Supporting Information for

In-Situ Iodide Passivation Towards Efficient CsPbI₃ Perovskite

Quantum Dot Solar Cells

Junwei Shi^{1, 2}, Ben Cohen-Kleinstein³, Xuliang Zhang², Chenyu Zhao², Yong Zhang¹, Xufeng Ling², Junjun Guo², Doo-Hyun Ko⁴, Baomin Xu^{1, #}, Jianyu Yuan^{2, 5, #}, Wanli Ma^{2, 6, #}

¹Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China

²Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, P. R. China

³Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada

⁴Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea

⁵Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, P. R. China

⁶Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, P. R. China

[#]Corresponding authors. E-mail: <u>xubm@sustech.edu.cn</u> (B. X.); <u>jyyuan@suda.edu.cn</u> (J. Y.); <u>wlma@suda.edu.cn</u> (W. M.)

Supplementary Figures and Table

Fig. S1 PL emission spectra of CsPbI₃ QDs with various feeding volume of HI

Fig. S2 Tauc plots of absorbance with photon energy (hv) and extracted bandgaps of control (1.785 eV) and HI-manipulated (1.776 eV) CsPbI₃ QDs

Fig. S3 UV-vis absorption of control and HI manipulated CsPbI3 QDs

Fig. S4 TRPL decay curves of CsPbI₃ QDs with various feeding volume of HI

Fig. S5 a, b TAs spectra and c, d the extracted decay curves of control and HImanipulated CsPbI₃ QDs

Fig. S6 The spherical aberration-corrected TEM captured picture of crystalline grain fusion- expansion along the direction of the (100) crystallographic plane

Fig. S7 UV-vis absorption of control and oversaturated HI feeding volume manipulated CsPbI₃ QDs

Fig. S8 TEM image of overloading HI-manipulated CsPbI3 QDs

Fig. S9 a) XRD pattern of PbI₂-OA-OLA precursor w/wo the addition of HI. **b)** The simulated lamer model of CsPbI₃ QDs enucleation and growth dynamics process [S1]

$$I-Pb-1 + {}_{H_2N} \overset{R}{\rightarrow} + {}^{O} \overset{OH}{\swarrow} \overset{H^+ I^-}{\longrightarrow} {}^{O} \underset{O}{\overset{O}{\rightarrow}} Pb-1 + I^+ {}^{H_{3N}} \overset{R}{\rightarrow} + {}^{O} \underset{O}{\overset{O}{\rightarrow}} Pb_{\downarrow} \circ \overset{V}{\longleftarrow} \circ + {}_{H_2N} \overset{R}{\rightarrow} + {}^{O} \underset{R}{\overset{O}{\rightarrow}} \circ \overset{Pb-1}{\longleftarrow} + I^+ {}^{H_{3N}} \overset{R}{\rightarrow} \uparrow + \underbrace{I-Pb-I^-}{\overset{I}{\rightarrow}} (PbI_m)^{(2-m)-}$$

Fig. S10 The dynamics process of existing specials in Pb-I-precursor with or without HI manipulation

Fig. S11 The extracted diffraction curves of control and HI-manipulated CsPbI₃ QD films from GIWAX patterns

Fig. S12 XPS core level spectra of a) Cs 3d, b) I 3d, c) Pb 4f, d) N 1s

Fig. S13 I₃/Pb ratio of control and optimal HI-manipulated CsPbI₃ QDs

Fig. S14 The normalized device performance of CsPbI₃ QD solar cells under various conditions

Fig. S15 *J-V* curves of the control and HI-manipulated devices under the forward scan direction

	$A_{l}(\%)$	$ au_1$	$A_2(\%)$	$ au_2$	$A_{3}(\%)$	τ_3 (ns)
Reference	31.97	118.69	33.02	118.69	35.01	1270.11
HI-manipulated	37.76	54.275	33.74	458.54	28.50	2839.82

Table S1 The fitted parameters of TAs.

 Table S2 The detailed parameters of decay amplitude and average decay time fitted from TRPL

	$ au_{ m ave}$	A_{I}	$ au_1$	A_2	$ au_2$
Reference	35.74 ns	72.87%	28.83 ns	27.13%	100.38 ns
50 μl HI	44.63 ns	58.18%	36.85 ns	41.82%	114.22ns
100 µl HI	58.51 ns	64.75%	43.97 ns	35.25%	148.99 ns
150 μl HI	52.33 ns	53.23%	92.25 ns	46.77%	35.05 ns

Table S3 The PLQY values of CsPbI₃ QD solution with various HI loadings

	Control	50 µl HI	100 µl HI	150 μl HI
PL QY values	74%	92%	94%	90%

Table S4 PV device parameters extracted from *J*-*V* scans of control and HI-manipulated devices

Condition	Scan	$V_{\rm oc}$	$J_{ m sc}$	FF	PCE	Н-
Condition	direction	(V)	$(mA cm^{-2})$	(%)	(%)	index ^{a)}
Control	Reverse	1.21	15.30	76.01	14.07	5 17
Control	Forward	1.20	14.93	74.22	13.30	3.47
HI-	Reverse	1.25	16.25	77.39	15.72	2 10
manipulated	Forward	1.24	16.03	77.47	15.39	2.10

a) Hysteresis index, denoted as H-index, defined as $H = \frac{PCE_{Rev} - PCE_{For}}{PCE_{Rev}} \times 100.$

Table S5 The extracted EIS parameters of control and HI-manipulated devices

	$R_{\rm s}$ (Ohm)	<i>R_{rec}</i> (Ohm)	$C_{rec}(\mathbf{F})$
Control	109.60	18140	6.78×10 ⁻⁹
HI-manipulated	93.05	33360	6.42×10 ⁻⁹

Supplementary Reference

[S1]Z. Long, M. Liu, X.-g. Wu, K. Gu, G. Yang, Z. Chen, Y. Liu, R. Liu, H. Zhong. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2, 296–304 (2023). <u>https://doi.org/10.1038/s44160-022-00210-5</u>