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Metal‑Free 2D/2D van der Waals Heterojunction 
Based on Covalent Organic Frameworks for Highly 
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HIGHLIGHTS

• It is the first attempt to combine covalent organic frameworks with hexagonal boron nitride (h-BN) to construct efficient metal-free 
photocatalyst.

• The composite displays superior photocatalytic hydrogen production performance in metal-free systems.

• The integrated porous h-BN can suppress electron backflow to optimize the composite photocatalytic activity.

ABSTRACT Covalent organic frameworks 
(COFs) have emerged as a kind of rising star 
materials in photocatalysis. However, their 
photocatalytic activities are restricted by 
the high photogenerated electron–hole pairs 
recombination rate. Herein, a novel metal-
free 2D/2D van der Waals heterojunction, 
composed of a two-dimensional (2D) COF 
with ketoenamine linkage (TpPa-1-COF) 
and 2D defective hexagonal boron nitride 
(h-BN), is successfully constructed through 
in  situ solvothermal method. Benefitting 
from the presence of VDW heterojunction, 
larger contact area and intimate electronic 
coupling can be formed between the interface of TpPa-1-COF and defective h-BN, which make contributions to promoting charge car-
riers separation. The introduced defects can also endow the h-BN with porous structure, thus providing more reactive sites. Moreover, 
the TpPa-1-COF will undergo a structural transformation after being integrated with defective h-BN, which can enlarge the gap between 
the conduction band position of the h-BN and TpPa-1-COF, and suppress electron backflow, corroborated by experimental and density 
functional theory calculations results. Accordingly, the resulting porous h-BN/TpPa-1-COF metal-free VDW heterojunction displays out-
standing solar energy catalytic activity for water splitting without co-catalysts, and the  H2 evolution rate can reach up to 3.15 mmol  g−1  h−1, 
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which is about 67 times greater than that of pristine TpPa-1-COF, also surpassing that of state-of-the-art metal-free-based photocatalysts 
reported to date. In particular, it is the first work for constructing COFs-based heterojunctions with the help of h-BN, which may provide 
new avenue for designing highly efficient metal-free-based photocatalysts for  H2 evolution. 

KEYWORDS Covalent organic frameworks; 2D/2D van der Waals heterojunction; Metal-free photocatalyst

1 Introduction

Considering the severe and intractable energy and environ-
mental crises, exploring renewable energy alternatives to 
fossil fuels has become a hot yet challenging research topic 
[1–5]. Solar energy catalytic water splitting to produce  H2 
undoubtedly provides a promising avenue for solving above 
problems, but the key is seeking for ideal photocatalysts 
with highly active and permanent stability [6–26]. Cova-
lent organic frameworks (COFs), a kind of highly crystal-
line porous materials constructed through condensation 
of organic building unit, have shown great potential in the 
field of photocatalytic water splitting, owing to their high 
specific surface area, extraordinary chemical stability, des-
ignable knots and linkers with tunable photo- and electro-
active [27–37]. However, the separation efficiency and rapid 
charges carriers recombination are still the main drawbacks 
for optimizing their solar energy catalytic performance.

According to this situation, series of modification strate-
gies, including metal doping, ligand modification, and defect 
engineering, have been developed [38–41]. In particular, the 
heterostructure constructions, which possess the advantages 
of synergistic effect and efficient electron–hole pairs separa-
tion, were proved to be a robust strategy to conquer above 
limitations for COFs. One of the most fascinating examples 
was reported by Lan’s group, through combining a typical 
Schiff-based COFs, TpPa-1-COF, and an amino-function-
alized Zr-MOFs, UiO-66-NH2, covalently integrated MOF/
COF hybrid were successfully constructed. Benefitting from 
the suitable band structure and covalent bonds connection 
between two materials, the electron–hole pairs separation/
migration efficiency can be effectively promoted thus dis-
playing a commendable sun-light-driven water splitting 
performance [42].Apart from above-mentioned example, 
other COFs-based heterojunctions with photocatalytic water 
splitting activity, such as COFs/CdS, COFs/WO3, COFs/
TiO2 and COFs/α–Fe2O3, have also been reported [43–46]. 
However, most heterostructures are a combination of two-
dimensional (2D) COFs and 3D semiconductor materials, 

which is accompanied by the issues of lattice mismatch and 
atomic interdiffusion, thus unfavorable for the charge trans-
fer and separation [47–50]. Moreover, most of COFs-based 
heterostructures contain metals, and the non-metal COFs-
based heterostructures have rarely been reported.

Recently, the emerging 2D/2D van der Waals (VDW) 
heterojunction, which are assembled through VDW interac-
tions, attracts tremendous in photocatalysts designing [51, 
52]. Compared with traditional heterojunctions, the superi-
orities of the VDW heterojunctions can be generalized as 
follows: (1) the face-to-face contact is beneficial for forming 
the strong interactions and increasing the interface area; (2) 
the intimate interlayer electronic interactions are favorable 
for optimizing electronic structure; (3) the VDW force can 
facilitate the high-speed charge transfer channels forma-
tion, thus accelerating the electron–hole pairs migration/
separation; (4) it is undesired for considering the issue of 
lattice matching between the layers of composite materials. 
Herein, selecting the suitable 2D materials to integrate with 
2D COFs to form the VDW heterojunctions can effectively 
enhance their charge transfer efficiency and promote the 
photocatalytic water splitting performance.

Hexagonal boron nitride (h-BN), which can also be called 
white graphene with honeycomb 2D structure, is composed 
of lightweight elements with unique physical and chemical 
properties. Due to the wide band gap (~ 5.0–5.6 eV), h-BN 
was not considered as ideal photocatalysts previously. In this 
regard, some modification methods, such as element dop-
ing, thickness regulation and defect engineering, have been 
recently developed to broaden the research fields of h-BN 
in photocatalysis [53]. Among them, the defect engineering 
strategy displays many advantages, through inducing defects; 
(1) new valence and conduction band can be introduced, thus 
narrowing the bandgap, and broadening the light absorption 
region of h-BN; (2) the porous structure can be endowed with 
h-BN, thus enriching the reactive sites, and boosting sub-
strates transfer; (3) abundant hydroxyl (–OH) and secondary 
amino (–NH) groups can be generated on their surface, which 
can be regarded as trapping sites to connect other materials to 
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form the heterojunctions, thus facilitating the charge transfer. 
Therefore, combining 2D COFs with defect engineered h-
BN may provide opportunities for preparing novel non-metal 
VDW heterojunction photocatalysts.

Inspired by above, we for the first time combine a 2D 
COF containing ketoenamine linkage (TpPa-1-COF) 
and porous h-BN to successfully prepare a novel metal-
free 2D/2D VDW heterojunction through a facile calci-
nation–solvothermal strategy. With an optimal content 
proportion between TpPa-1-COF and porous h-BN, the 
VDW heterojunction can effectively promote water split-
ting without the addition of co-catalysts, and the  H2 evolu-
tion rate is as high as 3.15 mmol  g−1  h−1, which is one of 
the best performed metal-free photocatalysts. The com-
mendable photocatalytic activity can be attributed to the 
porous structure of two materials and the strong electronic 
coupling at their interface. More interestingly, the incor-
poration of porous h-BN can also initiate the structural 
transformation of TpPa-1-COF, thus enhancing its con-
duction band position and suppressing electron backflow, 
which is also beneficial for promoting water splitting. This 
example of metal-free VDW heterojunction is expected 
to afford new inspirations for the further highly efficient 
photocatalysts design.

2  Experimental Section

2.1  Materials

All chemicals were purchased commercially and used 
without further purification.

2.2  Synthesis of Porous h‑BN, TpPa‑1‑COF and Porous 
h‑BN/TpPa‑1‑COF

2.2.1  Synthesis of Porous h‑BN

The method of preparing porous h-BN nanosheets fol-
lowed the previous literature with slight changes [54]. 
First, boric acid (4 g, 0.06472 mol) was added to 80 mL 
of deionized water along with urea (16 g, 0.2667 mol) and 
heated at 80 °C for 4 h. Then, the transparent solution 
acquired was transferred to a pear-shaped flask and the 

solvent water was removed. Finally, the substance was 
placed in a porcelain boat and calcined at 900 °C under 
 N2 atmosphere for five hours, with a heating rate of 5 °C 
per minute. The white object obtained was washed three 
times by centrifugation.

2.2.2  Synthesis of TpPa‑1‑COF

TpPa-1-COF was prepared according to reported works with 
minor modifications [55]. First, 1, 3, 5-triformylphloroglu-
cinol (Tp) (31 mg, 0.15 mmol) and paraphenylenediamine 
(24 mg, Pa-1) ligands were dispersed in 3 mL N, N–dimeth-
ylformamide (DMF) by ultrasound. Then, 0.5 mL acetic acid 
(3 M) was added into the tube. After the solution is ultra-
sonic evenly, transfer the tube into liquid nitrogen (77 K) 
for rapid freezing, and vacuum it three times. Then, the tube 
was sealed and transferred into oven to heat at 120 °C for 
3 days. The product was collected by centrifugation, then 
washed with anhydrous THF and anhydrous acetone for 
several times, and finally dried in vacuum at 60 °C for 24 h.

2.2.3  Synthesis of Porous h‑BN/TpPa‑1‑COF

The porous h-BN/TpPa-1-COF heterojunction was con-
structed through in situ solvothermal method. First, the 
obtained porous h-BN was scattered into 3 mL of DMF. 
Then, adding the Tp (21 mg, 0.1 mmol), Pa-1 (17 mg, 
0.15 mmol) and aqueous acetic acid (0.5 mL, 3 M) into the 
above porous h-BN solution. After that, stirring the tube and 
outgassed by freeze–pump–thaw for three times under liquid 
 N2 (77K) freezing. Then, the above mixture was transferred 
into oven to heat at 120 °C for 3 days. The product was 
collected by centrifugation, washed with anhydrous THF 
and anhydrous acetone for several times, and finally dried 
in vacuum at 60 °C for 24 h.

2.3  Characterizations

Scanning electron microscopy (SEM) was performed on a 
Hitachi SU-8010 equipped with an EDS analyzer. Trans-
mission electron microscopy (TEM) and high-resolution 
TEM (HRTEM) were performed on a JEM-2100 operat-
ing at 200 kV, respectively. Fourier transform infrared 
(FT-IR) spectra were carried out on a Nicolet Nexus 670 
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FT-IR spectrophotometer by mixing KBr and the sample. 
Powder X-ray diffraction (PXRD, Bruker D8 Advance) 
was used to analyze the structure of the photocatalysts. 
Thermogravimetric analysis (TGA) was conducted on a 
METTLER TOLEDO TGA/SDTA851 in nitrogen envi-
ronment with a heating rate of 5 °C   min−1. The X-ray 
photoelectron spectroscopy (XPS) was conducted on 
England Kratos, Ultra DLD spectrometer equipped with 
a monochromatic Al Kα X-ray source (1486.6 eV). The 
UV–vis diffuse reflectance spectra (DRS) were obtained 
on a Shimadzu UV-2550. The surface photovoltage (SPV) 
test was performed at room temperature, and the PV signal 
of the sample was recorded under the excitation of a laser 
pulse (50 mJ  cm−2).

2.4  Photocatalytic Testing

The online system (Labsolar-6A, Beijing Perfectlight 
Technology Co., Ltd.) equipped with a GC7900 gas chro-
matography (Shanghai Tianmei Scientific Instrument Co. 
high-purity  N2 as the carrier gas) was used to investigate 
the photocatalytic  H2 evolution performance of the as-syn-
thesized photocatalyst. The light source is a 300-W xenon 
lamp with a 420 nm filter. The actual light intensity irra-
diated on the reaction surface is 407.5 mW. The distance 
between the light and the reactor is 2 cm, and the irradi-
ated area of the reactor is 11.0  cm2. The specific reaction 
device and reactor shape are shown in Fig. S1. The experi-
ment was carried out in a quartz reactor. 10 mg photocatalyst 
was dispersed in 100 mL ultrapure water by ultrasound, and 
100 mg l-ascorbic acid was added for magnetic agitation. 
The reaction system is condensed at 5 °C, and the reactor 
is vacuumed to a negative pressure before illumination. The 
apparent quantum efficiency (AQY) was tested by a Xe lamp 
equipped with bandpass filters. The usage of catalyst is 5, 
10 and 20 mg. The wavelengths of the filters were 400, 420, 
500, 520, and 550 nm. The specific value of AQY can be 
calculated by Eq. 1:

where Ne and Np represent the total number of electrons 
transferred by the reaction and the number of incident pho-
tons, respectively.

(1)AQY =
Ne

Np
× 100%

2.5  Photoelectrochemical Testing

The CH Instruments Inc electrochemical workstation 
(CHI 660E) was used for electrochemical testing. The 
electrolyte employed in electrochemical tests was  Na2SO4 
(2 M), and the reference and counter electrodes (RE and 
CE) were Ag/AgCl and Pt wire, respectively. The samples 
(2 mg) with 10 µL Nafion and 1 mL ethanol were mixed to 
acquire liquor. Covering the fluorine-tin oxide (FTO) glass 
(1.5 cm × 1.5 cm) with the mixture, the FIO served as the 
working electrode (WE). Mott–Schottky (M-S) plots and lin-
ear sweep voltammetry (LSV) were recorded on a standard 
three-electrode system. Electrochemical impedance spec-
troscopy (EIS) measurements and photocurrent-time (I-T) 
profiles were recorded on a standard two-electrode system. 
The current transfer efficiency is calculated according to 
Eq. 2:

where  H2O2 was added to the electrolyte solution and the 
concentration reaches 0.5 mol  L−1. The average lifetime of 
the photogenerated carriers calculated by the open-circuit 
voltage decay method is derived from Eq. 3:

where KB as the Boltzmann constant, the value is 
1.38 ×  10−23 J  K−1, T is temperature (298 K), e is the electric 
charge (1.602 ×  10−19 C), and dOCVD/dt is the derivative of 
the OCP transient decay.

2.6  DFT Calculations

DFT calculations were performed using the Vienna Ab ini-
tio Simulation Package [56–59] on the basis of the GGA 
with the Perdew–Burke–Ernzerhof [60] function as the 
exchange–correlation energy function. For the bulk BN 
crystals 4 × 4 × 1 unit cells were used for the crystal struc-
ture and electronic structure calculations. For the mon-
olayer BN and defective monolayer BN crystals 9 × 9 × 1 
unit cells were used for the crystal structure and electronic 
structure calculations. For the COF and defective COF, 
1 × 1 × 1 unit cells were used for the crystal structure and 
electronic structure calculations. At least 20 Å vacuum level 
was used for the layer structures calculation and the D3 

(2)�trans =
JH2O

JH2O2

(3)�
n
=

KBT

e

(

dOCVD

dt

)−1
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correction was applied for all the layer structures calcula-
tion for the consideration of the Van der Waals effect. We 
used the projector augmented wave potentials [61] with the 
cutoff energy of 450 eV. The conjugate gradient scheme is 
used to optimize the atom coordinates until the force is less 
than 0.01 eV Å−1. The number of k-points was carefully 
optimized to achieve energy convergence, giving 6 × 6 × 1 
Monkhorst–Pack BZ calculations for the bulk BN calcula-
tion. Surface calculations were conducted via a slab model 
with periodic boundary conditions. The (001) crystal planes 
of bulk BN and surface with defects BN were cleaved from 
the relaxed bulk crystals and built with a vacuum of about 
20 Å and a four-layer slab of which the one bottom layer 
was kept fixed and 6 × 6 × 1 k-point mesh during relaxation 
[62–64].

Calculation on the Conductive Bond (CB), Valence Bond 
(VB), and Fermi level positions.

The Fermi level versus vacuum level is firstly obtained via 
VASP calculation, and the Fermi level versus SHE is then 
calculated using the following Eq. 4:

The CB and VB were calculated by:

where Eg is the bond gap.

(4)EF(vs. SHE) = −4.44V − EF(vs. vacuum level)

(5)CB = EF(vs. SHE) + Eg∕2

(6)VB = CB − Eg

3  Results and Discussion

3.1  Preparation and Characterization of Catalysts

In order to obtain the COFs-based 2D/2D VDW hetero-
junction, a facile calcination–solvothermal strategy was 
employed in our work. The synthetic procedure can be illus-
trated in Scheme 1. By using boric acid and urea as the raw 
materials, the h-BN was successfully constructed through 
a high temperature calcination method, in which the high 
temperature can induce defects and endow h-BN with porous 
structure. After that, different amount of obtained porous 
h-BN samples were added into the synthetic system of the 
2D β-Ketoenamine-linked COFs (TpPa-1-COF) to directly 
acquire the porous h-BN/TpPa-1-COF composites with dif-
ferent mix proportion (5%, 7.5%, 10%, 15% and 20% h-BN/
TpPa-1-COF) through a simple solvothermal step.

To unveil the phase purity and successful preparation of 
porous h-BN/TpPa-1-COF heterojunction, the powder X-ray 
diffraction (PXRD) tests were implemented. As depicted in 
Fig. 1a, the experimental PXRD pattern of the TpPa-1-COF 
is in good agreement with the simulated patterns and dis-
plays two obvious diffraction peaks at 4.6° and 26.6°, cor-
responding to the (100) and (001) planes of TpPa-1-COF, 
respectively [65]. In addition, the porous h-BN exhibits 
a broad diffraction peak around 26°, which belongs to its 
(002) crystal plane (JCPDS No. 73-2095). The above results 
proved that two pure substances were successfully obtained. 
In the PXRD pattern of porous h-BN/TpPa-1-COF com-
posite, the diffraction peaks of TpPa-1-COF can be clearly 

Scheme 1  Schematic diagram of the synthesis route for porous h-BN/TpPa-1-COF composites
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observed. Nevertheless, due to a relative low diffraction 
intensity and approximate diffraction peak positions between 
TpPa-1-COF and h-BN, the sign of h-BN diffraction peak is 
difficult to distinguish. However, the presence of h-BN can 
be indicated through further experimental results. Then, the 

FT-IR spectra were recorded for commercial h-BN, porous 
h-BN, TpPa-1-COF and their composites. In comparison 
with commercial h-BN, porous h-BN displays a relative 
broader peak around 1400  cm−1, assigned to the stretching 
vibration of in-plane B-N bond, and the broadened peaks can 

Fig. 1  a PXRD patterns of TpPa-1-COF, porous h-BN, 10% porous h-BN/TpPa-1-COF, simulated TpPa-1-COF and standard h-BN. b FT-IR 
spectra of TpPa-1-COF, 10% commercial h-BN/TpPa-1-COF and 10% porous h-BN/TpPa-1-COF. c  N2 adsorption–desorption isotherms of 
TpPa-1-COF, 10% commercial h-BN/TpPa-1-COF, 10% porous h-BN/TpPa-1-COF, porous h-BN and commercial h-BN. d–f SEM images 
of TpPa-1-COF, porous h-BN, 10% porous h-BN/TpPa-1-COF, 10% commercial h-BN/TpPa-1-COF. g–i TEM images for TpPa-1-COF, 10% 
porous h-BN/TpPa-1-COF and porous h-BN, and the inset images of (h, i) show the HRTEM of 10% porous h-BN/TpPa-1-COF and porous h-
BN. j–n EDS mapping images for 10% porous h-BN/TpPa-1-COF



Nano-Micro Lett.          (2023) 15:132  Page 7 of 16   132 

1 3

be attributed to the enhanced B-N vibration spread. The out-
of-plane B–N–B bond of porous h-BN displays a red shift at 
approximate 780  cm−1, which is caused by the dislocation 
and disruption of the h-BN lattice. Moreover, the presence 
of hydroxyl and imine groups on the surface of porous h-
BN can also be demonstrated by the characteristic peaks at 
about 3200 and 1600  cm−1, respectively (Fig. S4) [66]. On 
the other hand, the stretching vibration peaks of C=N, C–N, 
and C–O bonds can be observed at 1617, 1191, 1115  cm−1, 
further proving the successful preparation of TpPa-1-COF.

To identify the permanent porosity of the samples, the 
nitrogen sorption isotherm at 77 K was proceeded. As illus-
trated in Fig. 1c, the commercial h-BN is a kind of non-
porous material, and through a high temperature calcination 
treatment, the defects can be produced thus endowing h-BN 
with mesoporous pores, in which the pore size is estimated 
to be around 30 nm with a Brunauer–Emmett–Teller (BET) 
surface area of 231  m2  g−1 (Fig. S7). The TpPa-1-COF dis-
plays a fully reversible type I curve with high  N2 uptake 
capacity at relatively low pressure, which indicates its 
microporous feature with a BET surface area of 743  m2  g−1. 
As revealed by the pore size distributions results, the pore 
size of TpPa-1-COF is approximate 1.2 nm, which is in 
accordance with their crystal structure. It is interesting that 
through combining TpPa-1-COF and porous h-BN, the BET 
surface area is increased to 1073  m2  g−1. The above result 
can be illustrated by the enriched microporous channel at 
about 0.6 nm, demonstrated by the pore size distribution of 
porous h-BN/TpPa-1-COF. The improved BET surface area 
of composites is beneficial for enriching the active sites, 
thus promoting the reaction of photocatalytic  H2 produc-
tion. The thermal stability of materials was explored through 
thermogravimetric (TG) analysis. As shown in Fig. S10, the 
decomposition temperature of TpPa-1-COF is about 425 °C 
and reveals a relative high thermal stability. After combining 
two materials, the decomposition temperature of composite 
is basically consistent with the pristine TpPa-1-COF, which 
prove that the addition of h-BN will not break the framework 
of TpPa-1-COF. Moreover, based on the weight loss, the 
proportion of two materials is able to be ascertained.

The morphology and microstructures of the products were 
observed by SEM and TEM images. As observed in Fig. 1d, 
g, the TpPa-1-COF displays a flower-like morphology 
formed by stacking nanorods. Compared with commercial h-
BN with solid flake structure, the defective h-BN possesses 
highly ordered mesoporous channels, and the pore size is 

measured to be 30 nm (Fig. 1h and inset image), which is 
in agreement with the pore size distributions result. The 
porous structure provides more contact area and improves 
the electronic coupling effect with TpPa-1-COF. As shown 
in Fig. 1f, i, TpPa-1-COF is uniformly grown on the sur-
face of defective h-BN and covers the mesoporous channels. 
The lattice fringe of porous h-BN can be distinctly seen in 
high-resolution transmission electron microscope (HRTEM) 
image of the composite, in which the value is 0.33 nm, cor-
responding to the (002) crystal plane. Moreover, the energy 
dispersive spectroscopy (EDS) elemental mapping images 
demonstrate that B, N, C and O elements are uniformly dis-
tributed in the composites, and the unapparent B element 
image can be attributed to the overlap of TpPa-1-COF on 
porous h-BN. All above results demonstrate that porous h-
BN and TpPa-1-COF are well-integrated (Fig. 1j-n).

3.2  XPS and Structural Analysis

XPS tests were performed to explore the chemical states 
and surface elemental composition of the samples. It can 
be observed from Fig. S18 that 10% porous h-BN/TpPa-
1-COF contains C, N, B and O elements without extra 
elements, which is consistent with EDS mapping results. 
Furthermore, in the high-resolution C 1s spectrum of 
TpPa-1-COF, there exist four peaks located at 281.7, 283, 
285.8 and 289.1 eV, corresponding to C=C, C–N, C=N 
and C=O bonds, respectively (Fig. 2a). Moreover, the 
presence of imine bond can also be revealed by the high-
resolution N 1s spectrum, in which two N 1s core-level 
peaks are observed at 396.2 and 399.7 eV, matched up to 
the C=N–C and C–N–H bonds, respectively (Fig. 2b) [67]. 
The above results demonstrate the successful construction 
of TpPa-1-COF. Compared with commercial h-BN, porous 
h-BN displays an obvious B–O peak at 189.1 eV in high-
resolution B 1s spectrum, and a N–H peak at 396.7 eV, 
verified the generation of hydroxyl and imine groups on 
porous h-BN (Figs. S19 and S20) [66]. The strong elec-
tronic coupling between two materials can also be proved 
by the XPS results. In comparison with pristine TpPa-1-
COF, the high-resolution C 1s, N 1s and O 1s spectrum 
of porous h-BN/TpPa-1-COF all display obvious positive 
shift of binding energy induced by the presence of VDW 
interactions, also suggesting that the strong electronic cou-
pling can promote electrons transfer from TpPa-1-COF to 
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porous h-BN. Compared with TpPa-1-COF and commer-
cial h-BN/TpPa-1-COF samples, the as-prepared porous h-
BN/TpPa-1-COF sample’s high-resolved O 1s XPS peaks 
show the obvious intensity difference at around 592 and 
531 eV, corresponding to C=O and O–H, respectively. 
It is indicated that when involving the porous h-BN for 
the TpPa-1-COF synthesis, TpPa-1-COF will form more 
hydroxy groups (Fig. 2c). Therefore, we compared the 
TpPa-1-COF with the aldehyde and hydroxy group via the 
density functional theory. Figure 2d,e is the correspond-
ing relaxed unit cell of TpPa-1-COF with the hydroxy and 
aldehyde group, respectively. It can be seen that due to the 
double bond break of the aldehyde group and the single 
bond between the carbon and hydroxyl group, the conju-
gated carbon ring was destroyed, while the cyclohexane 
was formed. Furthermore, the O 1s XPS peaks of porous 
h-BN and commercial h-BN indicate they have a compara-
ble magnitude of the hydroxy group. We further calculated 
the monolayer porous h-BN and bulk commercial h-BN 
with the hydroxyl group on the B and proton on the N 
(Fig. 2f, g). The DFT relaxed structures show the natural 
curved architecture of the monolayer porous h-BN and the 

top layer of the bulk BN. These can be readily ascribed to 
the hydroxy and proton defects.

3.3  Energy Band Structure and Performance Analysis

The light absorption properties of the products are examined 
by ultraviolet–visible diffuse reflectance spectra (UV–vis 
DRS). As observed in Fig. 3a, the maximum absorption 
wavelength of TpPa-1-COF is about 610 nm, suggesting its 
great potential for visible light catalysis. After decorating 
porous h-BN, the light absorption edge of the composite 
has hardly changed, demonstrating the unchanged band-
gap of TpPa-1-COF. Then, based on the Tauc diagram of 
Kubelka–Munk equation, the band gap energies of the TpPa-
1-COF, porous h-BN and commercial h-BN can be deter-
mined to be 2.12, 4.34 and 5.7 eV, respectively [68]. The 
introduced defects can reduce the bandgap of h-BN, thus 
endowing it with semiconductor property. Mott–Schottky 
tests were also executed to determine the Fermi energy level 
of the samples, and further to determine their band structure 
[69]. The experimental results showed that the Fermi energy 
level of commercial h-BN, porous h-BN and TpPa-1-COF 
is − 0.36, − 0.38 and − 0.59 V versus Ag/AgCl, respectively 

Fig. 2  High-resolution spectra of 10% porous h-BN/TpPa-1-COF and TpPa-1-COF: a C 1s and b N 1s, c high-resolution O 1s XPS spectra for 
10% commercial h-BN/TpPa-1-COF, 10% porous h-BN/TpPa-1-COF and TpPa-1-COF. DFT relaxed structure of transformed d TpPa-1-COF, e 
TpPa-1-COF, f defective monolayer h-BN, and g bulk BN with defective surface
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(Figs. S28–S30). According to the E(NHE) = E(Ag/
AgCl) + 0.197 V equation, it can be obtained that the nor-
mal hydrogen electrode (NHE) of commercial h-BN, porous 
h-BN and TpPa-1-COF is − 0.163, − 0.183 and − 0.393 V, 
respectively. Based on above results, the conduction band 
(CB) position of TpPa-1-COF, commercial h-BN and porous 
h-BN is estimated to be − 0.69, − 0.46 and − 0.48 V, respec-
tively. Correspondingly, the valence band (VB) positions of 
TpPa-1-COF, commercial h-BN and porous h-BN are 1.43, 
5.24 and 3.86 V, respectively. Benefitting from the suitable 

energy band position, the composite may be a good candi-
date for photocatalytic water splitting.

To corroborate our assumption, the photocatalytic hydro-
gen production experiments were implemented under visible 
light irradiation with l-ascorbic acid as sacrificial agent. In 
particular, the whole photocatalytic hydrogen production 
system was carried out in a metal-free condition. Due to 
the long-lasting issue of severe photoinduced electron–hole 
pairs recombination, the photocatalytic activity of the pris-
tine TpPa-1-COF is poor without the addition of noble metal 

Fig. 3  a DRS spectra of 10% commercial h-BN/TpPa-1-COF, 10% porous h-BN/TpPa-1-COF and TpPa-1-COF. b Photocatalytic hydrogen 
production rate of 10% porous h-BN/TpPa-1-COF and the reported metal-free photocatalysts. c Photocatalytic  H2 evolution amount comparison 
with time for different ratios of porous h-BN/TpPa-1-COF. d Hydrogen production rate of a series of porous h-BN/TpPa-1-COF in six hours. e 
Photocatalytic hydrogen production performance of 10% porous h-BN/TpPa-1-COF, 10% commercial h-BN/TpPa-1-COF and TpPa-1-COF. f 
Photocatalytic hydrogen evolution efficiency of 10% porous h-BN/TpPa-1-COF under different sacrificial systems. g Recycling performance of 
10% porous h-BN/TpPa-1-COF. h Wavelength-dependent apparent quantum efficiency (AQE) of 10% porous h-BN/TpPa-1-COF
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Pt. It is interesting that when TpPa-1-COF is combined with 
porous h-BN, their photocatalytic performance is signifi-
cantly enhanced., With an optimal weight ratio, 10% porous 
h-BN/TpPa-1-COF displays the highest  H2-evolution rate 
of 3.15 mmol  g−1  h−1, which is 67.02 times than that of 
pristine TpPa-1-COF (Fig. 3c, d). It is commendable that 
such value can almost rank first in reported metal-free pho-
tocatalysts without the addition of noble metal Pt and also 
surpass most metal-free photocatalysts with the addition of 
noble metal Pt (Fig. 3b). To verify the important role of 
mesoporous channels in h-BN, the result of 10% commercial 
h-BN/TpPa-1-COF is also represented in Fig. 3e, where the 
 H2 production rate is estimated to be 1.82 mmol  g−1  h−1, that 
is significantly lower than 10% porous h-BN/TpPa-1-COF. 
The enhanced photocatalytic can be due to the enhanced 
porosity and the regulated band structure. In addition, the 
photocatalytic  H2 evolution tests with different experimental 
conditions, such as the photocatalyst mass and the sacrifi-
cial agent, have also been performed [70–73]. As shown 
in Fig. S31, when the mass of used photocatalyst is 5 mg, 
the hydrogen production rate of the composite can reach up 
to 2.59 mmol  g−1  h−1. Through further increase the mass 
of used photocatalyst, their catalytic activity increased. 
However, when the mass of used photocatalyst reaches to 
20 mg, their catalytic activity decreased, which may be 
due to the shielding effect. Therefore, the optimal amount 
of used catalyst is 10 mg. In addition, the photocatalytic 
hydrogen production tests under different sacrificial agents 
(SEDs) were also performed, and the specific results are 
displayed in Fig. 3f. When selecting methanol, lactic acid, 
triethanolamine as the SEDs, only trace amount of  H2 can be 
detected. However, by changing the SEDs to sodium l-ascor-
bate and l-ascorbic acid, the hydrogen production rate was 
significantly enhanced, especially the l-ascorbic acid can 
most effectively promote the hydrogen production. Moreo-
ver, the 10% porous h-BN/TpPa-1-COF displays an appar-
ent quantum efficiency (AQE) of 0.65% at the wavelength 
of 420 nm (Fig. 3h). In addition to the catalytic activity, 
stability is also an important index for photocatalysts. The 
hydrogen-producing activity of 10% porous h-BN/ TpPa-1-
COF showed a steady increase within 20 h. Within twenty 
hours, the activity increased slightly faster in the first six 
hours, and the rate of photocatalytic hydrogen production 
increased steadily in the later hours, but the high activity 
was still maintained, indicating the superior stability of 10% 
porous h-BN/TpPa-1-COF (Fig. 3g). Meanwhile, combining 

the XRD and SEM characterizations of the cycling samples, 
their reusability can also be revealed (Figs. S41 and S42).

3.4  Mechanistic Investigation

To better understand the charge carriers migration and sep-
aration properties, photoelectrochemical properties of the 
prepared samples were analyzed. As depicted in Fig. 4a, 
the photocurrent density of 10% porous h-BN/TpPa-1-COF 
is much higher than that of pristine TpPa-1-COF and 10% 
commercial h-BN/TpPa-1-COF, implying that the integrated 
h-BN is beneficial for improving the charges carriers sepa-
ration, and the introduced defects can narrow the CB gap 
between h-BN and TpPa-1-COF, thus further enhancing the 
separation efficiency.

On the other hand, the resistance of electron transfer in the 
materials was also explored by EIS tests. The 10% porous 
h-BN/TpPa-1-COF sample exhibits the smallest semicircu-
lar diameter of Nyquist curves, revealing that the electron 
transfer efficiency is significantly improved (Fig. 4b). As 
demonstrated in linear sweep voltammetry (LSV) curves, the 
hydrogen production potential follows the sequence of 10% 
porous h-BN/TpPa-1-COF > 10% commercial h-BN/TpPa-
1-COF > TpPa-1-COF, which is in accordance with the 
photocatalytic results (Fig. 4c). The surface charge transfer 
efficiency was also used to characterize the electron transfer 
capability of materials. The surface charge transfer efficiency 
can be obtained by comparing the current values of the 
materials with pure electrolyte and the electrolyte with the 
addition of  H2O2 (0.5 mol  L−1). The surface charge transfer 
efficiency can be obtained by comparing the current values 
of the materials with pure electrolyte and the electrolyte with 
the addition of  H2O2 (0.5 mol  L−1), where  H2O2 is acting 
as a hole trap, making the surface charge transfer very fast 
and can be approximated as 100%. Therefore, according to 
the defining formula of photocurrent, we can finally get that 
the ratio of photocurrents under two different conditions, 
which can be taken as the surface charge transfer efficiency. 
As shown in Fig. 4d–f, it can be extracted that 10% porous 
h-BN/TpPa-1-COF exhibits the highest surface charge trans-
fer efficiency, which can reach up to 55.7%. Figure 4g dis-
plays the open-circuit voltage decay curves of the samples, 
and its data are calculated to acquire the average lifetime of 
the photogenerated carriers. It can be estimated that 10% 
porous h-BN/TpPa-1-COF has the largest average lifetime, 
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which proves that its photogenerated carriers have the low-
est recombination rate (Fig. 4h). Apart from above results, 
the higher charge carriers dissociation efficiency can also 
be proved by the steady-state surface photovoltage (SPV) 
and transient-state surface photovoltage (TPV) results, in 
which the 10% porous h-BN/TpPa-1-COF sample all dis-
plays the highest photovoltage response signal (Figs. 4i and 
S45). To demonstrate the important role of porous h-BN in 
the composite, we calculated the charge density differences 
between the structural transformed TpPa-1-COF (with the 
hydroxyl group, cyclohexane) and the pristine TpPa-1-COF 

with the defective monolayer porous h-BN and monolayer 
h-BN without defects. As shown in Fig. 5a–c, the relaxed 
structures of the heterojunction structure of the structural 
transformed TpPa-1-COF and defective monolayer porous 
h-BN demonstrated the largest interlayer distance (side 
view of Fig. 5a). For the monolayer h-BN without defects, 
though there are no defects, it still presents curved architec-
ture due to the interaction with the TpPa-1-COF. From their 
corresponding charge density difference plots (Fig. 5d, e), 
it can be identified that due to structural transformation of 
TpPa-1-COF and the defect on porous h-BN, there exists 

Fig. 4  a Transient photocurrent response, b EIS Nyquist plots and c LSV curves of 10% porous h-BN/TpPa-1-COF, 10% commercial h-BN/
TpPa-1-COF and TpPa-1-COF. d–f Photocurrent response of without and with adding  H2O2 into electrolyte of TpPa-1-COF, 10% commer-
cial h-BN/TpPa-1-COF and 10% porous h-BN/TpPa-1-COF. g OCVD curves of TpPa-1-COF, 10% commercial h-BN/TpPa-1-COF and 10% 
porous h-BN/TpPa-1-COF. h Average lifetime of the photogenerated carriers (τn) for TpPa-1-COF, 10% commercial h-BN/TpPa-1-COF and 
10% porous h-BN/TpPa-1-COF. i SPV spectra of TpPa-1-COF, 10% commercial h-BN/TpPa-1-COF and 10% porous h-BN/TpPa-1-COF
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electronic coupling between two materials (Fig. 5d, e) by 
comparing with the TpPa-1-COF and h-BN without defects 
(Fig. 5f). Further comparing the TpPa-1-COF with struc-
tural transformation to TpPa-1-COF without structural trans-
formation, the charge density difference is slightly lower, 
and TpPa-1-COF mainly loses the electron and transfers to 
defective porous monolayer h-BN (Fig. 5e), which facilitates 
the electron and hole charge separation when they form the 
heterojunction structure after absorption of the visible light. 
The photocatalysis HER working mechanism was further 
analyzed through electronic bond structure calculations 
(Fig. 5h). When considering that all oxygen in TpPa-1-COF 
exists in the form of carbonyl group, the CB position of 

TpPa-1-COF was calculated to be − 0.302 eV versus SHE. 
However, through combining TpPa-1-COF with porous h-
BN, more hydroxyl groups will be formed and the TpPa-1-
COF will undergo a structural transformation. In this regard, 
the CB position of the structural transformed TpPa-1-COF 
was dramatically elevated to − 1.31 eV versus SHE. Due to 
the elevated CB position of TpPa-1-COF, the gap between 
the conduction band position of the h-BN and TpPa-1-COF 
was enlarged, which is beneficial for suppressing the elec-
tron backflow.

Based on the band structure analysis and series of photo-
electrochemical tests, the photocatalytic  H2 evolution mech-
anism of the porous h-BN/TpPa-1-COF can be proposed. 

Fig. 5  DFT relaxed structure of a structural transformed TpPa-1-COF and defective monolayer h-BN heterojunction, b TpPa-1-COF and defec-
tive monolayer h-BN heterojunction, and c TpPa-1-COF and monolayer BN. d–f The corresponding electron density isosurface = 0.0002|e|/
Bohr3). The colored regions from turquoise to yellow represent the loss and gain of electrons, respectively. g Mechanism schematic of photocata-
lytic  H2 evolution of porous h-BN/TpPa-1-COF composite materials under visible-light irradiation. h DFT calculated electronic bond structures. 
(Color figure online)
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In virtues of the excellent visible-light absorption ability, 
the TpPa-1-COF is excited to generate electron–hole pairs. 
Thanks to the formed VDW heterojunction, the electrons 
on TpPa-1-COF can be facilitated by the strong electronic 
coupling effect to transfer to porous h-BN, thus achieving 
the photogenerated electron–hole pairs separation. Lastly, 
the electrons will migrate to the surface reactive sites of 
porous h-BN to reactive with  H+ and produce  H2. Benefit-
ting from the introduced defect, the h-BN can be endowed 
with porous structure, thus providing more surface reactive 
sites. Moreover, the defect can also induce the structural 
transformation of the TpPa-1-COF, thus elevating its CB 
position and enlarging the gap between the CB position of 
the h-BN and TpPa-1-COF, which can make contribution to 
inhibiting the electrons backflow (Fig. 5g). Therefore, the 
porous h-BN/TpPa-1-COF sample exhibits a higher pho-
tocatalytic activity both than TpPa-1-COF and commercial 
h-BN/TpPa-1-COF samples.

4  Conclusions

In conclusion, through integrating COFs and porous h-BN, 
we have successfully constructed a novel metal-free 2D/2D 
VDW heterojunction through a successive calcination–sol-
vothermal strategy. In comparison with pristine COFs, the 
photocatalytic activity of VDW heterostructure is signifi-
cantly improved with a record-breaking  H2 evolution rate 
(3.15 mmol  g−1  h−1) in metal-free photocatalysts with no 
addition of co-catalysts. Such remarkable photocatalytic per-
formance origins from the enriched surface reactive sites, 
strong electronic coupling effect, and enlarged conduction 
band gap between COFs and porous h-BN, verified by series 
of experimental and theoretical calculation results. Moreo-
ver, this work is the first attempt to combine COFs with 
h-BN to construct lightweight metal-free photocatalysts, 
which may provide new insight for metal-free photocata-
lysts construction.
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