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S1 Chemicals 

Anhydrous ethanol and hydrochloric acid were purchased from Sinopharm Chemical 

Reagent Co., Ltd. Nickel nitrate hexahydrate was obtained from Aladdin. All chemicals 

were analytical grade and used as received. All aqueous solutions were prepared with 

ultrapure water from a Water Purifier System.  

S2 DFT Calculations 

All the calculations are performed in the framework of the density functional theory 

with the projector augmented plane-wave method, as implemented in the Vienna ab 

initio simulation package [S1]. The generalzied gradient approximation proposed by 

Perdew, Burke, and Ernzerhof is selected for the exchange-correlation potential [S2]. 

The long range van der Waals interaction is described by the DFT-D3 approach [S3]. 

The cut-off energy for plane wave is set to 400 eV. The energy criterion is set to 10-5 

eV in iterative solution of the Kohn-Sham equation. A vacuum layer of 15 Å is added 

perpendicular to the sheet to avoid artificial interaction between periodic images. The 

Brillouin zone integration is performed using a 2×2×1 k-mesh. All the structures are 

relaxed until the residual forces on the atoms have declined to less than 0.02 eV Å-1.  
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Supplementary Figures and Tables 

Table S1 Comparison of electrochemical performance of the NOHPC anode with 

previous reports 

Sample Voltage 

range 

Current Capacity References 

hollow carbon nanospheres  0.01-2.0V 28 mA g-1 100 cycles, 

241.2 mA h g−1 

[S4] 

N-doped hierarchical porous 

hollow carbon spheres 

0.01-2.5V 1400 mA g-1 600 cycles, 

~140.0 mA h g−1 

[S5] 

hard carbon microspheres 

 

0.01-2V 560 mA g-1 100 cycles, 

190 mA h g−1 

[S6] 

S, O-doped porous hard 

carbon microspheres 

0.01-2.5V 1000 mA g-1 2000 cycles, 

108.4 mA h g-1 

[S7] 

amorphous ordered 

mesoporous carbon 

0.01-2.5V 1000 mA g−1 1000 cycles, 

146.5 mA h g−1 

[S8] 

core-shell structured N, O-

doped hollow porous carbon 

microspheres 

 

0.01-2.5V 

 

5000 mA g−1 

6000 cycles, 

202.6 mA h g−1 

This 

work 

 

Fig. S1 SEM image of NOHPC  

Fig. S2 (a, b) TEM images of NOHPC. (c) HRTEM image of NOHPC. (d) SAED 

pattern of NOHPC 
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Fig. S3 EDS elemental mapping images of ultrathin section for unwashed NOHPC 

Fig. S4 (a) Nitrogen adsorption–desorption isotherms of NOHPC; (b) Nitrogen 

adsorption–desorption isotherms of NOCB and NOCNT 

Fig. S5 (a) Raman spectra curves of NOCB, NOHPC and NOCNT. Fitted Raman 

spectra curves of (b) NOCB, (c) NOHPC, (d) NOCNT. The green line with a peak at 

1360 cm-1 represents the D-band, the purple line with a peak at 1500 cm-1 represents 

the D’-band, while the yellow line with a peak close to 1585 cm-1 represents the G-

band. Integrated ratios are obtained from the area of the fitted peaks (ratio of the area 

of G-band to the sum of the area of D-band and D’-band). The fitting is made by using 

the OMINC Picta software program with a guassian-laurenztian fit [S9] 
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Fig. S6 XPS survey of NOCB, NOHPC and NOCNT 

Fig. S7 High-resolution N 1s spectra of (a) NOCB, (b) NOHPC and (c) NOCNT 

Fig. S8 SEM images of NOHPC anode after 500 cycles at 0.5 A g-1 
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Fig. S9 CV curves of (a) NOCB, (b) NOHPC, (c) NOCNT at different scanning rates 

range from 0.2 to 1.0 mV s-1 

Fig. S10 The logarithm relationship between the scan rates and the anodic peak current 

The current responses of one certain electrode process are from two kinds of 

contribution, capacitive and diffusion-limited processes. The fast capacitive 

contributions originate from the surface charge-transfer, chemical adsorption and 

Faradaic process occur in a thin layer of electrode materials. The current response from 

a cyclic voltammogram obeys the relationship of equation. 

i = avb 

where a and b are adjustable parameters. For the ideal capacitive behavior, the current 

response is proportional to the scan rate (b = 1). The current response of 

diffusionlimited process is proportional to the square root of the scan rate (b = 0.5). The 

adjustable parameters of a and b can be calculated using the linear of lgi and lgv with 

the following equation. 

lgi = lga + blgv 
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Fig. S11 The optimized model and top views of K atom absorbed in the (a) pristine, (b) 

S1: N-Q/O-doped, (c) S2: N-6/O-doped, (d) S3: N-6/O-doped and (e) S4: N-5/O-doped 

carbon structures and their corresponding ΔEa 

Fig. S12 (a) SEM image of HPAC. (b) TEM images of HPAC 

 

Fig. S13 XRD patterns of HPAC 
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Fig. S14 Nitrogen adsorption-desorption isotherms of HPAC 

 

Fig. S15 BJH pore width of HPAC 
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