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S1 Experimental Section 

S1.1 Materials 

Nickel foam (99%) used in the study was obtained from Shanxi Lizhiyuan Technology 

Co., Ltd. Hydrochloric acid (HCl, 36.0%～38.0%) was obtained from Yongfei 

Chemical Reagent Co., Ltd. Sodium hypophosphite (NaH2PO2·H2O, 99.0%) and 

acetone (99.5%) were received from Tianjin Chemical Reagent Supply and Marketing 

Co., Ltd. Ethyl Alcohol (99.7%) was purchased from Concord Technology Co., Ltd. 

Deionized water was purchased from Tianjin Huaxun Medical Technology Co., Ltd. 

Ammonium chloride (NH4Cl, 99.5%), sodium chloride (NaCl, 99.5%) and potassium 

hydroxide (KOH, 85%) were purchased from Tianjin Bohua Chemical Reagent Co., 

Ltd. Nickel chloride hexahydrate (NiCl2·6H2O, 98.0%) was received from Tianjin 

Chemical Reagent wholesale Co., Ltd. Powder selenium (Se 99.5%) was purchased 

from Beijing Chaoyang Zhonglian Chemical Reagent Factory. 20 wt% Pt/C powders 

were purchased from Shanghai Hesen Electric Co., Ltd. Nickel nitrate (Ni(NO3)2·6H2O, 

98%) and hydrazine hydrate (N2H4·H2O, 80%) was purchased from Tianjin Damao 

Chemical Reagent Co., Ltd. 

S1.2 Electrochemical Measurements 

For the preparation of Pt/C on NF control electrode, 5 mg of commercial Pt/C 

electrocatalyst (20 wt %) was dispersed into 480 μL deionized water/isopropanol (1:4) 

and 20 μL of Nafion solution (5 wt%) with sonication to obtain homogeneous catalyst 

ink. Then, 50 μL of catalyst ink was transferred onto one piece of Ni foam with the Pt 

loading mass of 200 μg cm-2. 

To fairly compare the performance of various catalysts, all the polarization curves 

https://www.springer.com/journal/40820
mailto:zyyuan@nankai.edu.cn


Nano-Micro Letters 

S2/S23 
 

were corrected for ohmic losses throughout the system, which include the wiring, 

substrate, catalyst material, and solution resistances. All these resistances constitute the 

series resistance (Rs) of the measurement. The Rs can be obtained from an EIS Nyquist 

plot as the first intercept of the main arc (corresponding to the electrode-electrolyte 

interface) with the real axis. For all measurements, the values of Rs are low and 

consistent. Then the iR-corrected data is given by ECorrected = ERaw – iRs. 

The Tafel slope was calculated according to the Tafel equation of η = b·log(J/ J0), 

where η, b, J and J0 indicate the overpotential, Tafel slope, current density, and 

exchange current density, respectively. 

The electrochemical double layer capacitance (Cdl) was determined by the cyclic 

voltammograms under the scan rate from 10 to 30 mV s−1 in a narrow non-Faradaic 

potential range. The double layer capacitance Cdl is determined from CV measurements 

based on the equation Cdl = (ja - jc)/(2*v) = (ja + |jc|)/(2*v) = Δj/(2*v), in which ja and jc 

are the anodic and cathodic current density, respectively, recorded at the middle of the 

selected potential range, and v is the scan rate. The Cdl can be further converted into 

electrochemical active surface area (ECSA) using roughness factor (rf): 

rf = Cdl (mF cm-2)/Cdl,ideal (mF cm-2) 

jECSA = j/rf 

where Cdl,ideal is the double layer capacitance of an ideally flat electrode (specific Cdl), 

which is usually taken as Cdl,ideal = 0.04 mF cm-2 for alkaline media. jECSA is the current 

density normalized by ECSA. 

The electrochemical impedance spectroscopy (EIS) tests were performed at 

different potentials in the frequency range from 0.01 to 100000 Hz with the amplitude 

of 5 mV. 

The TOF values are calculated via the following equation: 

𝑇𝑂𝐹 =
|𝑗|𝐴

𝑚𝐹𝑁
 

where |j| is the current density at a fixed voltage during the LSV measurement in 1.0 M 

solution, A stands for the area of the electrode (0.5 cm-2) and F is the Faradic constant 

(96485 C mol-1). N represents the quantity of active sites, which is calculated by 

measuring CV curves at 0.05 V s-1. A factor of 1/m is introduced, taking into account 

that m electrons are consumed to form one H2 molecule from water. 

The pre-exponential factor (Aapp) and apparent activation energy (Eapp) at fixed 

overpotentials can be calculated based on Arrhenius equation [S1]: 

iECSA = Aappexp(Eapp/RT) 

Herein, iECSA presents the ECSA normalized current density, R is the ideal gas constant 

(8.314 J K-1 mol-1) and T stands for the Kelvin temperature (K). Therefore, Eapp values 

at different applied potentials can be obtained by using the following equation [S2]: 
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|∂(log10iECSA)/∂(1/T)| = -Eapp/2.303R 

Faradaic efficiency was calculated by comparing the volume of experimentally 

quantified gas (water-gas displacing method at a current density of 200 mA cm−2) with 

theoretically calculated gas, ηFaradaic efficiency = (Vexperimental/Vtheoretical) × 100%; the 

theoretical volume of evolving gases can be calculated using the equation: Vtheoretical = 

(I×t×Vm)/(n×F), where I is the current measured in the experiment, t is the recorded 

time, Vm is the molar volume of H2 or O2 in 1/mol, n is the number of electrons needed 

for 1 mol H2 or O2, and F is the Faraday's constant (96,485 C/mol). 

1.3 Density Functional Theory Calculations 

Density functional theory (DFT) based first-principles calculations are performed using 

the projected augmented wave (PAW) [S3] method implemented in the Vienna ab initio 

simulation package (VASP) [S4, S5]. The Kohn-Sham one-electron states are expanded 

using the plane-wave basis set with a kinetic energy cutoff of 500 eV. The Perdew-

Burke-Ernzerhof (PBE) exchange-correlation functional within the generalized 

gradient approximation (GGA) is employed [S6]. To study the mechanistic details of 

surface reactions, the NiSe2 (210) surface is modeled by a periodic slab repeated in 1×2 

surface unit cell. P-doping is simulated by substituting Se with P. Fe-doping is simulated 

by substituting Ni with Fe. The Brillouin-zone (BZ) integration is carried out using the 

Monkhorst-Pack sampling method with a density of 2×2×1 for the geometry 

optimizations [S7]. A sufficiently large vacuum region of 15 Å was used for all the 

systems to ensure the periodic images to be well separated. During the geometry 

optimizations, all the atoms were allowed to relax until the maximum magnitude of the 

force acting on the atoms is smaller than 0.03 eV/Å, and the total energy convergence 

criterion is set to 1 × 10−4 eV. The calculation of the Gibbs free energy of the 

intermediates followed the Nørskov method [S8]. 

The oxidation of hydrazine into nitrogen and hydrogen occurs in the following six 

consecutive elementary steps: 

(A) * + N2H4 → *N2H4               (S1) 

(B) *N2H4 → *N2H3 + H+ + e-     (S2) 

(C) *N2H3 → *N2H2 + H+ + e-     (S3) 

(D) *N2H2 → *N2H + H+ + e-      (S4) 

(E) *N2H → *N2 + H+ + e-          (S5) 

(F) *N2 → * + N2                        (S6) 

The asterisk (*) represents the reaction surfaces. “*N2H4”, “N2H3”, “N2H2”, “N2H”, 

and “*N2” denote the models with the corresponding chemisorbed species residing in 

the reaction surfaces. Among these six elementary steps, steps (A) and (F) are the 

adsorption of N2H4 and desorption of N2, respectively. The other four elementary steps 

involve the generation of one proton and one electron. Then, using the computational 

hydrogen electrode (pH = 0, p = 1 atm, T = 298 K), the Gibbs free energy of H+ + e- 
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was replaced implicitly with the Gibbs free energy of one-half an H2 molecule. Thus 

the reaction Gibbs free energies can be calculated with Eqs: 

△GA =△G*N2H4-△G*-△GN2H4                                        (S7) 

△GB = △G*N2H3 + 0.5△GH2-△G*N2H4-eU-kTIn10*pH   (S8) 

△GC = △G*N2H2 + 0.5△GH2-△G*N2H3-eU-kTIn10*pH   (S9) 

△GD = △G*N2H + 0.5△GH2-△G*N2H2-eU-kTIn10*pH   (S10) 

△GE = △G*N2+ 0.5△GH2-△G*N2H-eU-kTIn10*pH     (S11) 

△GF = △G*+ GN2-△G*N2                                              (S12) 

U and the pH value in this work is set to zero. The adsorption or reaction Gibbs 

free energy is defined as △G = △E + (ZPE−T△S), where ΔE is the adsorption or 

reaction energy based on DFT calculations, ΔZPE is the zero-point energy (ZPE) 

correction, T is the temperature, and ΔS is the entropy change. For each system, its ZPE 

can be calculated by summing vibrational frequencies overall normal modes ν (ZPE = 

1/2Σħν). The entropies of gas-phase H2, N2, and NH2NH2 are obtained from the NIST 

database3 with the standard condition, and the adsorbed species were only taken 

vibrational entropy (Sv) into account, as shown in the following formula: 

Sv=Σi R{hvi/[kBT*exp(hvi/kBT)−kBT]-In[1−exp(-hvi/kBT)]}     (S13) 

Among which R = 8.314 J·mol−1·K−1, T = 298.15 K, h = 6.63 ×10−34 J·s, kB = 1.38 

× 10−23 J·K−1, i is the frequency number, vi is the vibrational frequency (unit is cm−1). 

Under the standard condition, the overall HER pathway includes two steps: first, 

adsorption of hydrogen on the catalytic site (*) from the initial state (H+ + e− + *), 

second, release the product hydrogen (1/2H2). The total energies of H+ + e− and 1/2H2 

are equal. Therefore, the Gibbs free energy of the adsorption of the intermediate 

hydrogen on a catalyst (𝛥GH) is the key descriptor of the HER activity of the catalyst 

and is obtained by: 

ΔGH = ΔEH + ΔZPE – TΔS 

where ΔEH, ΔZPE and ΔS are the adsorption energy, zero-point energy change and 

entropy change of H adsorption, respectively. 

The kinetic energy barrier of the initial water dissociation step (ΔGH2O) is applied 

as an activity descriptor for HER under alkaline condition, which can be calculated as 

follows: 

ΔGH2O = Gts - Gini 

where Gts and Gini are the free energy of the transient state and the initial state for water 

dissociation, respectively. 
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S2 Supplementary Figures and Tables 

 

Scheme S1 Schematic illustration of the preparation of P/Fe-NiSe2 

 

Fig. S1 SEM images of original Ni foam 

 

Fig. S2 High-magnification SEM image of Ni microsphere-modified Ni foam 
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Fig. S3 Current densities in 1st electrodeposition 

 

Fig. S4 Current densities in 2nd electrodeposition 

 

Fig. S5 High-magnification SEM image of Fe-NiOH 
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Fig. S6 High-magnification SEM image of Fe-NiSe2 

 

Fig. S7 High-magnification SEM image of NiSe2 

 

Fig. S8 LSV curves of P/Fe-NiSe2 for HzOR in 1.0 M KOH with different concentration 

of N2H4 
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Fig. S9 LSV curves of P/Fe-NiSe2, P/Fe-NiSe2-250 and P/Fe-NiSe2-350 for (a) HER 

and (b) HzOR 

 

Fig. S10 Comparison of potentials for HER (10 mA cm-2) and HzOR (100 mA cm-2) of 

the synthesized electrocatalysts and some recently reported electrocatalysts 
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Fig. S11 Cyclic voltammograms of (a) P/Fe-NiSe2, (b) Fe-NiSe2, (c) NiSe2 and (d) NF 

with different scan rates from 10 to 30 mV s-1 

 

Fig. S12 Cdl conducted by plotting the current density difference against scan rate 
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Fig. S13 HER Polarization curves with current densities normalized to the ECSA 

 

Fig. S14 Calculated H2 TOFs 

 

Fig. S15 High-magnification SEM image of post-HER P/Fe-NiSe2 
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Fig. S16 XRD patterns of post-HER P/Fe-NiSe2 

 

Fig. S17 XPS analysis of post-HER P/Fe-NiSe2 
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Fig. S18 HzOR polarization curves with current densities normalized to the ECSA 

 

Fig. S19 High-magnification SEM image of post-HzOR P/Fe-NiSe2 

 

Fig. S20 XRD patterns of post-HzOR P/Fe-NiSe2 
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Fig. S21 XPS analysis of post-HzOR P/Fe-NiSe2 

 

Fig. S22 Photo graph of a commercial solar panel powered OHzS device under sunlight. 

Inset: enlarged image of the electrode surface 
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Fig. S23 Photograph of the gas measuring device for P,Fe-NiSe2 in hydrazine-assisted 

water electrolysis with the H2/N2 ratio of about 2:1 

 

Fig. S24 Open circuit voltage for P,Fe-NiSe2-assmbled Zn-Hz battery 
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Fig. S25  Galvanostatic discharge-charge cycling curves for the P/Fe-NiSe2-assembled 

Zn-Hz battery 

 

Fig. S26 Nyquist plots of collected at -0.1 V (vs. RHE). Inset: the enlarged view 

 

Fig. S27 Rct of P/Fe-NiSe2, Fe-NiSe2, NiSe2 and NF 
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Fig. S28 (a, b, c) Nyquist and (d, e, f) Bode phase plots of P/Fe-NiSe2, Fe-NiSe2 and 

NiSe2 at different potentials 

 

Fig. S29 Polarization curves without iR-corrected in the temperature range from 30 to 

70 °C 

 

Fig. S30 Electrochemical in-situ FTIR spectroscopy on different electrocatalysts 

measured on -0.1 V (vs. RHE) 
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Fig. S31 (a) Top- and (b) side- view of atomic structure models for P,Fe-NiSe2. The 

green, grey, brown and purple balls represent Se, Ni, Fe and P atoms, respectively 

Table S1 Comparison of HER performance of P/Fe-NiSe2 with other electrocatalysts 

Catalyst Electrolyte 
Overpotential at 10 

mA cm-2 (mV) 
References 

P/Fe-NiSe2 1.0 M KOH 74 This work 

Fe-NiSe2 1.0 M KOH 110 This work 

NiSe2 1.0 M KOH 141 This work 

D-Mo2TiC2/N - 78 [S9] 

NixCo3-xO4/Ti3C2Tx-HT 1.0 M KOH 210 [S10] 

NiSe/NF 1.0 M KOH 95 [S11] 

Ni/NiS/P,N,S-rGO 1.0 M KOH 155 [S12] 

CoxFe1-LDH/rGO/NF 1.0 M KOH 110 [S13] 

Ni1.5Co1.5P/MFs 1.0 M KOH 141 [S14] 

VS/NiCo2S4/NF 1.0 M KOH 187 [S15] 

Ni-ZIF/NC 1.0 M KOH 163 [S16] 

Ni-ZIF/NC 0.5 M H2SO4 177 [S16] 

NiMo6S6O2/MoS2 1.0 M NaOH 90 [S17] 

Fe-Co-O/Co@NC-mNS/NF 1.0 M KOH 112 [S18] 

CoP-NCDs/NF 1.0 M KOH 103 [S19] 

Ni3S2-Ni3P 1.0 M KOH + 0.5 M urea 122 [S20] 

Ni3S2-Ag/NF 1.0 M KOH 161 [S21] 

Ni-Co-B 1.0 M KOH 145 [S22] 

Ni2P-Co2P 1.0 M KOH 93 [S23] 

Ni2P-Co2P 0.5 M H2SO4 172 [S23] 

Ni0.5@MoCx/NC 0.5 M H2SO4 100 [S24] 

Ni-Mo2C@NPC 0.5 M H2SO4 144 [S25] 

Ni-Mo2C@NPC 1.0 M KOH 183 [S25] 
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Table S2 Comparison of HzOR performance of P/Fe-NiSe2 with other electrocatalysts 

Catalyst Electrolyte 
Potential at 100 mA 

cm-2 (mV vs. RHE) 
References 

P/Fe-NiSe2 1.0 M KOH + 0.7 M N2H4 200 This work 

Fe-NiSe2 1.0 M KOH + 0.7 M N2H4 294 This work 

NiSe2 1.0 M KOH + 0.7 M N2H4 493 This work 

Ni3S2/NF 1.0 M KOH + 0.2 M N2H4 415 [S26] 

FeN4/HPCM 1.0 M KOH + 0.1 M N2H4 500 [S27] 

Ni0.6Co0.4Se 1.0 M KOH + 0.1 M N2H4 260 [S28] 

D-MoP/rGO 1.0 M KOH + 0.5 M N2H4 275 [S29] 

Ni@Pd-Ni 1.0 M KOH + 0.08 M N2H4 590 [S30] 

S-CuNiCo LDH 1.0 M KOH + 0.02 M N2H4 650 [S31] 

Cu1Ni2-N 1.0 M KOH + 0.5 M N2H4 210 [S32] 

Ni3Se4 1.0 M KOH + 0.5 M N2H4 430 [S33] 

NiSe/NF 1.0 M KOH + 0.5 M N2H4 350 [S11] 

NiFe-LDH 1.0 M KOH + 2.0 M N2H4 244 [S34] 

CoFe-LDH 1.0 M KOH + 2.0 M N2H4 329 [S34] 

LiFe-LDH 1.0 M KOH + 2.0 M N2H4 417 [S34] 

 

Table S3 Comparison of overall hydrazine splitting performance of P/Fe-NiSe2 with 

other electrocatalysts 

Catalyst Electrolyte 
Voltage at 10 or 

100 mA cm-2 (mV) 
References 

P/Fe-NiSe2 1.0 M KOH + 0.7 M N2H4 91 (10) This work 

P/Fe-NiSe2 1.0 M KOH + 0.7 M N2H4 445 (100) This work 

Ni3S2/NF 1.0 M KOH + 0.2 M N2H4 867 (100) [S26] 

D-MoP/rGO 1.0 M KOH + 0.5 M N2H4 740 (100) [S29] 

Cu1Ni2-N 1.0 M KOH + 0.5 M N2H4 240 (10) [S32] 

Pd1Co1-CNFs 3.0 M KOH + 0.2 M N2H4 440 (10) [S35] 

Ni(Cu)@NiFeP/NM 1.0 M KOH + 0.5 M N2H4 491 (100) [S36] 

NiSe/NF 1.0 M KOH + 0.5 M N2H4 
310 (10) 

550 (100) 
[S11] 

NiOOH@CoCu CH 1.0 M KOH + 0.5 M N2H4 
87 (10) 

550 (100) 
[S37] 

 

Table S4 Gibbs energies for HzOR intermediates 

Catalyst *N2H4 *N2H3 *N2H2 *N2H *N2 

P/Fe-NiSe2 -0.68 -0.75 -0.13 -0.17 -0.94 

Fe-NiSe2 -1.32 -1.93 -0.65 -0.76 -1.63 
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