S4 C 1s XPS spectra of a MWCNTs-COOH, b CNF, c MWCNTs-COOH/CNF. d 

XPS peak positions data of C 1s. XPS spectra were deconvoluted into five peaks 

 

Fig. S5 Fourier transform infrared (FT-IR) spectrum of the MWCNTs/CNF and CNF 

indicating there are abundant carboxyl and hydroxyl groups within the photothermal 

layer 
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Fig. S6 Zeta potentials of the MWCNTs/CNF colloid (0.05 mg/mL) at various pH 

values, suggesting it was negatively charged in the whole pH range from 4 to 10 

 

Fig. S7 Plot of current density as a function of load resistance in the transport system 

equipped with a LAGP membrane and b heterogeneous membrane. The harvested 

energy under a concentration gradient can be transferred to supply an external 

resistance. Under three concentration gradients, the measured current densities all 

gradually decrease with the increasing load resistance. c Comparison of current 

densities of LAGP and heterogeneous membranes at different concentrations. The 

current density of the heterogeneous membrane was greater than that of the LAGP 

membrane at 5-, 10- and 50-fold concentration gradients. 

 

Fig. S8 Plot of power density as a function of load resistance in the transport system 

equipped with a LAGP membrane and b heterogeneous membrane. The harvested 

electric power of concentration gradient could be output to an external circuit for 

supplying an external load resistance (RL). The output power density (PR) consumed 

on RL could be described as PR = I2 RL, where I is the measured current at the 

corresponding RL. As the external load resistance gradually increases, the current 

density decreases accordingly, but the output power density reaches a peak value at an 

intermediate external load resistance, respectively. c Comparison of power densities 

of LAGP and heterogeneous membranes at different concentrations. The power 

density of the heterogeneous membrane was greater than that of the LAGP membrane 

at 5-, 10- and 50-fold concentration gradients. 
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Fig. S9 Plot of voltage as a function of load resistance in the transport system 

equipped with LAGP membrane 

 

Fig. S10 Raman spectrum of MWCNTs/CNF and MWCNTs. The G band at 

approximately 1580 cm-1 originated from the in-plane vibration of sp2 carbon atoms 

whereas the D bond at approximately 1340 cm-1 is attributed to the presence of 

disordered amorphous carbon (sp3 carbon atoms), corresponding to double resonance 

effects in carbon. 
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Fig. S11 Plot of current density of heterogeneous membrane as a function of load 

resistance with (blue line) and without (green line) light irradiation under a 5-fold 

concentration gradient, b 10-fold concentration gradient, and c 50-fold concentration 

gradient. Plot of current density of LAGP membrane as a function of load resistance 

with (red line) and without (orange line) light irradiation under d 5-fold concentration 

gradient, e 10-fold concentration gradient, and f 50-fold concentration gradient 

 

Fig. S12 Plot of voltage of heterogeneous membrane as a function of load resistance 

with (blue line) and without (green line) light irradiation under a 5-fold concentration 

gradient, b 10-fold concentration gradient, and c 50-fold concentration gradient. Plot 

of voltage of LAGP membrane as a function of load resistance with (red line) and 

without (orange line) light irradiation under d 5-fold concentration gradient, e 10-fold 

concentration gradient, and f 50-fold concentration gradient 
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Fig. S13 Plot of power density of heterogeneous membrane as a function of load 

resistance with (blue line) and without (green line) light irradiation under a 5-fold 

concentration gradient, b 10-fold concentration gradient, and c 50-fold concentration 

gradient. Plot of power density of LAGP membrane as a function of load resistance 

with (red line) and without (orange line) light irradiation under d 5-fold concentration 

gradient, e 10-fold concentration gradient, and f 50-fold concentration gradient 

 

Fig. S14 a Current density comparison, b voltage comparison, and c power density 

comparison of LAGP membrane (LM), heterogeneous membrane (HM), LAGP 

membrane with light irradiation (LM-L), and heterogeneous membrane with light 

irradiation (HM-L) at concentration gradients of 5, 10 and 50, respectively. d 

Comparison of the enhanced current, e enhanced voltage, and f enhanced power of 

LM and HM induced by illumination. The current densities, voltages, and power 

densities of the HM in different concentration gradients were higher than those of 

bare LM in the absence of light conditions. When light is applied to the transport 

system, The current densities, voltages, and power densities of both HM and LM 

increase at different concentration gradients, while the enhancement of HM is 

significantly higher than that of LM due to the photothermal conversion effect of the 

photothermal layer in HM. It is indicated that the HM structure and the external field 

both have a prompting effect on ion transport. 
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Fig. S15 Plot of current density (blue line), voltage (red line) and power density (gray 

line) of heterogeneous membrane as a function of load resistance under light 

irradiation with light intensity of a 0 mW cm-2, b 75.5 mW cm-2, c 127.9 mW cm-2, d 

226.4 mW cm-2, e 257.3 mW cm-2, f 282.9 mW cm-2 

 

Fig. S16 UV-vis absorption spectra of MWCNTs/CNF 
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Fig. S17 Plot of current density (blue line), voltage (red line) and power density (gray 

line) of heterogeneous membrane as a function of load resistance under light 

irradiation with wavelength of a 420 nm, b 500 nm, c 600 nm, d 700 nm 

 

Fig. S18 a Schematic and b optical photo of the experimental setup used for 

Li-extraction from spent LIBs 

 

Fig. S19 Comparison of the lithium-ion selectivity with the reported porous 

membranes in the literature 
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S3 Supplementary Tables 

Table S1 Chemical composition in the leaching solution of spent LIBs (feed solution) 

Elements Co Cu Li Mn Na Ni 

Concentration (g/L) 12.97 4.39 4.17 13.75 23.30 48.03 

Table S2 Comparison of the Li+/Mx+ separation performance of this study with other 

membranes from literatures as shown in Fig. S19 

MOF-based membranes 

Pore 

size 

(Å) 

Ion Selectivity Refs. 

MOP-18 6.6 Li+/K+=1.7 [S1] 

Sulfonated HKUST-1 9.0 
Li+/Na+=35; Li+/K+=67; 

Li+/Mg2+=1815 
[S2] 

HKUST-1@PVC 9.0 
Li+/Na+=0.80; Li+/K+=0.64; 

Li+/Mg2+=1.27 
[S3] 

MOF-808@PVC 12.0 
Li+/Na+=0.76; Li+/K+=0.6; 

Li+/Mg2+=0.79 
[S3] 

MOF-808-SO3H@PVC 12.9 
Li+/Na+=0.88; Li+/K+=0.70; 

Li+/Rb+=1.06 
[S3] 

ZIF-8 3.4 
Li+/Na+=1.37; Li+/K+=2.18; 

Li+/Mg2+=4.67 
[S4] 

ZIF-8 3.4 
Li+/Na+=0.97; Li+/K+=0.86; 

Li+/Mg2+=3.87; Li+/Ca2+=3.52 
[S5] 

ZIF-8 3.4 
Li+/Na+=1.3; Li+/K+=1.4; 

Li+/Mg2+=45.6 
[S6] 

SSP@ZIF-8 3.4 
Li+/Na+=77; Li+/K+=112; 

Li+/Mg2+=4913 
[S6] 

ZIF-8@PVC 3.4 
Li+/Na+=1.34; Li+/K+=1.18; 

Li+/Mg2+=2.02 
[S3] 

K‑Carrageenan@ZIF‑8 3.4 Li+/Co2+=8.23 [S7] 

K‑Carrageenan@ZIF‑8 3.4 Li+/Co2+=26.39 [S7] 

GZ-PIM3 (ZIF-8) 3.4 
Li+/Na+=90.64; Li+/K+=278.39; 

Li+/Mg2+=893.75; Li+/Ca2+=898.34 
[S8] 

CA-PIM (ZIF-8) 3.4 
Li+/Na+=16.7; Li+/K+=32.6; 

Li+/Mg2+=78.67; Li+/Ca2+=81.2 
[S8] 

UiO-67 8.0 
Li+/Na+=1.92; Li+/K+=1.37; 

Li+/Mg2+=87; Li+/Ca2+=50 
[S9] 

UiO-67 8.0 
Li+/Na+=2.05; Li+/K+=1.35; 

Li+/Mg2+=159.4; Li+/Ca2+=90 
[S9] 

UiO-66 6.0 
Li+/Na+=1.24; Li+/K+=1.58; 

Li+/Rb+=1.82 
[S4] 

UiO-66@PVC 6.0 
Li+/Na+=0.84; Li+/K+=0.71; 

Li+/Mg2+=1.3 
[S3] 

UiO-66-HSO3@PVC 6.0 
Li+/Na+=0.93; Li+/K+=0.8; 

Li+/Mg2+=4.79 
[S3] 

UiO-66-HSO3@PVC 6.0 Li+/Mg2+=4.73 [S3] 
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UiO-66-NH2 6.0 Li+/Mg2+=60 [S10] 

UiO-66-SO3H 6.0 Li+/Mg2+=1.88 [S11] 

UiO-66-SO3H 6.0 
Li+/Na+=0.32Li+/K+=0.18 

Li+/Mg2+=776 
[S11] 

UiO-66(Zr/Ti)-NH2@Polyamide 6.0 Li+/Mg2+=11.38 [S12] 

UiO-66-(COOH)2 6.0 
Li+/Na+=0.49; Li+/K+=0.32; 

Li+/Mg2+=1590.1; Li+/Ca2+=441.7 
[S13] 

UiO-66-COOH 6.0 
Li+/Na+=0.24; Li+/K+=0.18; 

Li+/Mg2+=136.5 
[S14] 

UiO-66-NH2 6.0 
Li+/Na+=0.28; Li+/K+=0.23; 

Li+/Mg2+=1.3 
[S14] 

Polymer membranes 

Pore 

size 

(Å) 

Ion Selectivity Refs. 

PET 6 
Li+/Na+=10.46; Li+/K+=16.02; 

Li+/Cs+=37.09;Li+/Mg2+=633.98 
[S15] 

PET 10 
Li+/Na+=0.81; Li+/K+=0.77; 

Li+/Rb+=0.68 
[S15] 

Porous organic cage membrane 

(CC3) 
5.8 

Li+/Na+=0.43; Li+/K+=0.28; 

Li+/Mg2+=284 
[S16] 

Porous organic cage membrane 

(CC3) 
5.8 Li+/Mg2+=104 [S16] 

Conjugated microporous polymer 

membrane (CMP) 
7.4 

Li+/Na+=0.82; Li+/K+=0.43; 

Li+/Mg2+=17.2; Li+/Ca2+=12.1 
[S17] 

HMO@SPES 4.5 Li+/Mg2+=9.1 [S18] 

HMO@SPES 4.5 Li+/Mg2+=11.75 [S18] 

PIM-EA-TB 
~5.0 Li+/Mg2+=7.53 [S19] 

PIM-BzMA-TB 
~5.0 Li+/Mg2+=32.6 [S19] 

DMBP-TB 
~5.0 Li+/Mg2+=14.6 [S19] 

AO-PIM-1 
~5.0 Li+/Mg2+=16.1 [S19] 

2D-material membranes 

Pore 

size 

(Å) 

Ion Selectivity Refs. 

GO 13.5 
Li+/Na+=0.93; Li+/K+=0.84; 

Li+/Rb+=0.85 
[S4] 

GO 9.8 
Li+/Na+=0.77; Li+/K+=0.93; 

Li+/Mg2+=~90; Li+/Ca2+=~2500 
[S20] 

Sulfonated-rGO 4.8 Li+/Mg2+=5.27; Li+/Ca2+=4.27 [S21] 

https://springer.com/journal/40820


Nano-Micro Letters 

S13/S16 

Vermiculite 4.3 Li+/Na+=1.26; Li+/K+=1.59 [S22] 

MXene 6.4 

Li+/Na+=0.97; Li+/K+=1.5; 

Li+/Mg2+=8.75; Li+/Ca2+=6.09; 

Li+/Ni2+=6.36 

[S23] 

MXene@PSS 5.9 
Li+/Na+=10; Li+/K+=12; 

Li+/Mg2+=25 
[S24] 

MXene@PSS 5.9 
Li+/Na+=15.5; Li+/K+=12.7; 

Li+/Mg2+=26.7 
[S24] 

VMT ~3.0 Li+/Mg2+=12.2 [S25] 

VMT ~3.0 Li+/Mg2+=856 [S25] 

i-GO ~5.9 

Li+/Na+=1.04; Li+/K+=0.95; 

Li+/Mg2+=8.64; Li+/Ca2+=6.11; 

Li+/Cu2+=8.47 

[S26] 

GO/MXene 14.4 
Li+/Na+=2.52; Li+/K+=4.78; 

Li+/Mg2+=8.07; Li+/Ca2+=8.36 
[S27] 

GO/MXene 14.4 
Li+/Na+=1.52; Li+/K+=2.62; 

Li+/Mg2+=31.9; Li+/Ca2+=12.59 
[S27] 

rGO@SAPS 3.8 Li+/Mg2+=3.8 [S28] 

FRGO 8.0 Li+/Mg2+=~12 [S29] 

COF-based membranes 

Pore 

size 

(Å) 

Ion Selectivity Refs. 

TpBDMe2 COF 14 Li+/Mg2+=36 [S30] 

TpBDMe2 COF 14 

Li+/Na+=0.32; Li+/K+=0.28; 

Li+/Mg2+=217; Li+/Ca2+=65.4; 

Li+/Cu2+=74.1; Li+/Ni2+=38.4 

[S30] 

3D-OH-COF 8.8 Li+/Cu2+=490 [S31] 

COF-EB1BD1 2 Li+/Mg2+=443 [S32] 

Other membranes 

Pore 

size 

(Å) 

Ion Selectivity Refs. 

LAGP/(MWCNTs-NH2/PEDOT:PSS) 0.2 
Li+/Na+=242; Li+/K+=870; 

Li+/Mg2+=5032 
[S33] 

LLTO 0.118 Li+/Na+=16227; Li+/Mg2+=45916 [S34] 

LAGP/MWCNTs 0.2 

Li+/Na+=3907; Li+/Mn2+=142043; 

Li+/Co2+=216412; Li+/Ni2+=23276; 

Li+/Cu2+=51843 

This 

work 
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