Supporting Information for

Hierarchical Interconnected NiMoN with Large Specific Surface

Area and High Mechanical Strength for Efficient and Stable Alkaline

Water/Seawater Hydrogen Evolution

Minghui Ning¹, Yu Wang², Libo Wu², Lun Yang³, Zhaoyang Chen⁴, Shaowei Song¹, Yan Yao⁴, Jiming Bao⁴, Shuo Chen^{1, *} and Zhifeng Ren^{1, *}

¹Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204, USA

²Cullen College of Engineering and TcSUH, University of Houston, Houston, TX 77204, USA

³School of Materials Science and Engineering, Hubei Normal University, Huangshi, Hubei 435002, P. R. China

⁴Department of Electrical and Computer Engineering and TcSUH, University of Houston, Houston, TX 77204, USA

*Corresponding authors. E-mail: <u>schen34@uh.edu</u> (Shuo Chen), <u>zren@uh.edu</u> (Zhifeng Ren)

Supplementary Figures and Tables

Fig. S1 Image of HW-NiMoO₄ prepared with different amounts of water bath reaction time

Fig. S2 SEM images at different resolutions for **a-c** HT-NiMoN, **d-f** HW-NiMoN-1h, **g-i** HW-NiMoN-2h, **j-l** HW-NiMoN-3h, **m-o** HW-NiMoN-4h, and **p-r** WB-NiMoN

Fig. S3 TEM image of HW-NiMoN-2h. Dashed circles indicate the presence of nanodots on the surfaces of the NiMoN nanowires

Fig. S4 EDS point analysis for HW-NiMoN-2h

Fig. S5 EDS linear scan of HW-NiMoN-2h

Fig. S6 XPS survey spectrum for HW-NiMoN-2h

Fig. S7 CV measurements at different scan rates for **a** HT-NiMoN, **b** HW-NiMoN-1h, **c** HW-NiMoN-2h, **d** HW-NiMoN-3h, and **e** WB-NiMoN

Fig. S8 TOF a plots and b values at -0.1 V vs. RHE for selected NiMoN samples

Fig. S9 BET measurements of **a** HT-NiMoN, **b** HW-NiMoN-1h, **c** HW-NiMoN-2h, **d** HW-NiMoN-3h, and **e** WB-NiMoN. **f** BET specific area values for NiMoN samples prepared using different methods

Fig. S10 HER activity of NiMoNs normalized by the BET specific area

Nano-Micro Letters

Fig. S11 Contact angle tests of DI water dripped onto various catalysts. **a-c** NF, **d-f** HT-NiMoN, **g-i** HW-NiMoN-2h, and **j-l** WB-NiMoN

Fig. S12 Tafel slopes for different catalysts, including NF

Fig. S13 a-b SEM images of HW-NiMoN-2h after CP testing at 500 mA/cm² in 1 M KOH DI water for 100 h. XPS spectra of **c** Ni 2p, **d** Mo 3d, **e** N 1s, and **f** O 1s for HW-NiMoN-2h after CP testing at 500 mA/cm² in 1 M KOH DI water for 100 h

Fig. S14 Images of HT-NiMoO₄, HW-NiMoO₄-2h, and WB-NiMoO₄ before and after 30 min sonication

Fig. S15 SEM images of a-c HT-NiMoN, d-f HW-NiMoN-2h, and g-i WB-NiMoN after 30 min sonication

Fig. S16 SEM images of **a-c** HT-NiMoO₄, **d-f** HW-NiMoO₄-2h, and **g-i** WB-NiMoO₄ after 30 min sonication

Fig. S17 Chronopotentiometric tests of HT-NiMoN, HW-NiMoN-2h, HW-NiMoN-3h, HW-NiMoN-4h, and WB-NiMoN at 1 A/cm² in 1 M KOH DI water

Fig. S18 SEM images of **a-c** HT-NiMoN, **d-f** HW-NiMoN-2h, and **g-i** WB-NiMoN after CP testing at 1 A/cm² in 1 M KOH DI water for 24 h, 24 h, and 23 h, respectively

Fig. S19 Image of seawater and of 1 M KOH seawater before and after filtration

Fig. S20 Tafel slopes for HT-NiMoN, HW-NiMoN-2h, WB-NiMoN, and Pt/C in 1 M KOH seawater

Fig. S21 a OER performance of NiFe LDH and **b** overall performance of NiFe LDH||HW-NiMoN-2h in 1 M KOH seawater

Fig. S22 Drainage setup for FE measurements based on the H-type electrolyzer. Dashed lines indicate H_2 and O_2 production after 50 h

Fig. S23 Zeta potentials of different NiMoN samples in DI water

Fig. S25 XPS measurements before and after plasma sputtering of HW-NiMoN-2h subsequent to 100 h of CP testing at 500 mA/cm² in 1 M KOH seawater. **a** Survey spectra and spectra of **b** Ni 2p, **c** Mo 3d, **d** N 1s, and **e** O 1s

Fig. S26 a HRTEM and **b** SAED images and EDS mapping of **c** Ni, **d** Mo, **e** N, and **f** O, for HW-NiMoN-2h after 100 h of CP testing at 500 mA/cm² in 1 M KOH seawater

Table S1 ICP-OES results for HW-NiMoN-2h

HW-NiMoN-2h	Wt%
Ni	28.35
Mo	41.65

Table S2 BET area, mass density, and specific area values for NiMoN samples prepared using different methods

Sample	HT-	HW-	HW-NiMoN-	HW-	WB-
	NiMoN	NiMoN-1h	2h	NiMoN-3h	NiMoN
BET area (m^2/g)	17.5	23.9	74.6	54.8	16.4
Mass density (mg/cm ² _{GEO})	53.7	64.8	91.1	103	47.6
Specific area (m ² _{BET} /cm ² _{GEO})	0.940	1.55	6.80	5.63	0.781

Overpotential (mV)	HT- NiMoN	HW- NiMoN-2h	WB- NiMoN	Pt/C	NF
100 mA/cm^2	36	34	50	60	353
500 mA/cm^2	101	76	111	165	
1000 mA/cm ²	149	107	155	230	

Table S3 Overpotentials required by different catalysts to drive various current densities in 1 M KOH DI water

Table S4 Overpotentials required by HW-NiMoN-2h to drive various current densities

 in different electrolytes

Overpotential (mV)	1 М КОН	1 M KOH 0.5 M NaCl	1 M KOH seawater
	DI water		
100 mA/cm^2	34	38	40
500 mA/cm^2	76	88	91
1000 mA/cm ²	107	127	130

 Table S5 Overpotentials required by different catalysts to drive various current densities in 1 M KOH seawater

Overpotential	HT-	HW-	WB-	Pt/C	NF
(mV)	NiMoN	NiMoN-2h	NiMoN		
100 mA/cm^2	44	40	62	85	376
500 mA/cm^2	124	91	161	199	
1000 mA/cm^2	178	130	220	259	

Table S6 HER performance of different hierarchical catalysts in seawater electrolyte

Catalvat	Flootrolyto	Activity	Stability	Dofe
Catalyst	Liecuolyte	Activity	Stability	ICCIS.
IIW NEMON 2h	1 M KOH	1 A/cm^2 at -0.13 V vs.	70 h at $1 \Lambda/am^2$	This
	seawater	RHE	/0 II at 1 A/CIII	work
NI: MoN	1 M KOH	1 A/cm ² at -0.176 V	200 h at 500 m Λ/am^2	[01]
INI-IVIOIN	seawater	vs. RHE	200 II at 300 IIIA/CIII	[31]
PF-NiCoP/NF	Natural	10 mA/cm^2 at -0.287	$20 \text{ h at } 10 \text{ m } \text{ / am}^2$	[02]
	seawater	V vs. RHE	$20 \text{ n at } 10 \text{ mA/cm}^2$	[52]
NiCoN Ni _x P NiCoN	Natural	10 mA/cm^2 at -0.165	24 h at $10 \text{ m} \text{ A}/\text{am}^2$	[62]
	seawater	V vs. RHE	24 II at 10 IIIA/CIII	[33]
Ni ₂ P-CoOOH	Simulated	100 mA/cm^2 at -0.4 V	100 h at $100 \text{ m} \text{ A}/\text{am}^2$	[\$ 4]
	seawater	vs. RHE	$100 \text{ II at} \sim 100 \text{ IIIA/CIII}$	[34]
Co-Fe ₂ P	1 M KOH	100 mA/cm ² at -0.221	22 h at 250 m Λ/am^2	[85]
	0.5 M NaCl	V vs. RHE	22 II at 230 IIIA/CIII	[33]
1D-Cu@Co-	1 M KOH	50 mA/cm ² at -0.2424	12 h at 10 m Λ/am^2	[\$6]
CoO/Rh	0.5 M NaCl	V vs. RHE	12 II at 10 IIIA/CIII	ເວບງ
MoNi ₄ /MoO ₃₋	Simulated	10 mA/cm^2 at -0.101	20 h at 21 m Λ/am^2	[87]
_x /NiCo	seawater	V vs. RHE	$20 \text{ II at } \sim 21 \text{ IIIA/CIII}$	[37]

NiCoFeP@NiCoP	Simulated	10 mA/cm ² at -0.4 V	10 h at $25 \text{ m} \Lambda/\text{cm}^2$	[82]
	seawater	vs. RHE	10 II at \sim 25 IIIA/CIII	[90]
CoNiP/Co _x P	Natural	$10 \text{ mA/cm}^2 \text{ at } -0.29 \text{ V}$	500 h at 10 m Λ/am^2	[60]
	seawater	vs. RHE	500 fr at 10 mA/cm	[39]
Co@RuCo-3	1 M KOH	10 mA/cm^2 at -0.059	$100 h at 50 m h / m^2$	[010]
	seawater	V vs. RHE	100 II at 30 mA/cm ⁻	[310]

Supplemenary References

- [S1] L. Wu, F. Zhang, S. Song, M. Ning, Q. Zhu et al., Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured nimon catalyst with fast water-dissociation kinetics. Adv. Mater. 34(21), 2201774 (2022). https://doi.org/10.1002/adma.202201774
- [S2] Q. Lv, J. Han, X. Tan, W. Wang, L. Cao et al., Featherlike nicop holey nanoarrys for efficient and stable seawater splitting. ACS Appl. Energy Mater. 2(5), 3910-3917 (2019). <u>https://doi.org/10.1021/acsaem.9b00599</u>
- [S3] L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang et al., Hydrogen generation from seawater electrolysis over a sandwich-like nicon|nixp|nicon microsheet array catalyst. ACS Energy Lett. 5(8), 2681-2689 (2020). <u>https://doi.org/10.1021/acsenergylett.0c01244</u>
- [S4] S. Zhang, W. Wang, F. Hu, Y. Mi, S. Wang et al., 2D coooh sheet-encapsulated ni(2)p into tubular arrays realizing 1000 ma cm(-2)-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12(1), 140 (2020). <u>https://doi.org/10.1007/s40820-020-00476-4</u>
- [S5] S. Wang, P. Yang, X. Sun, H. Xing, J. Hu et al., Synthesis of 3d heterostructure co-doped fe2p electrocatalyst for overall seawater electrolysis. Appl. Catal. B-Environ. 297, 120386 (2021). <u>https://doi.org/10.1016/j.apcatb.2021.120386</u>
- [S6] P.K.L. Tran, D.T. Tran, D. Malhotra, S. Prabhakaran, D.H. Kim et al., Highly effective freshwater and seawater electrolysis enabled by atomic rh-modulated co-coo lateral heterostructures. Small 17(50), 2103826 (2021). <u>https://doi.org/10.1002/sml1.202103826</u>
- [S7] Y. Zhang, G. Yan, Y. Shi, H. Tan, Y. Li, A branch-leaf-like hierarchical selfsupporting electrode as a highly efficient catalyst for hydrogen evolution. New J. Chem. 45(24), 10890-10896 (2021). <u>https://doi.org/10.1039/d1nj00836f</u>
- [S8] G. Yan, H. Tan, Y. Wang, Y. Li, Amorphous quaternary alloy phosphide hierarchical nanoarrays with pagoda-like structure grown on ni foam as phuniversal electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 489, 519-527 (2019). <u>https://doi.org/10.1016/j.apsusc.2019.05.254</u>
- [S9] D. Liu, H. Ai, M. Chen, P. Zhou, B. Li et al., Multi-phase heterostructure of conip/coxp for enhanced hydrogen evolution under alkaline and seawater

conditions by promoting h2o dissociation. Small **17**(17), 2007557 (2021). https://doi.org/10.1002/sml1.202007557

[S10] H. Huang, H. Jung, C.-Y. Park, S. Kim, A. Lee et al., Surface conversion derived core-shell nanostructures of co particles@ruco alloy for superior hydrogen evolution in alkali and seawater. Appl. Catal. B-Environ. 315, 121554 (2022). <u>https://doi.org/10.1016/j.apcatb.2022.121554</u>